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Abstract

Background: Multi drug resistance (MDR) or cross-resistance to multiple classes of chemotherapeutic agents is a major
obstacle to successful application of chemotherapy and a basic problem in cancer biology. The multidrug resistance gene,
MDR1, and its gene product P-glycoprotein (P-gp) are an important determinant of MDR. Therefore, there is an urgent need
for development of novel compounds that are not substrates of P-glycoprotein and are effective against drug-resistant
cancer.

Methodology/Principal Findings: In this present study, we have synthesized a novel, redox active Fe (II) complex (chelate),
iron N- (2-hydroxy acetophenone) glycinate (FeNG). The structure of the complex has been determined by spectroscopic
means. To evaluate the cytotoxic effect of FeNG we used doxorubicin resistant and/or sensitive T lymphoblastic leukemia
cells and show that FeNG kills both the cell types irrespective of their MDR phenotype. Moreover, FeNG induces apoptosis in
doxorubicin resistance T lymphoblastic leukemia cell through mitochondrial pathway via generation reactive oxygen
species (ROS). This is substantiated by the fact that the antioxidant N-acetyle-cysteine (NAC) could completely block ROS
generation and, subsequently, abrogated FeNG induced apoptosis. Therefore, FeNG induces the doxorubicin resistant T
lymphoblastic leukemia cells to undergo apoptosis and thus overcome MDR.

Conclusion/Significance: Our study provides evidence that FeNG, a redox active metal chelate may be a promising new
therapeutic agent against drug resistance cancers.
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Introduction

Multidrug resistance (MDR), a phenotype of cross-resistance to

multiple drugs with diverse chemical structures is the major

impediment of successful application of chemotherapy [1].

Although the underlying mechanisms are diverse, the role of

ATP-dependent drug efflux-proteins on the cell membrane is

accepted as a major cause behind MDR. Since the discovery of

drug efflux proteins for last four decades, huge number of

chemicals had been developed to inhibit these proteins and thus

serve as resistance modifying agents (RMA). The development of

non-toxic RMA capable of overcoming MDR clinically is still

elusive [2,3]. However, the basic target of chemotherapy is to

induce apoptosis to cancer cells irrespective of its phenotype. Is it

possible to induce apoptosis to cancer cells irrespective of its

phenotype? To address this question, we had earlier showed that

reactive oxygen species (ROS) plays important role in inducing

apoptosis to MDR cells through generation of host protective

cytokines by a copper chelate (CuNG) formed with copper salt and

N-(2hydroxyacetophenone) glycinate (NHAG), synthesized by us

[4,5,6]. In the present work we tried to understand the role of

ROS generation and consequent induction of apoptosis to

overcome MDR by the iron chelate (FeNG) formed with the

same ligand (NHAG) [7] and iron salt. As iron is less toxic than

copper and is required in high amount in normal human

physiology [8], we tried to harness the ROS generating effect of

ferrous ion to induce apoptosis to MDR cells.

Redox regulation has been shown to be an important

component of malignant cell survival. Tipping the cellular redox

balance through pharmacologic regulation in favor of increasing

intracellular ROS and/or depleting protective reducing metabo-

lites (such as glutathione (GSH) and nicotinamide adenine

dinucleotide phosphate) may lead to oxidative stress and resulting

in induction of apoptosis for the treatment of cancer [9]. It has

been postulated that the intrinsic ROS stress associated with

oncogenic transformation makes the cells highly dependent on

their antioxidant systems to counteract the damaging effect of

ROS and to maintain redox balance in a dynamic state (increased
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ROS generation and active ROS scavenging). This situation

renders cancer cell highly vulnerable to further oxidative insults by

exogenous agents [10]. Cancer cells, especially those in advanced

disease stages, become highly adapted to intrinsic oxidative stress

with up regulated antioxidant capacity. This redox adaptation

generally enables the cancer cells to survive under increased ROS

stress and also provides a mechanism of resistance to many

anticancer agents. Owing to the presence of redox adaptation

mechanisms, the use of ROS-generating agents alone may not be

sufficient to kill cancer cells that have an up-regulated antioxidant

capacity (mostly cellular GSH). Agents those disable such adaptive

mechanisms becomes more effective against these cancer cells.

Combinations of ROS-generating agents with compounds capable

of abrogating cellular antioxidant systems are likely to have an

additive or synergistic effect [11].

In the present work, we have synthesized and characterized a novel,

nontoxic iron complex (FeNG) and harnessed its anti proliferative

properties against drug resistant T lymphobastic leukemia in vitro. We

have investigated the underlying molecular mechanisms of apoptosis

upon treatment with FeNG in CEM/ADR5000 cells. The pro-

apoptotic activity of iron chelate involves mitochondrial apoptotic

pathway through generation of ROS and hints at a possibility of

utilizing redox active metal chelates in combating cancer.

Results

UV_Vis spectral study
UV spectrum for the ligand l max (water) was observed at: 211,

253 and 325 nm.

UV-VIS spectrum for the complex l max (water) was observed

at: 218, 254, 340 and 475 nm.

The electronic absorption spectrum of the complex shows four

bands in aqueous solution at 218 nm, 254 nm, 340 nm and

475 nm. The first three absorption bands are also observed in

almost the same l value in free ligand. These bands are perhaps

due to intra-ligand transition.

In the metal complex these three bands appear with higher l
values, as there may decrease electron donating ability after

complexation of ligand. The 475 nm band in the complex may be

assigned as d-d transition band, due to the spin forbidden transitions

from 6A1g to 4T1g and from 6A1g to 4T2g [4]. This band position of the

complex suggests an octahedral geometry of the Fe(II) complex.

Infra Red spectral study
Important infrared (i.r.) bands for the ligand appear at:

341023360, 1689, 1619, 1524, 1466, 1421, 1395, 1318, 1269,

1205, 1163, 969, 931, 752 and 730 cm21 [7].

Important i.r. bands for the complex appear at: 3219–3385,

1598, 1538, 1434, 1390, 1331, 1309, 1231, 1162, 1134, 1083,

1024, 963, 865, 745, 605, 525, and 433 cm21.

