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Abstract

Background: Polyamine biosynthetic pathway is a validated therapeutic target for large number of infectious diseases
including cancer, giardiasis and African sleeping sickness, etc. a-Difluoromethylornithine (DFMO), a potent drug used for the
treatment of African sleeping sickness is an irreversible inhibitor of ornithine decarboxylase (ODC), the first rate limiting
enzyme of polyamine biosynthesis. The enzyme ODC of E. histolytica (EhODC) has been reported to exhibit resistance
towards DFMO.

Methodology/Principal Finding: The basis for insensitivity towards DFMO was investigated by structural analysis of EhODC
and conformational modifications at the active site. Here, we report cloning, purification and crystal structure determination
of C-terminal truncated Entamoeba histolytica ornithine decarboxylase (EhODCD15). Structure was determined by molecular
replacement method and refined to 2.8 Å resolution. The orthorhombic crystal exhibits P212121 symmetry with unit cell
parameters a = 76.66, b = 119.28, c = 179.28 Å. Functional as well as evolutionary relations of EhODC with other ODC
homologs were predicted on the basis of sequence analysis, phylogeny and structure.

Conclusions/Significance: We determined the tetrameric crystal structure of EhODCD15, which exists as a dimer in solution.
Insensitivity towards DFMO is due to substitution of key substrate binding residues in active site pocket. Additionally, a few
more substitutions similar to antizyme inhibitor (AZI), a non-functional homologue of ODCs, were identified in the active
site. Here, we establish the fact that EhODC sequence has conserved PLP binding residues; in contrast few substrate binding
residues are mutated similar to AZI. Further sequence analysis and structural studies revealed that EhODC may represent as
an evolutionary bridge between active decarboxylase and inactive AZI.
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Introduction

Entamoeba histolytica is responsible for causing amoebiasis,

amoebic liver abscess and amoebic colitis in humans. It is the

third major and a dangerous public health problem in the world

[1,2]. Though a small number of drugs including metronidazole,

emetine, tinidazole, chloroquine and nitrazoxanide are used for

the treatment of the disease, most of them are associated with

numerous side effects. In some cases, frequent use of these drugs

has led to the development of clinical drug resistance in the

pathogen [3,4]. Thus, it is crucial to identify and elucidate a potent

metabolic pathway in E. histolytica which could be set as a

therapeutic target for development of new anti-amoebic drugs.

In last few decades, the polyamine metabolic pathway in

protozoan diseases including African sleeping sickness [5],

giardiasis [6] and leishmaniasis [7] has emerged as a potential

therapeutic target [8]. The polyamines such as putrescine,

spermidine and spermine are essential polycationic compounds,

which are involved in various cellular processes that govern cell

growth and proliferation [9]. Subsequently, the actively prolifer-

ating cells have higher concentrations of polyamines. The

intracellular concentrations of polyamines are tightly regulated

by different mechanisms including biosynthesis, inter-conversion,

degradation, and uptake from the surrounding through polyamine

transporter. The failure in regulation of polyamine levels in cells

has been linked to various cancers. Hence, polyamine metabolic

pathway is also a potential target for cancer treatment [10,11,12].

Consequently, not only the polyamine biosynthetic pathway but

also the key components of polyamine homeostasis are potential

therapeutic targets [8]. The two enzymes of polyamine biosyn-

thesis pathway, ornithine decarboxylase (ODC) and S-adenosyl-

methionine decarboxylase (SAMDC) are highly-regulated and

have a very short half-life by which cells quickly alter the levels of

polyamines [13].

Ornithine decarboxylase catalyzes the first and rate-limiting

step of polyamine biosynthetic pathway. L-ornithine is decarbox-
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ylated by ODC enzyme in the presence of cofactor pyridoxal-59-

phosphate (PLP) to produce putrescine. The enzymatic activity of

ODC is tightly regulated by a distinct mechanism in which

polyamines induce the expression of a regulatory protein called

antizyme (AZ) by +1 ribosomal frameshifting [14]. AZ inhibits

ODC enzyme activity by binding and disrupting active ODC

homodimers, and subsequently marks the enzyme for ubiquitin-

independent degradation by the 26S proteasome [15,16]. Addi-

tionally, AZ negatively regulates the uptake of polyamines by

repressing polyamine transporter [17]. Thus, polyamine homeo-

stasis is maintained in a cell through polyamines themselves via a

negative feedback system, by governing the synthesis of AZ

protein.

Furthermore, in mammals, the activity of antizyme is negatively

regulated by a protein called antizyme inhibitor (AZI). AZI binds

to antizyme and blocks the binding of antizyme to ODC which

down regulates ODC degradation as well as leads to ODC

activation. AZI has higher binding affinity for antizyme as

compared to ODC which results in antizyme sequestration and

elevation of ODC levels [18,19,20,21,22,23]. Previously, it has

been reported that AZI is homologous to ODC and the major

residues involved in catalytic activity of ODC are conserved in

AZI [24]. However, AZI does not possess enzymatic activity due

to changes in the sequence that lead to protein inability to bind

cofactor PLP along with the failure in decarboxylation activity

[24,25,26].

