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A NEW APPROACH TO THE LIMIT THEORY OF

RECURRENT MARKOV CHAINS

BY

K. B. ATHREYA AND P. NEY

Abstract. Let {X„; n > 0} be a Harris-recurrent Markov chain on a

general state space. It is shown that there is a sequence of random times

{N¡; i > 1} such that {XN.; i > 1} are independent and identically

distributed. This idea is used to show that {Xn} is equivalent to a process

having a recurrence point, and to develop a regenerative scheme which leads

to simple proofs of the ergodic theorem, existence and uniqueness of

stationary measures.

1. Introduction. The purpose of this paper is to introduce a new tool for the

study of the limit theory of a recurrent Markov chain (M.C.) {X„: n > 0} on

a measurable space (S, S ). When there is a single point Xq, called a recurrence

point, which is visited infinitely often (i.o.) by {Xn}, a well-known approach

to its limit theory is via the imbedded renewal process of returns to xQ. The

key idea in the present work is the observation that a similar regenerative

scheme exists for general recurrent chains, in which the role of x0 is played by

a set which is hit i.o. with the same distribution. In fact, it is possible to adjoin

a point A to S and to extend {X„} to S U A in such a way that A is a

recurrence point for the new process, and that the two processes are equiva-

lent.

We will use this idea to give an elementary proof of the ergodic theorem,

and to establish the existence and uniqueness of stationary measures.

Extensions to semi-Markov processes and applications to renewal theory will

be treated in [1]. Comprehensive background discussions on recurrent chains

are available in the books of Doob [3], Neveu [7], Orey [8] and Revuz [9].

2. Recurrence. An irreducible chain having a recurrence point x0 is recur-

rent if it returns to x0 with probability one. If such a point does not exist, the

notion of recurrence can be captured by requiring that certain sets which are

"nonnegligible" with respect to a reference measure are visited "often

enough". This idea was introduced by Doeblin [2], in his proof of the ergodic

theorem for {X„}. He hypothesized that there exist a probability measure «p

on (S, S), numbers e > 0, S < 1, and an integer n0 < oo, such that for all
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x E S,E ES

Pn°(x,E)>e   whenever <p(E) > 8. (2.1)

A slightly stronger version was introduced by Doob [3]. Under such

hypotheses it is possible to prove a strong (operator) convergence of {P")

(see e.g. Neveu [7, §5.3], Revuz [9, §6.3]). We will return to this point in §4.

A weaker condition, introduced by Harris [6], is the so-called m-recurrence

or Harris-recurrence, which requires the existence of a a-finite measure <p on

(S, S) such that PX{X„ £ A for some n] = 1 for all A E S with <p(A) > 0.

Under this hypothesis much of the discrete state space theory has been

carried over to the general case by Harris [6], Orey [8], and others.

Our regeneration technique becomes particularly transparent if we express

recurrence in yet another form.

(2.2) Definition. {Xn} is (A, X, <p, n0)-recurrent if there exist a set A G S,

a probability measure q> on A, a number 0 < X < oo, and an integer 0 < n0

< oo, such that

(i) Px{Xn E A for some n > 1} = 1 for all x E S, and

(ii) Px{xn0 G E) > fy(E) for all x E A and E c A.

Remarks. (2.3) By making use of the existence of C-sets (see Orey [8]) it is

easy to show that (2.2) is in fact equivalent to Harris-recurrence.

(2.4) Neveu [7, p. 185] has observed that if (ii) in (2.2) is satisfied with

A = S, then the Doeblin condition is satisfied.

In this paper we wish to focus on the regeneration idea in its simplest

setting, and to that end we will treat only the case n0 = 1 (in (2.2)), in which

case we call the chain recurrent and strongly aperiodic. The extension to the

general case offers no serious difficulties, and involves typical periodicity and

cyclic class arguments. We leave this to a more leisurely exposition of this

subject which we are planning, which will also include some applications,

discussion of related literature, and some other ramifications. The set A and

the measure q> are fixed throughout.

3. Regeneration. Our main tool will be the following:

(3.1) Regeneration Lemma. If {X„} is recurrent and strongly aperiodic then

there exists a random time N > 1 such that PX(N < oo) = 1, and for all

x E S, E E S

PX(X„ EE,N=n) = <p(An E)PX(N = n). (3.2)

Remark. As will be clear from the proof, N is actually defined on a

somewhat enlarged state space. It is nonanticipating for {X„} but is not a

stopping time for this process.

Here is the idea of the proof. If the chain hits A at a point x, at time A

randomize the next transition as follows: (i) with probability p (0 < p < X)

distribute Xk+X over A according to <p; (ii) with probability (1 - p) distribute
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Xk+X over the entire state space S according to a transition function Q(x, • ),

chosen so that the overall transition probabilities for the chain remain

unchanged. This is achieved by taking Q so that

P(x, E) =p<p(E n A) + (1 - p)Q(x, E),       xEA,EE&,   (3.3)

which is possible by (ii) of Definition 2.2. Since A is visited i.o., and each time

there is (independent) probability p > 0 that at the next step "A is entered

according to <¡p", this event will ultimately occur at some time N < oo a.s.