The nCN characteristic stretching band in the ligand appears at

1619 cm21 and shifts in the lower frequency region in the complex

at 1598 cm21; such shifting towards lower frequency region

suggests the coordination between nitrogen atom of the ligand and

the Fe-metal. In the ligand, one strong band appears at

1689 cm21 due to asymmetric stretching vibration of –COO–

and another strong band appears at 1395 cm21 due to symmetric

stretching vibration of – COO– group [7]. In the metal ligand

system, 1689 cm21 band is not observed and the band at

1395 cm21 band shifted to 1434 cm21; so there is strong

indication that the COO—group coordinates through deprotona-

tion. The nC-O ligand band (1269 cm21) shifted towards higher

frequency side in the complex at 1309 cm21. This high frequency

shift of nC-O phenolic band confirms the formation of covalent

bond between oxygen atom of phenolic –OH and metal ion

through deprotonation [12]. The –OH group participation in

coordination is also indicated by the shift of 3394 cm21 band

(2OH group) towards 3219–3385 cm21 through deprotonation

and formation of a metal-oxygen bond.

Metal ligand vibrations are generally located in the region 600–

250 cm21. The skeletal vibrations of the ligand appearing in this

region complicate the scope of interpretation. However, the

comparison of the complex and ligand spectra allowed the

assignment of metal sensitive bands. In the present case, we have

assigned the band at 605 cm21 to nM-O in the complex [4].

Proton NMR Study
Proton nmr peak of the ligand in D2O appears at d 7.38–7.51

(S, 5H) and d 6.59–6.76 (S, 3H) for aromatic protons. -CH2

protons appear at d 4.09 (1H, M). -CH3 protons appear at d 2.26–

2.29 (4H, M).

Proton nmr peak of the complex FeNG in D2O appear at d
6.88–7.8 (5H, S) for aromatic protons. -CH2- protons appear at d
3.49. CH3 protons appear at d 2.55.

The characteristic proton signals due to aryl group in the ligand

(d 6.59–7.5) are almost unaffected in the complex and appear at d
6.88–7.8. Complexation causes drastic changes of proton signals of

-CH2 and -CH3 groups in the ligand. The signal in the ligand due

to -CH2 group (d 4.09) shifts to higher field d 3.49 in the complex;

This is an indication of considerable drift of electrons from two

neighboring groups viz., 2N = C and –COOH to the metal

moiety. The signal for CH3 shifts to lower field in the complex (in

the complex at d 2.55 and in the ligand at d 2.26–2.29) due to

deshielding of protons and indicates participation of CH3-C = N-

group to coordination with iron atom [4].

Mass Spectral Study
The formation of molecular ion peaks indicates that the

structure of the iron complex in Fig. 1A and Mass spectral data

is presented in Fig. 1B.

Antiproliferative effects of FeNG
In an initial approach, to determine the antiproliferative effect of

FeNG on T lymphoblastic leukemia cells we performed MTT (3-[4, 5-

dimethylthiazol- 2-yl]-2, 5-diphenyltetrazolium bromide) assay em-

ploying CEM/ADR5000 in comparison to CCRF-CEM or human

PBMC (peripheral blood mononuclear cells). FeNG induced growth

inhibitory effect occurred in time as well as dose dependent manner in

CEM/ADR5000 (fig. 2A) and CCRF-CEM (fig. 2B) cell line with

IC50 values (at 72 h treatment) 0.7561023 M and 0.7961023 M

respectively (Table 1). However under the same condition FeNG

didn’t display cytotoxic effect on normal human PBMC (fig. 2C) at

given experimental concentration range. The results presented in the

Table 1 would suggest that CEM/ADR5000 and CCRF-CEM cells

were equally sensitive to FeNG as the difference in IC50 values

between two different cell lines were statistically not significant. In

addition, data obtained for FeNG displayed a considerable lower

resistance factor than doxorubicin [13] suggested that the complex

was not a potential MDR1 substrate (Table 2).

Selective cellular and nuclear morphological changes in
CEM-ADR5000 cells after FeNG treatment

The Hoechst 33342 staining is sensitive to DNA and was used to

assess changes in nuclear morphology. A concentration of

0.7561023 M is high enough to inhibit cell growth (fig. 2A).

CEM/ADR5000 cell were treated with FeNG for 24 h, 48 h, and

72 h and the iron complex induced nuclear condensation as well

Iron Complex Induces Apoptosis
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as nuclear fragmentation (a typical apoptosis associated markers)

was determined by fluorescence microscopy (fig. 3A). As shown in

fig. 3B, percentage of apoptotic cells was increased in time

dependent manner when cells were exposed to FeNG.

FeNG induces apoptosis in CEM/ADR5000 cell lines in
time dependent fashion

Early cellular changes in apoptosis are characterized by the

translocation of phosphatidylserine (PS) to the external surface of the

plasma membrane where it can be detected by binding to annnexin

V- FITC. As cell membrane is further compromised and cell death

occurs, cellular DNA becomes accessible for staining with PI [14,15].

The flow cytometric analysis showed that (fig. 4A), the CEM/

ADR5000 cells that had been incubated with FeNG for 24 h, 48 h,

and 72 h and dual stained with annexin V-FITC and PI, there was a

progressive increase in the annnexin V-FITC positive population of

cells (39.17%, 46.65%, 60.70% for 24 h, 48 h, 72 h respectively) in a

temporal manner as compared to untreated control (0.09%).

Figure 1. Structure and Mass spectral study of Iron Complex. (A)Chemical Structure of iron complex, iron (II) N-(2-hydroxyacetophenone)
glycinate (FeNG). (B) Mass fragments of FeNG.
doi:10.1371/journal.pone.0011253.g001
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In addition, FeNG induced apoptosis was also determined by

cell cycle analysis of PI stained CEM/ADR5000 cell line by

flowcytometry after FeNG treatment. It was found that (fig. 4B),

the increase in the counts of sub diploidal (sub G1/G0) cells in a

time dependent way as compared to untreated control.

FeNG induced apoptosis involves mitochondria
mediated pathway in CEM/ADR5000 cell line

Since apoptotic cell death may be actuated through the extrinsic

(transmembrane death receptor mediated) or the intrinsic

(mitochondria mediated) pathway, we enquired which pathway

was involved in FeNG induced cell death. To look into this

question, we treated CEM/ADR5000 cells with FeNG for 24 h,

48 h, and 72 h and FasR expression on cell were ascertained by

flowcytometry. Fig. 5A showed that FeNG was not able to induce

FasR expression on CEM/ADR5000 cells. On the contrary

Figure 2. Comparison of the cytotoxic effect of iron complex on different cell types. Dose response curves for iron complex (FeNG) using
(A) CEM/ADR5000 (B) CCRF-CEM, and (C) Human PBMC cells, as assessed by MTT assay. Cells were seeded into 96-well plates (46104 cells/well) and
allowed to overnight incubation at 37uC in 5% CO2 incubator. Next day, cells were treated with increasing concentrations of FeNG for 24 h, 48 h, and
72 h incubation. Results are expressed as percentage viability of solvent-treated control cells. Value represents the mean 6 SD of three independent
experiments with four replicates in each.
doi:10.1371/journal.pone.0011253.g002

Table 1. IC50 Values of FeNG for CEM/ADR5000, CCRF-CEM
and Human PBMC.