In E. histolytica, ODC is the only enzyme of polyamine

biosynthetic pathway that has been reported to exist in the

organism [27]. The analysis of polyamine content shows that

considerable amount of putrescine is present in E. histolytica. While,

very low levels of spermidine and no spermine is detected

supporting the absence of other genes of polyamine biosynthetic

pathway in E. histolytica genome [28,29]. Interestingly, the

comparison of EhODC kinetic parameters with other well

characterized ODCs indicates that it has low substrate affinity

and catalytic efficiency [29]. Moreover, DFMO, a suicide

substrate inhibitor of ODC is used for the treatment of African

sleeping sickness, a protozoan disease caused by Trypanosome brucei

gambiense [30,31]. Interestingly, DFMO being an effective drug

against T. brucei gambiense is reported to have relatively poor effect

on the more virulent strain T. brucei rhodesiense [32,33]. Further-

more, the ODC of E. histolytica, being a pathogenic strain from

protozoa kingdom, is insensitive to DFMO due to sequence

divergence in the substrate binding residues [29,34,35,36]. Natural

resistance to DFMO within the same Trypanosome species as well as

within the protozoa kingdom draws attention towards the

sequence and structural divergence for their evolutionary adap-

tation.

In this study, we have determined the crystal structure of

EhODC to elucidate the structural features responsible for DFMO

insensitivity and low substrate binding affinity. Furthermore,

detailed comparative sequence and structural analysis was

performed with functional ODCs and non-functional ODC

homologue i.e. AZI to investigate the evolutionary status of

EhODC.

Materials and Methods

Reagents
Restriction enzymes NdeI, XhoI, T4-DNA ligase and phusion

polymerase were purchased from NEB. Primers were ordered

from Integrated DNA Technology. HisTrap HP Ni Sepharose

column and Hiload 16/60 Superdex 200 pg size exclusion column

were obtained from GE healthcare. For crystallization, PEG ION

screens were obtained from Hampton Research (Hampton

Research Inc. Aliso Viejo, CA). The plasmid pET30a containing

full length of EhODC was taken as template for sub-cloning [29].

Cloning of C-terminal truncated EhODC
Polymerase Chain Reaction (PCR) amplification was carried

out using forward primer 59-ATATCCATATGAAACAAA-

CATCTCTAGAAG-39 and reverse primer 59- GAACCTC-

GAGTCATTCAATTGACTTAGGGATTTGAAT-39 with NdeI

and XhoI restriction enzyme sites respectively to obtain DNA

fragment encoding the C-terminal 15 residues truncated EhODC

(EhODCD15). The previously cloned full-length EhODC was used

as a template in the PCR reaction [29,36]. PCR was performed in

a 50 ml reaction mixture containing 10 ml of 56HF phusion buffer

supplied with the enzyme, 300 mM of dNTP mix, 6.25 pmol of

each of forward and reverse primers, 10 ng of template DNA, 1 ml

of 2.5 U/ml phusion polymerase and water. The reaction was

performed with initial denaturation at 95uC for 30 s, followed by

30 PCR cycles of denaturation at 95uC for 30 s, annealing at 51uC
for 60 s and extension at 72uC for 1 min and 15 s. A final

extension was carried out at 72uC for 15 min. The resultant PCR

product was subcloned into NdeI and XhoI sites of pET-28c with

His6-tag preceding the N-terminal and tobacco etch virus (TEV)

protease cleavage site to allow the removal of tag from

recombinant protein. Ligated product was transformed into

freshly prepared E. coli DH5a competent cells. Kanamycin

resistant transformants were selected and grown in LB broth

supplemented with 50 mg/ml kanamycin. The pET28-

EhODCD15 plasmid was isolated and right size insert in the

construct was confirmed by DNA sequencing from TCGA, New

Delhi.

Expression and purification
The pET28-EhODCD15 plasmid containing truncated EhODC

gene was transformed into E. coli BL21 (DE3) competent cells. For

protein expression, transformed BL21 (DE3) cells were grown at

37uC to an optical density of ,0.6 at 600 nm (OD600) and

induced with 0.5 mM isopropyl-ß-thiogalactopyranoside (IPTG).

Induced cultures were transferred to 18uC and cells were grown

for ,14 h. Cells were harvested by centrifugation at 5,000 rpm at

4uC and cell pellets were stored at 220uC until further use. For

protein purification, cell pellets from 1 litre culture were re-

suspended in 20 ml of ice cold binding buffer containing 50 mM

Tris HCl (pH 7.5), 40 mM imidazole, 250 mM sodium chloride,

2 mM phenylmethylsuphonyl fluoride (PMSF) and 5% glycerol

(v/v). Lysozyme was added to a final concentration of 100 mg/ml

and kept on rocking platform at 4uC for 45 min. Cells were

disrupted by sonication on ice with 50% amplitude and a pulse of

20 sec on and 60 sec off for 15 min. The lysate was centrifuged at

18,000 rpm for 45 min at 4uC to separate supernatant from cell

debris. The supernatant was loaded onto 5 ml HisTrap HP affinity

column pre-equilibrated with the binding buffer. Protein was

eluted by running a linear gradient of 40–1000 mM imidazole in

60 ml of buffer A [50 mM Tris HCl (pH 7.5), 1 M imidazole,

250 mM sodium chloride and 5% glycerol (v/v)] at a flow rate of

1 ml/min. Eluted fractions were analyzed on sodium dodecyl

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and frac-

tions containing pure protein were pooled together. To remove the

N-terminal His-tag, TEV protease was added to the sample with

protein to TEV ratio 1:20 and incubated for ,12 h at 4uC and

simultaneously dialyzed against buffer A without imidazole. To

remove uncleaved His-tag protein and His-tag TEV protease, the

sample was again loaded onto 5 ml HisTrap HP column. Flow-

through containing EhODCD15 without His-tag was collected and
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concentrated using a 10 kDa cut-off Amicon Ultra-15 concentra-