Here is a more formal

Proof of the lemma. Let S' = S x (0, 1}, S ' = the o-algebra of subsets

of S' induced by S, and P' be a transition function on S' x S'->[0, 1]

defined by

P^O^Xi,}}^^^1-^1-5^^     ÍÍX*A>
X X     }      [[p8 + (\-p)(l-8)]Q(x,E)    iixEA,

PHt    nrvml     \[p8 + (l-p)(\-8)]P(x,E)       if x $ A,
P \(x, 1), E X {8}} = ]

1 {[p8 + (\ - p)(l - 8)]<p(A n E)    iixEA,

where 8 = 0 or 1 and Q(-, ■ ) is as in (3.3). Let {*"„' = (Xn, 8n): n = 0, 1,

2, . . . } be a Markov chain on (S', 8') with transition function P'. Then one

can check that

(i) {Xn: n > 0} is an M.C. on (S, §) with transition function P;

(ii) {8„: n > 0) is a sequence i.i.d. 0-1 random variables with P(8n = 1) =

p;

(iii) {Xn}^ and {S„}£° are independent.

Define N = inf{n: n > 1, X„_x E Ax{\}}, = oo if {-} is empty. It remains

only to observe that P{xS){N < oo} = 1. To see this notice that

P(x.s) (N = co) = P(XtS) (N = oo, X„ E A for oo many n)

= PU&){8L¡ = Qíora\\i),

where Lx, L2, . . . are the successive hitting times of A by {Xn}. The last

probability = 0 due to the independence of {X„} and {8n).   □

Remark. Note that the random time N is a stopping time for (A^'}.

We recall that XN is distributed over A according to <p. Reapplying the

regeneration lemma, there exists a regeneration time M for {Xn} initiated

with X0 = XN, i.e. with distribution <p. Let N = Nx, N + M = N2.

Continuing in this way, we use the lemma to observe that under (A, X, <p, 1)-

recurrence we have

(3.4) Corollary. There exists a sequence of random times Nx, N2, . . . for

X„ such that Px(Nk < oo) = Xfor all k > 1, and

Px(Xn EE,Nk = n) = <p(E n A)PX (Nk = n). (3.5)
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Here PX(NX = n) = PX(N = n) as in (3.2), while for k > 2, Nk = Nx + M2

+ • • • + Mk, where the M/s are i.i.d. (and independent of Nx), and PX(M¡ =

n) = PV(N = n), x E S, n > 1.

Thus {A^: / > 1} are independently, identically distributed according to

m, and in this sense the process regenerates itself at { A^,}.

There is some similarity between the kind of randomization (or smoothing)

which goes on in our lemma, and a coupling technique for MC.'s which goes

back to Doeblin [2], and has been developed by Griffeath [5].

4. Ergodicity. Let $ denote the Banach space of bounded measurable

functions/: S -» R, with sup norm ||/||. If p is a finite measure on (S, S) and

/ E %, let nf = }f(x)y.(dx), (nP)(x) = f¡i(ds)P(s, x), || p|| = total variation

norm of p. P" is defined as an operator on % by the formula (P"/)(x) =

EJ(X„). Let m P m denote its norm. Let TB denote the first hitting time of any

set B E §> by {A"„}; N = the random time in Lemma (3.1).

(4.1) Theorem, (i) If {X„} is recurrent and strongly aperiodic, with invariant

probability measure tr(-), then for all x E S

\\P"(x, ■)- it(-)\\^0    OSW->00.

(ii) If furthermore supx PX(TA > t) < I for some t < oo, then \\\P" - m\\ -+

0.

Proof of (i). Let v„ = EJ(Xn), a„ = £„{/(*„); N > n},pn = P9(N = n),

m = EyN. The condition n0 = 1 implies that {p„} is aperiodic, and hence by

the renewal theorem un = ^.kp*k -* m~x as n —> oo. But by the regeneration

lemma, vn satisfies the renewal equation t>„ = an + "Z"=0PjVn_j, and hence

n oo

% = 2 °n -j"j' -» m " ' 2 ak, (4.2)
j=0 0

provided ~2,\ak\ < oo. To see this let N = Nx, N2, . . . denote the regeneration

times, and K„ = sup{A: Nk < n}. Since (SK/K„) < (n/Kn) < (SK+X/K„),

the law of large numbers implies that KJn^f(E^N)~x a.s., and since

0 < K„/n < 1, Efl(K„/n)-*(Eq>Nyx for any initial distribution p(-). Now,

K„ can be written as 2"= ,5,, where 5, = 1 or 0 depending on whether a

regeneration occurs at / or not. Since Pw(6, = 1) = pPw(A,_, E A) = pir(A),

E1!Kn = nptr(A). Furthermore the fact that P^(A„ E A for some n > 1) = 1

implies that Pn(Xn E A for some n > 1) = 1, and since P^A",, E A) = -n(A)

for all n by stationarity, we see that tr(A) has to be nonzero. Thus, E^(N) =

(pir(A))~x < oo. Thus also 21a„| < ||/||2„P<p(Af > «) < oo, proving (4.2).