IC50 values (mM±SD)

Compound CEM/ADR5000 CCRF-CEM Human PBMC

FeNG 0.7560.06 0.7960.11 Not determined

Anti-proliferative activity of FeNG was determined using CEM/ADR5000, CCRF-
CEM, and Human PBMC following 72 h continuous incubation. All the data are
representative of three similar experiments. Values represent mean 6 S.D.
doi:10.1371/journal.pone.0011253.t001

Table 2. Calculation of Resistance factor for FeNG.

IC50 values (mM±SD)

Compound CEM/ADR5000 CCRF-CEM Resistance factor

FeNG 0.7560.06 0.7960.11 0.95

Doxorubicin 0.0002560.0001 0.160.009 400*

Anti-proliferative activity and resistance factor used to confirm multi-drug
resistance phenotype and demonstrating whether iron complex (FeNG) was a
substrate for P-glycoprotein. The resistance factor was calculated by division of
the IC50 for the drug resistance CEM-ADR 5000 cell line by the IC50 for the drug
sensitive CCRF-CEM cell line. Results presented are representative of three
independent experiments.
*Reference[13].
doi:10.1371/journal.pone.0011253.t002
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increased expression of FasR was detected on CEM/ADR5000

cells after 72 h treatment of 100 pg/ml of human recombinant

IFN-c. This data indicated that the extrinsic pathways might not

be involved in FeNG mediated apoptosis.

Cell death through the mitochondrion involves an increase in

mitochondrial permeability transition that results in the release of

cytochrome c and downstream activation of effector caspases.

The increase in mitochondrial permeability transition is accom-

panied by a collapse in mitochondrial membrane potential (DYm)

[16,17] that can be measured by JC-1 dye staining. In healthy

nonapoptotic cells, JC-1 is accumulated in mitochondria in

proportion to inner membrane potential and form a ‘‘J

aggregates’’ that fluoresce red; however, with the loss of

mitochondrial membrane potential, the dye remains in the

cytoplasm where JC-1 exist as monomer that fluoresce green.

The ratio of red to green fluorescence provides a measure of

DYm. After exposure to FeNG for 2 h to 6 h there was a time

dependent increase in DYm, indicating that mitochondria were

hyperpolarized followed by a decline in DYm which was detected

at around 12 h (fig. 5B). Our data indicating that exposure to

FeNG results in a biphasic change in DYm with an early hyper

polarization, followed by a later depolarization and DYm

collapse.

Mitochondrial swelling induced by permeability transition is

known to cause the outer membrane rupture and followed by

release of cytochrome c from mitochondria to cytosol [18]. To

analyse the involvement of mitochondria in the apoptosis induced

by FeNG, a cytochrome c release assay was performed. As

illustrated in the fig. 5C, FeNG treatment induced the release of

cytochrome c to cytosol as detected by western blot analysis of

cytosolic fraction. The intensity of immunoreactive band was

found to increase in a time dependent fashion after FeNG

treatment (fig. 5D).

Reactive oxygen species is critical for FeNG induced
apoptosis in CEM/ADR5000 cells

The intrinsic pathway of apoptosis can be triggered by many

stimuli including ROS. Mitochondria are the major site for ROS

Figure 3. Changes in nuclear morphology of CEM/ADR5000 cells after FeNG treatment. (A) Morphological changes of CEM/ADR5000 cells
treated with 0.7561023 M FeNG alone or in combination with 5 mM NAC (one hour prior to FeNG treatment). CEM/ADR5000 cells after treatments
with drugs were fixed with 1% paraformaldehyde and stained with Hoechst 33258. The cells were observed under a fluorescence microscope.
Apoptotic cells showed condensed or fragmented chromatin in the nucleus (arrowhead). (B) Represents the temporal kinetics of apoptotic
percentage of CEM/ADR5000 cells. Cells were treated with FeNG alone or in combination with 5 mM NAC for the indicated times. After treatment,
cells were harvested and stained with Hoechst 33258. Apoptotic cells were examined by counting the cells with condensed and fragmented nuclei.
Each point represents an average of three independent experiments, and standard deviation bars are shown.
doi:10.1371/journal.pone.0011253.g003
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production, and accumulation of ROS may lead to the initiation

of apoptosis [19]. Previously we have shown that CuNG produces

ROS in EAC/DOX cell line [20], therefore in the present work

we have investigated whether FeNG, structurally similar to CuNG

can kill tumor cells through induction of ROS generation. We

measured intracellular H2O2 using oxidation sensitive fluorescence

dye DCFDA in CEM/ADR5000 cells. It was found that FeNG

induced a rapid accumulation of H2O2 in CEM/ADR5000 cells

and maintained a sustained elevated level of H2O2 as compared to

untreated control (fig. 6A). This elevated level of ROS was

completely blocked by NAC (N acetyl cystein) (fig. 6B). NAC is an

aminothiol and synthetic precursor of intracellular cystein and

GSH and also known as a general antioxidant, which scavenge the

ROS (fig. 6B).

To further investigate whether FeNG induced ROS is required

for induction of apoptosis, CEM/ADR5000 cells were treated

with different concentrations of NAC 1 h prior to FeNG treatment

and cell death and apoptosis was monitored by MTT assay and

cell cycle analysis. The experiment showed that 5 mM NAC

completely protect CEM/ADR5000 cell from FeNG induced

apoptosis (fig. 6C and fig. 4B).

FeNG depletes intracellular GSH level
Cellular redox homeostasis is maintained by the balance

between ROS generation and successful elimination of ROS by

cellular antioxidant capacity. Exogenous agents that increase ROS

generation or decrease antioxidant capacity will shift the redox

balance and result in an overall increase in the level of ROS,

which when above a cellular tolerability threshold may induce cell

death [11]. However, depletion of GSH levels, a hallmark of

oxidative stress can be an early event that may contributes to the

induction of apoptosis [21].