tor (Millipore, Bedford, Massachusetts, USA). The concentrated

protein was loaded onto HiLoad 16/60 prep grade Superdex 200

size-exclusion chromatography column pre-equilibrated with

buffer B containing 30 mM HEPES-Na (pH 7.5), 250 mM NaCl,

1 mM EDTA, 10% (v/v) glycerol and 1 mM DTT. The major

peak fractions containing pure protein were pooled and concen-

trated to 5 mg/ml. Homogeneity of purified EhODCD15 protein

was analysed on 12% SDS-PAGE. Protein concentration and yield

were determined using the Bio-Rad protein assay kit with bovine

serum albumin (BSA) as a standard.

EhODCD15 enzymatic activity
To confirm that the truncation of 15 residues from C-terminus

does not inactivate EhODC, ornithine decarboxylation activity of

purified protein and production of putrescine was spectrophoto-

metrically determined using the method developed by Badolo et al

[37]. Enzymatic activity of the purified EhODCD15 protein was

compared with full-length EhODC [36].

Gel filtration analysis
The average molecular weight of EhODCD15 was determined

using size exclusion chromatography and compared with previ-

ously characterized full-length EhODC [36]. In brief, the purified

protein was concentrated to 5 mg/ml and was injected onto

HiLoad 16/60 Superdex 200 gel filtration chromatography

column using ÄKTA purification system (GE Healthcare). Protein

was allowed to pass through the column at a rate of 0.5 ml/min.

For the molecular weight estimation of EhODCD15, the elution

profile of the major peak containing purified protein was

compared with the elution profile of the standard Gel Filtration

HMW Calibration kit molecular weight markers (GE healthcare).

Crystallization
For crystallization, purified EhODCD15 protein was concen-

trated to 12.5 mg/ml in 30 mM HEPES-NaOH buffer (pH 7.5)

containing 1 mM EDTA, 0.25 M NaCl, 1 mM DTT and 10%

(v/v) glycerol. Crystallization trials were performed using the

sitting drop vapour diffusion method in 96 well plates (Hampton

Research) at 20uC and 4uC. The drops were prepared by mixing

2 ml of protein solution with 1 ml of reservoir solution and

equilibrated against 80 ml reservoir solution. Hampton Research

crystallization screens Crystal screen, Crystal screen 2 and PEG/

ION screen (Hampton Research, USA) were used to explore the

initial crystallization conditions. Crystals were obtained in PEG

ION screen containing 20% PEG 3350 in 0.2 M LiCl solution

maintained at pH 6.8. Diamond shaped crystals of EhODCD15

appeared in four months at 20uC. Prior to data collection, crystal

was cryo-protected by bathing it in mother liquor containing 3%

(v/v) ethylene glycol for 10 s. The crystal was flash-frozen under

cryogenic conditions at 100 K using liquid nitrogen stream to

prevent radiation damage during data collection.

Data Collection and structure determination
The diffraction data of EhODCD15 were collected at 100 K

using Cu Ka radiation generated by a Bruker Microstar-H

rotating-anode generator assembled with MAR 345 imaging-plate

system. The data were collected at 1.54 Å with a crystal-to-

detector distance of 200 mm and 1u oscillation per image with

20 min exposure per frame. Crystal diffracted to 2.8 Å resolution.

The data were indexed, integrated and scaled using HKL2000

program [38]. Table 1 summarizes data collection and processing

statistics. The structure was solved by molecular replacement

method using Molrep program of CCP4-6.0 suite [39]. The model

was generated using previously reported crystal structure of

human ODC (PDB ID: 2ON3) [40]. Non-crystallographic

symmetry restraints were applied throughout the refinement

stages using four EhODCD15 molecules in the asymmetric unit.

Structure refinement was performed using CNS v.1.2, Phenix v

1.7.2-869, and REFMAC 5.2 refinement tools [41,42,43]. Rounds

of model building were carried out using program Coot v 0.6.2

[44]. The quality of the model was evaluated by PROCHECK

[45].

Sequence Analysis of EhODC
The sequence of EhODC, along with other functional ODCs

and AZI were retrieved from NCBI database [46]. Multiple

sequence alignment and phylogenetic tree of these sequences were

obtained using ClustalW [47] for evolutionary variation analysis.

Model generation for active site analysis
In the crystal structure of EhODCD15, the flexible loops missing

in one subunit were present in the other subunits. Therefore,

coordinates for missing loops near active site in the structure were

Table 1. Statistical representation of data collection and
structure refinement parameters along with quality of the
model accessed by Ramachandran plot.

Data collection

Space group P212121

Unit cell parameters

a (Å), b (Å), c (Å) 76.66, 119.28, 179.28

Resolution (Å) 99.5–2.87 (2.92–2.87)a

Number of reflections 35570

Completeness (%) 92.1(59.0)a

Mean redundancy 3.4 (2.1)a

I/s 4.82 (2.0)a

Rmerge
b (%) 0.150 (0.670)a

Refinement

Resolution (Å) 99.5–2.87 (2.92–2.87)a

Number of non-H atoms in asymmetric unit

Protein 10484

Water molecules 101

R-factor (%) 25.3

Rfree
c value (%) 29.9

Average B-factor (Å2) 54.4

Rms deviations

bond lengths (Å) 0.005

bond angles (u) 0.831

Ramachandran plot

Residues in favored region (%) 88.7

Residues in allowed region (%) 10

Residues in generously allowed region (%) 0.9

Residues in outlier region (%) 0.4

avalue in parentheses are for the highest resolution shell.
bRmerge =S | I2Ī |/S I | where I = observed intensity and Ī = average intensity.
cRfree =S (|F|obs2|F|calc|)/S |F|obs where |F|obs are observed structure factor
amplitudes for a given reflection and |F|calc are calculated structure factor
amplitude.
doi:10.1371/journal.pone.0053397.t001
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generated by MODELLER 9.10 [48] using the solved crystal

structure of one subunit of EhODC as a template. Evaluation of

the steriochemical properties of obtained structure having built-in

loops was performed using PROCHECK [45]. All the figures of

structure and active sites were generated using PyMol [49].

Results and Discussion

C-terminal Truncation and Purification of EhODC
The ODC enzyme from E. histolytica belongs to fold type III

group IV decarboxylase of a B6-dependent family, having

eukaryotic ornithine decarboxylase characteristics [50,51]. Under

this classification, crystal structures are only available from three

different sources including human, mouse and Trypanosome brucei

ODC [52,53,54]. For crystal structure determination of EhODC,

full-length protein was purified using the previously established

protocol [36] and was used for crystallization experiments.

However, extensive crystallization trials of full-length EhODC

were unsuccessful. In order to decrease the conformational

heterogeneity, it is a common practice to truncate the flexible N

and/or C-terminal residues to facilitate the crystallization process.

Therefore, EhODC sequence was examined to identify disordered

regions using bioinformatics tools DisEMBL and GlobPlot

[55,56]. These programs predicted a fragment of approximately

13–17 residues at the C-terminus of EhODC to be flexible.

Additionally, it has been reported that the truncation of 37

residues from the C-terminus of mouse ODC resulted in protein

stability and has been crystallized successfully for structure

determination [53,57,58]. The C-terminal sequence of EhODC

shows similarity with mouse ODC in having a PEST like sequence

[36]. Based on these observations, 15 residues were deleted from

the C-terminus of EhODC. Expression and solubility of

EhODCD15 construct was optimized by varying induction

temperature (37uC, 25uC, and 18uC). Maximum solubility was

observed at 18uC when induced with 0.5 mM IPTG for ,14 h.

Recombinant EhODCD15 was purified in three sequential

purification steps, with yield of ,5 mg per liter of E. coli culture.

Elution profiles from the gel filtration column demonstrated that

EhODCD15 exists in the dimeric form similar to full-length

EhODC [36]. The purified protein exhibited a single band of

approximately ,45 kDa in 12% SDS-PAGE gel (Figure 1). The

enzymatic activities of EhODCD15 and wild-type proteins were

compared using previously established protocol [36]. The

comparative analysis of both the full-length and EhODCD15

forms didn’t show any notable difference in the activity indicating

that the truncation of 15 residues from the C-terminus of EhODC

does not affect its activity.

Crystal packing
Crystallization of purified EhODCD15 was performed using

sitting drop vapor diffusion method. Crystals were obtained at

20uC in Hampton PEG ion screen 4 containing 20% (v/v) PEG

3350, 0.2 M LiCl maintained at pH 6.8. Crystals belonged to the

orthorhombic space group exhibiting P212121 symmetry with unit

cell parameters a = 76.66, b = 119.28, c = 179.28 Å and

a = b = c = 90u. The crystal diffracted to 2.8 Å resolution, possess-

ing four molecules per asymmetric unit and the solvent content

was calculated to be 46.69% with a Matthews coefficient of

2.2 Å3 Da21. Quality of the obtained structure was assessed with

the PROCHECK program showing 88.7% of the residues in the

favored region, whereas 10% in allowed, 0.9% in generously

allowed and only 0.4% residues are observed in the disallowed

region of Ramachandran Plot (Table 1).

The four monomers in the asymmetric unit of crystal are

arranged as two separate dimers (subunits A, B and subunits C, D)

facing each other at the convex surfaces. Each monomer in a

dimer makes side to side contacts with each other forming an

overall bent structure. Further, as the loops in a dimer interface

are disordered and clear density was not observed, the central part

of dimer forms a hollow structure. In the dimer, chain A and chain

B are arranged in head to tail manner at origin (0,0,0) of

orthorhombic unit cell (Figure 2). The b/a barrel of chain A and b
sheet of chain B pose at origin and their counterpart extends along

X-direction. Dimer of AB is situated along with X-axis by an angle

of 30u approximately; whereas other dimer CD is situated at

rotation angle of 180u with a screw distance of 19.1 Å that

occupies approximately one quarter of unit cell. The crystallized

structure of EhODCD15 consists of a tetramer. The asymmetric

unit contains two dimers comprising of chain A, B, C, D. The total

area of the molecule of EhODC containing four molecules was

estimated to be 61227.6 Å2. Each dimer interacts with its

symmetry mate to form dimer-dimer interfaces as A–B dimer

interacts with C–D dimer (Figure 2). Interface area evaluated by

PISA web server was averaged to 1373.4 Å2 which was 1599.8 Å2

and 1147.0 Å2 between B, A and D, C respectively [59].