Figure 4. FeNG induces apoptosis in CEM/ADR5000 cell line. (A)CEM/ADR5000 cells were incubated with FeNG for the indicated time and
then stained with annexin- FITC, which specifically detects exposed phosphatidyl serine residues at the cell surface. The number of annexin-V-positive
cells was determined using a flow cytometer and the percentage is represented in each panel. (B) Cell cycle distribution of CEM/ADR5000 cells after
FeNG treatement. CEM/ADR5000 cells treated with FeNG alone or in combination with 5 mM NAC for indicated times were harvested and fixed in
70% ethanol. After staining with propidium iodide they were analyzed using a flow cytometer. The percentage of cells in the sub-G1 (representative
of hypodiploid DNA content) population is indicated in each panel.
doi:10.1371/journal.pone.0011253.g004
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To assess the effects of FeNG on intracellular GSH level, CEM/

ADR5000 cells were treated with FeNG for different hour and

GSH was measured by fluorimetric method. It was found that

GSH was depleted gradually after FeNG treatment up to 4 h and

then it reaches its normal levels as compared to untreated control

(fig. 6D).

Activation of caspase 3 occurred in FeNG induced
apoptosis in CEM/ADR5000 cell line

Caspases are crucial mediator of programmed cell death

(PCD). Caspase 3 is a frequently activated death proteases, and

required for some typical hallmarks of apoptosis and is

indispensible for apoptotic chromatin condensation and DNA

fragmentation in all cell types examined [22]. So in order to

detect the enzymatic activity of caspase 3 during the induction of

cell death by FeNG, we used a fluoregenic peptide substrate (Ac-

DEVD-AMC) specific for caspase 3. Caspase activity was

monitored following treatment of CEM/ADR5000 with FeNG

for various intervals. As shown in the fig. 7A, the FeNG led to an

increase in caspase 3 activity in CEM/ADR5000 with the onset

at 12 h and reaching a maximum at 24 h which persisted until

72 h after treatment.

To determine whether the activity of caspase 3 is essential for

FeNG induced cell death, the effect of a caspase 3 specific inhibitor

(Ac-DEVD-cho) and a caspase family inhibitor (Z-VAD-fmk) was

also investigated. As shown in the fig. 7B, caspase 3 specific

inhibitor significantly but partially abrogated FeNG induced cell

death in CEM/ADR5000 cell line. This result confirms that

FeNG exerts apoptogenic activity through activation of caspase 3

and also indicate that involvement of other pathway(s) in FeNG

induced apoptosis. Surprisingly, Z-VAD-fmk didn’t able to block

FeNG induced cell death, rather it enhanced cell death potential

of FeNG in CEM/ADR5000 cells. This observation may be due

to existence of alternative cell death pathways which may function

Figure 5. FeNG induces apoptosis through mitochondrial cell death pathway. (A) CEM/ADR5000 cells of both untreated and FeNG treated
for indicated time or rIFN c treated were labeled with anti FasR antibody. Immunofluorescence analysis was performed by flow cytometry.
Representative data of 3 independent experiments is presented. (B) CEM/ADR5000 cells were treated with or without FeNG for indicated time, and
mitochondrial membrane potential was measured after JC1 staining. The ratio of red fluorescence (mitochondrial JC-1) to green fluorescence
(cytoplasmic JC-1) was used as a surrogate for mitochondrial potential. Data represent mean 6 SD of three independent experiments. Statistically
significant difference from untreated control at *P,0.05, **P,0.01, ***P,0.001, respectively. (C) Effect of FeNG on the release of cytochrome c.
Western blot analysis of cytosolic extracts from CEM/ADR5000 cells treated with FeNG (1024 M) for indicated hours. Cytosolic fraction was prepared
as described in Materials and Methods. Membrane was probed with anticytochrome c antibody followed by incubation with peroxidase-conjugated
secondary antibody. The protein was visualized by Lumi glow detection system. Membrane was blotted for b-actin (bottom panel) for loading
correction. (D) Densitometric quantitation of cytochrome c levels in the cytoplasm. Immunoreactive bands were quantitated and expressed as the
ratio of each band density to corresponding loading control (b actin) band density and values were represented after normalization to untreated
control.
doi:10.1371/journal.pone.0011253.g005
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as back up cell death programme for apoptosis. Addition of Z-

VAD-fmk may block apoptotic cell death while sensitizing cells to

necrotic or autophagic cell death [23].

PARP degradation is associated with FeNG induced
apoptosis

Activation of caspase 3 subsequently leads to apoptotic cell

death through cleavage of broad spectrum of cellular target

protein including poly (ADP-ribose) polymerase (PARP). In

many cellular systems undergoing apoptosis, the endogenous

PARP 116 kDa protein is cleaved to generate an 89 kDa

fragment [24]. Therefore we investigated the change of PARP

status in CEM/ADR5000 cell after FeNG treatment by western

blot analysis. As shown in the fig. 7C and 7D cleaved 89 kDa

fragments were appeared after FeNG treatment in a time

dependent manner.

Discussion

Cross-resistance to multiple classes of chemotherapeutic agents

is a major problem in the treatment of several types of human

cancers [25,26]. A major mechanism of this resistance is the

enhanced efflux of a wide variety of structurally distinct classes of

chemotherapeutic agents due to the overexpression of P-gp [27].

In this present communication we report that the synthesis and

biological characterization of novel iron complex (FeNG), which

have cogent in vitro anti proliferative and cytotoxic potential

against drug resistance T lymphoblastic leukemia (CEM/

ADR5000) cell line.