In the tetrameric structure, residues Phe91 and Leu87 of chain

A interact with Ser388 of chain C through a water molecule. In

addition, Glu90 of chain A interacts to Ser388 of chain C through

polar interaction. Similarly, Asp88 of chain A is forming direct

interaction with residue Leu386 of chain C and vice versa. Residues

Glu110 and His113 of chain B are at a distance of 3.1 Å and 3.3 Å

from Lys84 and Asp88 of chain D showing polar interactions and

vice versa (Figure 3).

Overall structure and folding
Each monomer consists of b/a barrel and b-sheet domain

which are arranged identical to previously known ODC structures

(Figure 4). However, the tetramer arrangement displays a number

of unusual features. Residues from barrel involved in contact and

dimer formation are located at the surface or in proximity to sheet

domain of opposite monomer. Interface residues of helices a5, a7,

a8 and a9 of chain A barrel form extensive contacts with sheet

domain S2 of chain B. All four chains in asymmetric unit showed

similar structures and are involved in similar interactions. The

analysis of dimer-dimer interactions exhibited large intermolecular

distances of ,4.0 Å. In a monomer, helix a1 is connected to sheet

b1 (Gly27-Phe31) through a loop and enters the barrel. The barrel

is composed of eight helices i.e. a2 (T33-N46), a3 (P62-L71), a4

(L80-L89), a5 (Y105-L114), a6 (I124-Y133), a7 (D163-K175), a8

(E194-F213) and a9 (F232-L246) followed by eight alternate b-

strands b2 (R51-A55), b3 (G74-C77), b4 (I96-Y98), b5 (H118-

V121), b6 (G138-R142), b7 (V182-F184), b8 (L219-D221) and b9

(R253-A256). The sheet domain comprises of eight randomly

arranged b-strands which can be further divided into S1 and S2 b-

sheets that are perpendicular to each other. Sheet S1 consisted of

four sheets b10 (F267-S271), b15 (L355-F357), b16 (I381-T383) in

addition to b1, which are roughly perpendicular to S2 containing

b11 (H274-Q281), b12 (K284-S291), b13 (Y325-Y330) and b14

(A341-L345) (Figure 4). However, both domains are connected by

two loops in between b1-a2 and a10-b10. The barrel and b-sheet

domains of the monomeric subunits are associated in head to tail

manner in the dimer. In addition, various polar interactions at the

dimer interface including salt bridges and hydrophobic interac-

tions are involved in the formation of dimer. The structure of

EhODC has several highly mobile loop moieties that are depicted

by dashed lines in Figure 4.

Crystal Structure of ODC from E. histolytica
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Figure 1. Purification and gel filtration profile of EhODCD15. A) 12% SDS-PAGE gel showing the affinity purified protein Lane 1: Molecular
weight markers shown in kDa. Lane 2–3: Protein purified by affinity chromatography. B) Elution profile of the EhODC1D15 protein. The protein was
eluted at a volume of 74 ml corresponding to molecule weight of ,87 kDa. Insert shows the purified protein in 12% SDS-PAGE after gel filtration
chromatography.
doi:10.1371/journal.pone.0053397.g001

Figure 2. Schematic representation of overall structure of the model obtained after molecular replacement. A) Cartoon diagram of
tetrameric model of EhODC showing AB-CD, dimer-dimer interface; B) Active site of EhODC at the interface of dimer where (9) denotes the residues
from the other subunit.
doi:10.1371/journal.pone.0053397.g002
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Comparative analysis of active site architecture
The ODC enzyme is an obligate homodimer with two

symmetry-related active sites located at the dimer interface.

According to our previous report, EhODC enzyme is functionally

active in the dimeric form [36]. As expected, the crystal structure

of EhODC contains two equivalent active site pockets at the dimer

interface formed by residues that are contributed from both the

subunits (Figure 2). The proper orientation of active site formed by

two subunits is highly essential for functionality of the enzyme.

The active site in EhODC is mainly contributed by loops from

both the subunits. For comparative analysis of active site, we

superimposed the EhODC structure over TbODC complexed with

DFMO. The super-imposition of monomers shows root mean

square deviation (rmsd) of 1.18 Å whereas super-imposition of

dimer shows rmsd of 1.7 Å. Active site superimposition of TbODC

and EhODC shows that most of the conserved residues in active

site of EhODC share same positions as in TbODC, however few

residues pose in different orientation (Figure 5). His185, Gly259,

Arg260 and Tyr363, the well conserved PLP binding residues of

EhODC share the position and have orientation similar to the PLP

Figure 3. Tetrameric structure with dimer-dimer interaction. A–C) shows the interaction between chain A and chain C. B–D) indicates the
interaction between chain B and chain D. Pink dashes shows the interaction of residues through water molecule and green dashes indicates the polar
interactions. Symbol (0) and (9) denotes the residues of chain C and chain D, respectively.
doi:10.1371/journal.pone.0053397.g003

Figure 4. Crystal structure of EhODC monomeric subunit. A) Cartoon diagram of the monomer showing arrangement of barrel and sheet
domain. B) Topology diagram of monomer of EhODC where helices are represented with cylinder and sheets with the arrows connected with loops,
dashed line indicates the sequence missing in the structure.
doi:10.1371/journal.pone.0053397.g004
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binding residues (His197, Gly276, Arg277 and Tyr389 respec-

tively) of TbODC (54, PDB ID: 2TOD). The side chains of these

conserved residues interacting with PLP through polar interactions

in TbODC are also expected to bind PLP and correctly orientation

it into the active site of EhODC. Interestingly, Ser200 of TbODC

is present in a loop and is seen interacting with PLP in TbODC

structure (54, PDB ID: 2TOD). However, this residue (Ser188) is

also conserved in EhODC, but shows small displacement from its

expected position and has opposite orientation in the crystal

structure of EhODC. Though, at this point it cannot be ruled out

that the flexible loop of EhODC possessing Ser188 may approach

the active site and may orient Ser188 in favourable position in the

presence of PLP, whereas apo-enzyme might not restrict its

position. Addition to this, Gly225 of EhODC shares exact position

of Gly237 of TbODC, whose backbone carbon chain contributes

to polar interactions. Apart from this, few residues interact with

PLP through water molecules which include residues Phe238,

Tyr278, Arg154 and Ala111 in TbODC. These residues are

present at the same position in EhODC active site except Ala111

where it is substituted by Ser99 in EhODC. Overall, the

architecture of EhODC for binding to PLP is similar to that of

TbODC.

DFMO, a substrate analogue makes a stable covalent bond with

conserved Cys residue in the active site of ODC enzyme and

inhibits its catalytic reaction. Binding of DFMO in the proper

orientation for covalent bond formation with its active site is also

supported by its interaction with other residues that are there in

the substrate binding pocket. To extricate the intricate structural

details of EhODC responsible for low substrate affinity and/or

DMFO insensitivity, structural comparison of EhODC active site

architecture for substrate/DFMO binding was done with the

active site of DFMO bound TbODC crystal structure (Figure 5)

(54, PDB ID: 2TOD). In TbODC, Cys’360 from counterpart

subunit plays the most critical role in DFMO binding by making a

permanent covalent bond with the enzyme. However, covalent

bond formation of Cys’360 with substrate L-ornithine has not

been reported for any ODC enzyme. In addition to this, the next

residue of TbODC Asp’361 helps to position the Cys’360 residue

in proper orientation and also interacts with DFMO through a

water molecule. In contrast, Cys’334 the conserved residue of

EhODC that is expected to form a covalent bond with DFMO is

slightly displaced from its position and has distinct orientation that

is structurally unfavourable for covalent linkage with DFMO. In

addition, the residue Asp’361 of TbODC is substituted by Asn’335

in EhODC, which is not expected to interact with DFMO.

Furthermore, alpha-carbon backbone consisting residues Tyr331

and Asp332 in TbODC shows direct interactions with bound

DFMO and these interactions play a role in proper DFMO

molecule orientation in the active site pocket. However, these

residues are mutated to Phe305 and Glu306 respectively in

EhODC. Also, EhODC crystal structure reveals that the loop

consisting of Phe305 and Glu306 residues is not located close to

the active site thus may not contribute to DFMO binding.

Moreover, residue Tyr’323 from other subunit of TbODC also

supports the favourable orientation of DFMO by side chain

hydroxyl group interaction with DFMO through a water

molecule. Tyr’323 is replaced with His’296 in EhODC and the

loop containing His’296 residue is positioned away from the active

site (Figure 5). In contrast, the cofactor PLP and substrate L-

ornithine are accommodated in EhODC active site with polar

interactions to facilitate the catalysis (Figure 2) [29,35]. These

structural details indicate that amino acid substitutions in the

active site of EhODC create a novel architecture which not only

makes it resistant to DFMO but also lowers its catalytic efficiency

by weakening substrate binding, as the reported Km values for L-

ornithine for active but DFMO sensitive T. brucei and mouse ODC

Figure 5. Superimposition of active site of EhODC with TbODC bound to DFMO. Residues of active site at the dimer interface are
represented in sticks. TbODC residues are colored with green, EhODC residues are colored with orange. PLP and DFMO are colored with blue and
polar interactions were indicated by black dashes; water molecule in shown in red sphere. Residues with (9) symbol are of opposite monomer.
doi:10.1371/journal.pone.0053397.g005
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enzymes are 0.24 mM and 0.09 mM respectively, whereas for

DFMO resistant EhODC it is 1.5 mM [29,60]. Not only

substituted residues, but also the displacement of loops (His’296

loop/Phe305 and Glu306 loop) away from EhODC active site

seems to contribute towards DFMO insensitivity.