The primary objective of this study was to develop a water

soluble, non-toxic metal complex, which have anticancer poten-

tial. We also attempted to determine whether this complex could

selectively kill drug resistance cancer cells, leaving non-malignant

Figure 6. Reactive oxygen species (ROS) plays an important role in FeNG induced apoptosis. (A) CEM/ADR5000 cells were either kept
untreated or treated with FeNG (1024 M) and intra cellular ROS generation was measured [in terms of peroxide using dichlorofluorescein diacetate
(DCF-DA)] as described under Materials and Methods at different time points. Data are expressed as percent of control and are presented as
mean6SD of 3 independent experiments. Differences between control and FeNG treated cells are significant *P,0.05, **P,0.01, ***P,0.001, by
unpaired Student’s t test. (B) NAC completely abrogated FeNG induced ROS generation in CEM/ADR5000 cells. Cells were either kept untreated or
pretreated with NAC (5 mM) for 1 h. Then the cells were further cultured for 2 h, 4 h, 6 h and 8 h in the presence or absence of FeNG (1024 M) and
intra cellular ROS generation was measured. (C) Represents that NAC protects CEM/ADR5000 cells from FeNG induced cell death. CEM/ADR5000 cells
were either left untreated or pretreated with different concentration of NAC for 1 h. The cells were then treated with FeNG (1023 M or1024 M) for
72 h and cell death was monitored by MTT assay. Value represents the mean 6 SD of three independent experiments with four replicates in each.
Significant difference at *P,0.05, ***P,0.001, respectively, from only FeNG treated cells. (D) FeNG depletes intra cellular glutathion (GSH) contents of
CEM/ADR5000 cells. Cells were either kept untreated or treated with FeNG (1024 M) for indicated time points and intra cellular GSH was measured as
described under Materials and Methods. Results are presented as mean6SD of 3 independent experiments. Differences between untreated control
and FeNG treated cells are significant **P,0.01, ***P,0.001, by unpaired Student’s t test.
doi:10.1371/journal.pone.0011253.g006
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cells viable. In addition, we also dissected the underlying key

molecular events associated with iron complex mediated anti

proliferative effect in CEM/ADR5000 cell line.

Initial cytotoxicity studies were carried out to determine the

IC50 values of FeNG in different human cell types. The use of

three different cell types allows us to determine whether FeNG has

differential effects on drug resistant and drug sensitive T

lymphobastic leukemia cell lines. Moreover, through the use of

human PBMC as non-malignant normal cell, may provide a

means by which the potential selective nature of the complex can

be identified. The result obtained from initial cytotoxicity studies

showed that following 24 h to 72 h exposure the complex

displayed both the concentration and time dependent anti

proliferative effects on CEM/ADR5000 and CCRF-CEM cell

Figure 7. Activation of caspase 3 in CEM/ADR5000 cells after FeNG treatment. (A) Effect of FeNG and caspase inhibitors on the activity of
caspase-3 of CEM/ADR5000 cells. Cells were treated with either vehicle (medium) control or FeNG (1024 M) for 12 h, 24 h, 48 h, 72 h or caspases
inhibitors; Ac-DEVD-cho (caspase 3 specific inhibitor) and z-VAD-fmk (pan caspase inhibitor) alone (50 mM) or in combination with FeNG for 72 h.
After completion of these treatments, cells were harvested and cell lysates were prepared. The enzymatic activity of cell lysates towards tetrapeptide
chromogenic substrates Ac-DEVD-AMC was determined. Caspase activities are expressed as fold change of control and presented as mean6SD of
three independent experiments. Differences between untreated control and FeNG treated cells are significant ***P,0.001, by unpaired Student’s
t test. (B) Effects of caspase inhibitor on FeNG induced cell death of CEM/ADR5000 cells. Cells were either left untreated or treated with FeNG (1023 M
or1024 M) or Ac-DEVD-cho (50 mM) and z-VAD-fmk (50 mM) alone or in combination with FeNG for 72 h and cell death was monitored by MTT assay.
Value represents the mean 6 SD of three independent experiments with four replicates in each. Significant difference at *P,0.05, **P,0.01,
respectively, from only FeNG treated cells. (C) Effect of FeNG on the cleavage patterns of PARP in CEM/ADR5000 cells. Cells were grown at standard
culture conditions as mentioned in Materials and methods, and treated with FeNG (1024 M) for 24 h to 72 h, and cell lysates were prepared.
Immunoblot analysis was performed to identify the full (116 kDa) and cleaved (89 kDa) PARP using specific primary antibodies. Loading was checked
by immunoblotting of b -actin. Bands were visualized by Lumi glow detection system. Data shown are representative of three independent
experiments. (D) Densitometric quantitation of cleaved (89 kDa) frgments of PARP in the cytoplasm. Immunoreactive bands were quantitated and
expressed as the ratio of each band density to corresponding loading control (b actin) band density and values were represented after normalization
to untreated control.
doi:10.1371/journal.pone.0011253.g007
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line. On the contrary the complex kept the non-malignant normal

PBMC viable during exposure within stipulated experimental

concentration and time frame. We have also tested the cytotoxic

activity of metal free ligand and simple aquated iron metal ion on

three different cell types but none of cells show significant toxicity

(Data not shown) towards both of the components. Based on IC50

values presented in table 1, it was found that both drug resistant

and sensitive cells were more or less equally susceptible to FeNG

induced cytotoxicity. In addition the results presented in table 2

show that the resistance factor (RF) for doxorubicin is significantly

higher compared to iron complex suggesting that the complex is

not a potential MDR1 substrate.

The morphology of the drug treated cells is used to determine

the extent and nature of cytological effects. Hoechst 33342 stain is

used to determine nuclear morphology and DNA condensation

result presented in the fig. 3A and 3B clearly shows that FeNG

induces nuclear fragmentation and DNA condensation in a time

dependent manner in CEM/ADR5000 cell line. This result

indicates a clue that apoptosis may be involved in FeNG induced

cell death in CEM/ADR5000 cell line as the nuclear fragmen-

tation and DNA condensation are hallmark for apoptosis. To

substantiate this notion, we carried out annexin V/PI binding

assay; we have found that FeNG increases the percentage of

annexin V positive population in time dependent manner whereas

the percentage of both annexin V and PI positive population

remains negligible as time progressed. These results clearly

indicate that FeNG kills CEM/ADR5000 cells through induction

of apoptosis. Further studies on cell cycle analysis of CEM/

ADR5000 cells after FeNG treatment reveals an increase in the

sub diploidal population which represent cells with significant

DNA damage indicating a late apoptotic stage with respect to

cycling cells. However, FeNG does not affect cell cycle check

points in CEM/ADR5000 cell line within experimental time

frame.

Apoptosis follows two main pathways, the extrinsic pathways,

initiated by binding of ligand of specific death receptor and the

intrinsic pathways initiated at mitochondria. To draw an inference

about pathways involves in FeNG induced apoptosis, FasR

expression has been checked and we have found no FasR

expression on CEM/ADR5000 cells FeNG post treatment. This

apparently suggests that extrinsic pathway may not be involved in

FeNG induced apoptosis. As regards the mitochondrial pathway,

the most critical events during apoptosis are the release of

cytochrome c from mitochondria into cytosol, after development

of the mitochondrial transition pore. Cytochrome c in the

cytoplasm complexes oligomerizes apoptosis activating factor 1,

leading to activation of Caspase 9 and the effector caspase cascade.