EhODC sequence and structural comparison with ODC
homologs

The novel active site architecture revealed from the crystal

structure of EhODC and previously reported low catalytic

efficiency of the enzyme hints towards possible adaptive evolution

which lead to DFMO insensitive. AZI is an inactive ODC

homolog that possesses a broader active site due to unusual

packing of AZI dimers [61]. The architecture of AZI active site

does not favour the accommodation of substrate as well as the co-

factor for enzyme catalysis, which makes it an inactive homolog of

ODC. Recently, it has been proposed that several homologs of

ODCs including putative antizyme inhibitors apparently arise

independently through evolution [46]. Robust sequence analysis

and active site structure comparisons were performed to explore

the evolutionary relationship of EhODC with respect to ODC

homologs including AZI and to uncover the possibility of

additional EhODC functions. Multiple sequence alignment was

done and phylogenetic tree was generated for ODC homologues

including functional ODC and nonfunctional AZI (Figure 6).

AZI is an inactive homolog of ODC which has lost decarbox-

ylation activity due to mutation of critical residues in the active site

[24,25,26,46,62]. However, they are important in mammals as

they are responsible for antizyme down regulations, thus regulate

the ODC activity in cell system [21]. In this study, we have

identified 27 residues from sequence alignment of ODCs from

different organisms responsible for the formation of active site

pocket and in ODC enzyme dimerization (Figure 7). Out of 27

residues, 16 residues contribute to the active site formation by

interacting with cofactor PLP, 5 residues for substrate binding, 3

residues for salt bridge formation, 3 residues as critical interface

residues and 1 residue for dimerization (Figure 7).

From various mutational studies, it is reported that a conserved

Lys (Lys57 in EhODC) is important as it forms Schiff base with

PLP which is later displaced by L-ornithine that undergoes

decarboxylation through nucleophilic attack via a conserved Cys

(Cys3349 in EhODC) [36,63,64,65]. However, both the residues

are well conserved in both functional ODCs and AZI (except in

few AZIs). In all functional ODCs including ODCs from T. brucei,

Homo sapiens (HsODC) and mouse, residue Ala111 and Arg154

(HsODC) are highly conserved and interact with PLP through

water. Interestingly, in EhODC, though Arg142 is conserved,

however Ala111 is uniquely substituted with Ser99. AZI possesses

substitution at both the positions with Ala to Thr/Ile/Ser and Arg

to His/Gln that make AZI incapable of binding to PLP. Out of

sixteen PLP binding residues, AZIs have major mutations in five

positions whereas EhODC possesses a single mutation at position

99 with substitution of Ala to Ser (Figure 7 and Figure 8).

In HsODC, five residues Tyr323, Tyr331, Asp332, Cys360 and

Asp361 are reported to be key active site residues which interact

with L-ornithine and these residues are highly conserved in all

functional ODCs (Figure 7). However, EhODC is an exception

where only Cys334 is conserved while both Tyr and both Asp

residues are substituted by His296, Phe305, Glu306 and Asn335

respectively. The substitution of active site residues at His296 and

Figure 6. Multiple sequence alignment of ornithine decarboxylase and its homologues antizyme inhibitor to determine the
conservation of sequence and mutation of active site and substrate binding residues. Circles indicate the residues important for
enzymatic activity. Numbering is according to EhODC.
doi:10.1371/journal.pone.0053397.g006
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Asn335 positions are unique to EhODC as these two residues are

found to be conserved as Tyr323 and Asp361 in both AZI as well

as in functional ODC. Interestingly, substitution at Glu306 instead

of Asp332 is similar to AZIs, the inactive homologs of ODCs.

However, in AZIs only Asp332 is substituted by Glu, whereas

other four residues are mostly conserved (Figure 7).

Furthermore, in case of TbODC and other functional ODCs,

Tyr331 contributes to form an aromatic zipper responsible for

complementary packing in two monomers [53,54]. In AZI, this is

mutated to Ser rendering a loose contact between monomers [61].

But in EhODC, same residue is substituted by aromatic amino

acid Phe305 that is expected to perform same job in aromatic

zipper. The mutation of Tyr to Phe is also reported in Plasmodium

falciparum, Leishmania donovani and Glycine max ODCs (Figure 7,

Figure 7) [46,66].

AZI genes have accumulated mutations in key residues that are

important for ODC activity. In Petromyzon marinus, the homologue

of AZI as classified on the basis of conserved key amino acid

residues was found to be a functional ODC [67]. In contrast to

this, ODC from Aedes aegypti is found to be enzymatically non-

functional [46]. Thus, mutations in and around active site, ranging

from substitution of one residue to substitution of fourteen residues

in single polypeptide may cause enzyme inactivation. In T.

nigroviridis, 11 residues are altered in the active site whereas in

mammals 4 residues are altered to convert a functional ODC to a

nonfunctional homolog [46]. However, in Drosophila melanogaster,

though all 18 key residues of active site are conserved, but a single

mutation of Asp332Tyr hinders dimer formation in ODC in

addition to cofactor and substrate binding, which makes it a

nonfunctional ODC.

The evolutionary relationship of ODC and AZI can be

evaluated by considering the root of phylogenic tree which

connects the branch of both homologs. Evidences indicated that

both the homologs are from same subfamily and have evolved and

Figure 7. Sequence analysis of ODC and antizyme inhibitor, comparing the active site residues of ODC/AZI from various organisms.
Abbreviation denoted: Cf for cofactor binding; Bs salt bridge formation; S substrate binding residues; If dimer interface residues; Di important for
dimer formation. Species with the name of protein are shown on left side. Colour indication: Violet columns signifies the mutation in AZI; Orange
columns signifies the mutated residues in E. histolytica ODC which are similar to AZI; Gray shows the unique mutations in EhODC which is neither
conserved in ODC nor in AZI; Blue indicate the mutation in EhODC which are rarely found in AZI and functional ODC; Olive color point out the
mutations in EhODC which are similar to some ODC. Sequence analysis and numbering has been done according to EhODC. Residues which are not
conserved are shown by single letter, the conserved residues are indicted by – and D indicates the deleted amino acids. % identity indicates the
identity of EhODC sequence with other homologous ODC sequences [46].
doi:10.1371/journal.pone.0053397.g007
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diverged according to their function. In phylogenetic tree, the

group of AZI and ODC make different clusters according to the

sequence alignment. Interestingly, EhODC is clustering to the

ODC group just beneath the Aedes aegypti which is a nonfunctional

ODC due to His197Asn and Asp332Arg substitutions as shown in

Figure 7 and Figure 9. ODC of Aedes aezypti, being a non-

functional ODC, represents the border line of functional ODCs

and nonfunctional AZI. EhODC, the enzyme with low catalytic

efficiency is found to be more evolutionarily related to nonfunc-

tional ODC of Aedes aezypti and AZIs. These evidences from

sequence alignment and phylogeny profile of EhODC allow us to

establish the fact that during the course of evolution it gained

DFMO resistance by acquiring critical alternation in its sequence

similar to both functional ODCs and non-functional AZI.

Though, the evolutionary changes in the sequence also influenced

its catalytic efficiency. However, the possibility of additional

biological role of EhODC such as antizyme inhibitory activity

needs to be investigated.

Conclusion
In the present report, we successfully determined the 3D

structure of EhODC to elucidate its intricate active site architec-

ture that made it DFMO insensitive. Further on the basis of

sequence analysis, we unveiled many unique characteristics of

EhODC that show similarity with both functional ODC and non-

functional AZI. EhODC exists as a dimer like other functional

ODCs and in contrast AZI is monomer in solution due to weaker

interaction between two monomers. Interface of EhODC shows 45

contacts and 16 hydrogen bonds in addition to salt bridges which

stabilize the dimer. As studied in AZI structure (mouse AZI), only

43 contacts and 15 hydrogen bonds are reported which lack salt

bridge formation and make interface less interactive as compared

to ODC [61]. Structure of EhODC at 2.8 Å revealed two salt

bridges between Lys157-Asp238 at a distance 2.9 Å and Asp122-

Arg277 at 3.2 Å. Same salt bridges are also reported in HsODC

that contributes to dimerization. Though, same residues i.e.

Lys169, Asp364, Asp134, and Lys294 are conserved in AZI

(mouse), still residues do not approach to form the salt bridge [61].

Furthermore, AZI is inefficient to bind to PLP consequently

unable to carry out decarboxylation reaction. The structure of AZI

(mouse) reveals that the active site is too wide to make suitable

pocket for substrate and PLP binding. However, EhODC binds to

PLP and catalyzes decarboxylation of L-ornithine and relatively

less active as compared to other active ODCs. It is interesting to

note that though EhODC possesses similar property with other

ODC on the basis of structure and function, it shares some

similarity with AZI based on amino acid sequence. Firstly, the

substrate binding residue Asp332 (HsODC) is conserved in

functional ODCs where in EhODC same residue is altered to

Glu306 and Glu is well conserved in AZI. Secondly, PLP binding

residue Ala is altered to Ser in EhODC and such alternation is

reported in AZI of Danio rerio, Tetraodon nigroviridis and Anolis

crolinensis. Thirdly, EhODC possesses unique mutations at His296

and Asn335 those are neither reported in any functional ODC or

AZI. Such alternation of critical residues particularly in protozoa

provides the evidences of adaptive evolution of ODC. AZI

dependent ODC regulation is only reported in higher organisms

and absent from lower organisms. Even such regulation is not

reported in protozoa till date. However, it can be hypothesized

that ODC in protozoa takes the modification towards AZI though

it functions less efficently as an active ODC and its function as AZI

needs to be investigated.

Our study will facilitate to investigate the molecular evolution of

ODCs and AZI. It also suggests additional functional properties

for EhODC such as it may also play a role similar to that of AZI in

E. histolytica. Additionally, availability of EhODC crystal structure

will be helpful in development of structure based anti-amoebiasis

drugs.

Figure 8. Active sites comparison of functional ODC, antizyme inhibitor and EhODC. A) Human ODC active site residues colored in blue. B)
EhODC active site residues identical to human ODC colored blue, residues identical to AZI colored green and unique to EhODC colored red. C) AZI
interface region showing residues identical to human ODC in blue and those are mutated colored green.
doi:10.1371/journal.pone.0053397.g008
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Accession number
Structure factors and final refined atomic coordinates for

EhODC have been deposited in the Protein Data Bank (http://

www.rcsb.org) with accession number 4AIB.
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