The translocation of cytochrome c to cytoplasm generally occurs

simultaneously with the decrease of DYm, another marker of

subsequent cell death. The release of cytochrome c and the change

in DYm are the key events in intrinsic pathway of apoptosis.

Indeed, we investigated the effect of FeNG on mitochondrial

membrane potential and found that initially FeNG increases the

DYm up to 6 h and then DYm decreases steadily in time

dependent fashion and translocation of cytochrome c into

cytoplasm also occurrs in time dependent manner after FeNG

treatment. This early hyper polarization event, described by other

authors for different cell types, seems to represent a prerequisite

for rapid mitochondria mediated apoptotic cell death that

eventually leads to the loss of DYm [28,29,30]. Our data discloses

that mitochondrial apoptosis pathway may be involved in FeNG

mediated apoptosis. In the present study, we have demonstrated

that FeNG induces generation of ROS and mitochondrial

dysfunction but NAC blocks the ROS production and abrogates

FeNG induced apoptosis in CEM/ADR5000 cells. Furthermore,

FeNG also deplete intracellular GSH. This result indicates that the

generation of ROS and intracellular GSH depletion i.e. cellular

redox imbalance may play an important role in FeNG induced

apoptosis. At present it is not perceptible how FeNG induces

production of ROS and disruption of mitochondrial function.

However, one possible explanation is that FeNG directly or

indirectly interacts with the ROS generating system resulting in an

increase in the production of O2
-, or increased amount of H2O2

produced by FeNG, later may lead to the formation of highly

damaging hydroxyl radical by Fenton reaction.

Evidence suggests that most proapoptotic stimuli induce

activation of a family of intracellular cystein protease called

caspases. Activation of Caspase 3 followed by PARP cleavage in

CEM/ADR5000 cells occurred after exposure to FeNG which

represents the irreversible or execution stage of apoptosis.

Although caspase 3 activity is associated with FeNG induced

apoptosis, but Caspase 3 specific inhibitor Ac-DEVD-cho didn’t

completely protect CEM/ADR5000 cell from FeNG induced

apoptosis. On the other hand ROS scavenger NAC completely

abrogate FeNG induced apoptosis (fig. 4B) and caspase 3

activation (data not shown).

In summary, our data provide evidence that novel non-toxic

iron complex selectively kills cancer cells through induction of

apoptosis in mitochondrial pathway in CEM/ADR5000 cells and

reactive oxygen species play a pivotal role in iron complex

mediated apoptosis. In conclusion the present report suggests that

FeNG is a potent in vitro growth suppressing agent for T

lymphoblastic leukaemia cell line irrespective of their multi drug

resistance status and may have tremendous therapeutic potential

as anti leukemic drug.

Materials and Methods

Reagents
N-(2-hydroxy) acetophenone, glysine, ferrous sulphate, MTT

dye (3-[4, 5-dimethylthiazol- 2-yl]-2, 5-diphenyltetrazolium bro-

mide, N acetyl cystein (NAC) were purchased form Sigma

Chemical Chompany,St. Louis, MO, propidiam iodide, 29, 79-

dihydrodichlorofluorescin diacetate (H2-DCFDA, Molecular

Probes), FITC-labeled Annexin V, o-phthalaldehyde, 5,59,6,69-

tetrachloro-1,19,3,39- tetraethylbenzinidazolylcarbocyanine iodide

JC-1 dye (Molecular ProbesTM, Invitrogen), anti-PARP antibody

(Santacruz), anti FasR antibody (Santacruz), anti-cytochrome c

antibody (BD PharMingen, San Diego, CA), HRP-conjugated

secondary antibody (Sigma Chemical Chompany,St. Louis, MO).

Synthesis of the ligand
The ligand, PHAG was prepared according to the reported

methods [7]. In brief, a cold aqueous solution of KOH (1.03 g, in

12 ml) was mixed with cold aqueous solution of glycine (1.38 g in

12 ml) and held at 15–20uC in an ice bath with continuous

stirring. An ethanolic solution of 2-(Hydroxy) acetophenone (2.5 g

in 25 ml) was added drop wise. Deep yellow color was developed

and stirring was continued for 1 h followed by 5 h at room

temperature. The solvent was removed by a rotary evaporator.

The yellow mass was washed with pet-ether and precipitated with

methanol-diethyl ether mixture. The crude product was recrys-

tallised from methanol to yield PHAG. Yield 75%, m.p.258u–
260uC.

Synthesis of the iron complex
Ferrous N-(2-hydroxy acetophenone) glycinate (FeNG) was

synthesized from the ligand, potassium N-(2-hydroxy acetophenone)
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glycinate by its reaction with ferrous sulphate; in brief, 460 mg

potassium (N-2-hydroxyacetophenone) glycinate (NG) and

280 mg ferrous sulphate was dissolved in 5 ml double distilled

water separately. Both the solutions were cooled to 8–10uC. The

solution of PHAG was added dropwise to ferrous sulphate

solution kept in ice bath. The mixture was rotated in a

magnetic stirrer for 25–30 mins. maintaining the temperature at

7–8uC. deep brown precipitate deposited and was allowed to

settle for 30 mins. in refrigerator. The precipitate was isolated

by centrifugation and recrystallised in water-alcohol. Yields

40%, mp..400uC, Anal. Calc. C10H13O5NFe: C, 39.6, H, 3.3,

N, 4.62; Found: C, 38.25; H, 3.28; N, 4.72.

Chemical characterization
UV-vis spectra was recorded in Shimadzu UV 160 A and in

Varian Cary 100 Scan in the range of 8002200 nm.

IR spectra were recorded in Perkin-Elmer RX 1 FT

spectrophotometer in KBR discs in the range 45002500 cm21.

Proton NMR spectra was recorded in DMSO-d6 on a Bruker

ACF 300 spectrometer at 300.13 MHz reference to Me4Si

(0.0 ppm).

Mass spectrum was recorded in an AEI MS-30 mass

spectrometer.

C, H, N was measured by Perkin-Elmer 2400 Series II CHN

analyzer.

Cell culture
The human T-cell acute lymphoblastic CCRF-CEM and

CEM/ADR5000 leukemia cell lines [5,13] were maintained in

RPMI medium (GIBCO Invitrogen Corp., Carlsbad, California,

USA) supplemented with 5% fetal bovine serum (FBS), additional

glutamine (0.15%), HEPES (25 mM) and 50 mg/ml gentamycin.

Cells were grown in plastic tissue culture flasks (Greiner Bio-One,

Germany) in a 5% CO2 atmosphere at 37uC. Cells were passages

twice weekly. The doxorubicin resistant CEM/ADR5000 cell line

was generated by treating CCRF-CEM cells with doxorubicin

doses up to a final concentration of 5000 ng/ml doxorubicin

[31].These cell lines were kindly provided by Prof T Efferth,

University of Mainz, Germany. The CEM/ADR5000 specifically

overexpress P glycoprotein without concomitant over-expression

of MRP1 or BCRP [32,33]. Furthermore, the cross-resistance

profile of CEM/ADR5000 cells to a broad range of established

anti-cancer drugs and investigative novel compounds have been

analyzed [34]. Cells from exponentially growing cultures were

used for all experiments. All experiments were repeated three

times.

Isolation of PBMC
Heparinized peripheral blood of human was taken and diluted

with equal volume of RPMI 1640. Lymphocyte-enriched mono-

nuclear cells were isolated by Histopaque 1077 (Sigma) density

gradient centrifugation of diluted blood was washed, and finally

resuspended in cold RPMI 1640 supplemented with 5% heat

inactivated fetal bovine serum (RPMI-FBS).

Treatment
A 1022 M solution of FeNG was prepared just before the

experiments by dissolving the lyophilized compounds in water. For

MTT assay treatments were performed with a concentration of

1023 M to 1028 at 37uC in medium supplemented with serum. As

control, equal volumes of medium were added to untreated cells. The

pancaspase inhibitor zVAD-fmk, caspase 3 specific inhibitor Ac-

DEVD-cho (BD bioscience) and antioxidant N acetyl cystein (NAC)

was used at a final concentration of 20 mM, 50 mM and 2.5 mM to

10 mM respectively, preincubated for 1 h before the addition of

FeNG, and maintained throughout the experimental time. 1024 M

concentration of FeNG (above IC50 value for CEM-ADR cell) was

used for subsequent experiment unless otherwise specified.

Cytotoxicity assay (MTT assay)
The data generated were from three separate experiments, each

performed in duplicate. Cell viability was determined using the

MTT assay, which was carried out as described previously [35]

with slight modification, briefly, cells were seeded in 96-well plates

at a density 46104 of cells per well. For single-agent studies, cells

were seeded and allowed to settle for 24 h before treatment with

increasing concentrations of drug and incubate it for further 72 h

with 5% CO2 at 37uC. After completion of incubation cells were

incubated with 0.4 mg per ml of MTT dye (3-[4, 5-dimethylthia-

zol- 2-yl]-2, 5-diphenyltetrazolium bromide; Sigma, France) for

4 h at 37uC. The monolayer was suspended in 0.1 ml of DMSO

and the absorbance at 560 nm was read by ELISA reader (Tecan

200). The control value corresponding to untreated cells was taken

as 100% and the viability of treated samples were expressed as a

percentage of the control. The IC50 values were determined as the

concentration that reduced cell viability by 50%. The Resistance

Factor (RF) was calculated by dividing the drug toxicity (IC50

value) observed in the multi-drug resistant positive cells by the

drug toxicity in the multi-drug resistant negative cells.

Determination of Nuclear fragmentation
Morphological determination of levels of apoptosis was

performed by labelling the cells with the nuclear stain Hoechst

33258 and visualisation by fluorescence microscopy. Briefly, CEM

ADR cells were treated with FeNG for various periods. Cells were

washed with ice-cold PBS and fixed with 1% Para formaldehyde.

The suspensions were then washed with PBS and stained with

Hoechst 33258 (5 mg/ml). Nuclei (blue) that were condensed or

fragmented were scored as apoptotic.

Cell cycle analysis
Cell cycle analysis was studied by flow cytometry. In brief, cells

were seeded in 90 mm tissue culture plate and treated with drugs.

At various time points, cells were recovered, washed twice in PBS,

fixed in 70% ethanol, and stored at 4uC until analysed. Cells were

washed twice in PBS, incubated for 1 h at room temperature with

250 mg/ml RNAse A and 20 min at 4uC with 20 mg/ml propidium

iodide (PI). The cell cycle distribution and percentage of apoptotic

cells were determined using a FACS calibur flow cytometer (Becton

Dickinson, USA). Ten thousand events were analysed for each

sample. Appropriate gating was used to select the single-cell

population. The same gate was used on all samples, ensuring that

the measurements were made on a standardised cell population.

Annexin V binding assay
Staining the cells with Annexin V-FITC and propidium iodide

(PI) can be used in a bivariate analysis to distinguish between cells

undergoing apoptosis (PI negative) and those that are necrotic or

dead (PI positive). Cells (26105) were incubated with FITC-

labeled Annexin V and propidium iodide (PI) at room temperature

for 15 min in the dark and analyzed using a FACS Calibur

(Becktone Dickinson).

Determination of FasR expression by Facs analysis
To quantitate CD95 or FasR expression of CEM ADR cell after

FeNG treatment, or left untreated and human recombinant IFN-c
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treatment (positive control) were rinse with PBS twice and were

incubated with anti FasR primary antibody at room temperature

(RT) for 45 mins. After that cells were washed thrice with PBS

with 3% FBS an incubated with FITC conjugated secondary

antibody at RT for 30 mins. Negative controls were incubated

with secondary antibodies only. Final volume was adjusted to

500 ml with PBS, and labeling was analyzed by flow cytometry by

using a FACS or fluorescence-activated cell sorter and CELL-

Quest software (BD Biosciences, San Jose, CA). A minimum of 104

cells was counted for each sample. The gate was set to exclude

approximately 99.5% of the negative control cells. At least

duplicate independent measurements of the effects of each

treatment were performed.

Intra cellular ROS accumulation study
Levels of ROS generation in cells were assessed fluorometrically

using 29, 79-dihydrodichlorofluorescin diacetate (H2-DCFDA,

Molecular Probes). H2-DCFDA is a nonfluorescent, cell-permeant

compound. Endogenous esterases within the cell cleave the acetate

groups, thus trapping the reduced form of the probe (DCHF)

intracellularly. It is known that the probe can be readily oxidized

to DCF by H2O2 or OH. Cells were treated with drug or left

untreated for 1 to 6 h and 8 h. The cells were then washed with

PBS and further incubated with H2-DCFDA for 30 min at 37uC
in dark. After incubation, cells were washed twice in PBS at room

temperature for 5 min each time. The fluorescence was measured

at excitation and emission wavelengths of the oxidized form were

488 nm and 525 nm respectively [36].

Determination of intracellular GSH contents
Determination of cellular GSH content was performed by a

modification of the method of [37]. Drug treated and untreated

cells were washed twice with PBS and cell pellet (106 cells) was

resuspended in 0.5 ml ice cold distilled water and 0.2 ml of a

solution containing 17.5% HPO3 was added to it. After

centrifugation (10 min, 3000 rpm) 0.25 ml of the supernatant

was mixed with 0.25 ml of 0.1 M-sodium phosphate buffer

containing 5 mM-EDTA (pH 8.0), and 300 ml of the mixture

was added to 1.6 ml of the phosphate/EDTA buffer (pH 8.0) and

100 ml of o-phthalaldehyde (0.1% in methanol). After 15 min at

room temperature the fluorescent GSH adduct was determined

(excitation, 350 nm; emission, 420 nm) by fluorescence spectro-

photometer.

Determination of mitochondrial membrane potential
The lipophilic cationic probe 5,59,6,69-tetrachloro-1,19,3,39-

tetraethylbenzinidazolylcarbocyanine iodide JC-1 dye (Molecular

ProbesTM, Invitrogen) was used to measure mitochondrial inner

membrane potential (DYm) in drug treated or untreated cells

(56105) grown in 35 mm tissue plates. JC-1 accumulates in the

mitochondria in proportion to DYm, forming aggregates that

fluoresce red. In the cytoplasm, JC-1 exists as monomers that

fluoresce green. The ratio of red-to-green fluorescence is

proportional to DYm. Red fluorescence (excitation, 570 nm;

emission, 595 nm) and green fluorescence (excitation, 485 nm;

emission, 535 nm) were measured using a Varion spectrofluorim-

eter following 30 mins incubation with 5 mM JC-1 at dark in a 5%

CO2 atmosphere at 37uC incubator [38].

Caspase 3 activation assay
Cells washed in PBS and resuspended in 25 mM Hepes

(pH 7.5), 5 mM MgCl2, 5 mM EDTA, 5 mM dithiothreitol

(DTT), 2 mM phenylmethylsulfonyl fluoride (PMSF), 10 mg/ml

pepstatin A, and 10 mg/ml leupeptin after treatment. The kit

(Caspase fluorometric assay system) was used to investigate

caspase activity. Cells were lysed and clarified using centrifu-

gation at 1,2000 g for 5 min. The clear lysates containing 50 mg

of protein were incubated with 50 mM substrate Ac-DEVD-

AMC at 30uC for 1 h. Levels of released AMC were measured

using a spectrofluorometer (Varion) with excitation at 360 nm

and emission at 460 nm (Caspase Assay System, BD bioscience,

USA).

Western blot analysis
Following FeNG treatments, cells were washed twice with ice-

cold PBS. Cell pellet was resuspended in 100 ml of cell lysis

buffer containing 20 mM Tris–HCl, pH 7.4, 150 mM NaCl,

1% Triton X-100, 1 mM EDTA, 1 mM EGTA, 0.5 mM phenyl

methyl sulfonyl fluoride, 1 mM sodium orthovanadate, 0.5%

NP-40, 5 U/ml aprotinin and protease inhibitor cocktail. After

30 min incubation on ice cell lysate was cleared by centrifuga-

tion at 12000 rpm for 15 min at 4uC. Protein concentration in

lysates was determined by Bradford method. For immunoblot

analyses, 100 mg of protein lysates per sample were denatured in

26SDS–PAGE sample buffer and subjected to SDS– PAGE on

10% Tris–glycine gel. The separated proteins were transferred

onto PVDF membrane followed by blocking with 5% BSA (w/v)

in TBS (10 mM Tris, 100 mM NaCl, 0.1% Tween 20) for 1 h at

room temperature. Membrane was probed with anti-PARP

antibody (Santacruz) overnight at 4uC followed by 1 h

incubation with HRP-conjugated secondary antibody and

using a chemiluminescence kit (Lumi Glow, Cell signalling

technology).

Preparation of cytosolic extract and immunoblot analysis
of cytochrome c release

To carry out cytochrome c translocation studies, cellular sub

fractionation was performed as previously reported [39] with

minor modifications. At the end of FeNG treatment, cells were

washed twice with ice-cold PBS. The cell pellet was resuspended

in 300 ml of extraction buffer containing 200 mM mannitol,

70 mM sucrose, 20 mM HEPES–KOH, pH 7.4, 50 mM KCl,

5 mM EGTA, 2 mM MgCl2, 0.1 mM PMSF and protease

inhibitors (Complete Cocktail; Marck bioscience). After 20 min

incubation on ice, cells were homogenized by 30–40 strokes with

a glass Dounce homogenizer on ice, and resulting homogenates

were left on ice for an additional 20 min. Homogenates were

centrifuged at 600 g for 15 min at 4uC, and resulting

supernatant was further centrifuged at 14 000 g for 30 min at

4uC, to yield cytosolic extract. 70 mg protein per sample was

resolved on 15% SDS–PAGE and transferred onto PVDF

membrane followed by blocking in 5% (w/v) bovine serum

albumin (BSA) in TBS. Membrane was probed with anti-

cytochrome c antibody (BD PharMingen, San Diego, CA)

overnight at 4uC followed by 1 h incubation with HRP-

conjugated secondary antibody and using a chemiluminescence

kit (Lumi Glow, Cell signalling technology).

Densitometric analysis
Immunoreactive bands of Cytochrome C, PARP1 and b actin

were scanned (Bio-Rad, model GS800) and then images were

digitized and analyzed by using Bio-Rad QUANTITY 1 software.

Immunoreactive bands were quantitated and expressed as the

ratio of each band density to corresponding loading control (b
actin) band density and values were represented after normaliza-

tion to untreated control.
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Statistical analysis
All data reported are the arithmetic mean from three

independent experiments performed in triplicate 6S.D. unless

stated otherwise. The unpaired Student’s t-test was used to

evaluate the significance differences between groups, accepting

P,0.05 as a level of significance. Data analyses were performed

using the Prism software (GraphPad, San Diego, CA).
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