Now let x be any initial state. Since lim vn exists and

EJ(Xn) = Ex {f(Xn); N>n} + Ex {vn_N; N < n), (4.3)
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we see that lim EJ(Xn) exists, and hence by the bounded convergence

theorem lim EJ(X„) = lim v„ for any initial distribution p. Choosing p to be

m, we conclude that

EJiXn) ^ ™ ~ ' 2 <** = "/   for all x E S. (4.4)

We can strengthen the convergence to total variation norm. Let e^ =

sup{|«, - m~x\:j > K), and note that 0 < u„ < 1 and 0 < m~x < 1. Thus

\(<pP" - TT)f\ = \v„ - 77/]<2K-,H", - rn-x\ + m~x 2 |«,|
0 j>n

<    2     \aj\ + eK    2     N<||/||U +     2    P9(* > J)}-    (4-5)
j>n-K j<n-K \ j>n-K I

Let y„ = sup{|t;n - jt/|/||/||: 0 < ||/|| < oo} = ||<pP" - *||. Then

?„ = % +   2  p„(n>J)> (4-6)
j>n-K

and taking A" large we see that y„ -» 0 as n -» oo. Finally use (4.3) to observe

that

\EJ(X„) - -/|/||/|| < 2PX(N >n) + Ex{\v„_N - irf\/\\f\\; N < n).    (4.7)

Hence ||P"(jc, • ) - ir(-)|| < 2PX(N > n) + Ex{yn_N; N < n), and the

bounded convergence theorem then implies (i).   □

Proof of (ii). Suppose first that supx PX(N > n) -*• 0 as n -> oo, and for a

given e, choose n0 so that supx PX(N > n) < e and yn < e for n > n0. Let

k - «ft/\\f\\ = £,(/)• Then for « > 2n0,

sup £* {£„-» (/); N <n} < sup £x {£,_„ (/); N < n - n0)

+ sup Ex{i„_N(/); n - n0 < N < N}

< sup y„ 4-sup /»X(JV >n0) < 2e,

and hence (by (4.7))

sup{|£*/XA-n)-^/||/)|}

< 2 sup Px(iV > n) 4- sup £x {£„_„ (/); N < n) < 4e.

Thus ||| P" — 7r||| -»Oas/i^oo. It remains only to observe that the hypothe-

sis of (ii) implies supx PX(N > n) -» 0. To see this, pick nx so that sup,,. PX(TA

> nx) < 1 — tj for some tj > 0. Then
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8„ =sup PX(N > nnx)

< sup Px

nnt

2 XaW) >kn,N > nnx    + sup Px\  2 Xa(*i) < K
-=i J li-i

<(l-p)*»+P{5n,7)<A„},

where 2?„   is binomial (n, tj). Now take A„ = en, with e small enough so that

Remark. Note that actually 8n -^ 0 geometrically fast, and hence so does

\un - m~'|-»0 (Stone [10]). Thus the convergence EJ(Xn)^*-nf is also

geometric.

When an invariant probability measure does not exist, then one still has

(4.8) Theorem (Orey). If {Xn} is recurrent and strongly aperiodic then for

any two initial distributions ¡x and tj,

|| ¡iP" - pP"||-> 0. (4.9)

Proof. Let /: S x JV+->Äbea bounded space-time harmonic function

for {Xn}, i.e. f(s, m) = E{f(Xx, m + l)\X0 = s}. Then Y„ = f(Xn, m + n),

n > 0, is a bounded martingale and letting g (ai) = E<pf(X0, ri), and N be as

before,

f(s,m) = EsY0=EJ(XN,m + N)

= T.g(m + k)Ps(N = k) = Esg(m + N). (4.10)

Integrating with respect to <p we get g(m) = Eyg(m + N). Since g(-) is

bounded and N is aperiodic this implies that g is constant (see Feller [4, p.

351]), and hence by (4.9) / is constant. Orey [8, Proposition 4.3] has shown

that this in turn implies (4.9).   □

5. Equivalence to a chain with a recurrence point. Adjoin a point A to S, and

extend {X„} to a M.C. {Xn} on S u A, with transition function P defined by

'P(x, E - A) for* <£A u A,

(1-P)Q(x,E-A)+pxe(A) íotxEA,

(\-p)fQ.(z,E-A)<p(dz)+pXE(A)    foTX = A. (5.1)
A

Note that A is a recurrence point since {X„} is in A i.o., and P(x, A) = p > 0

for x E A. For bounded measurable/: S —> R define

/ (x) = f(x)      for x E S,

f (A) = / f(z)<p(dz) = Ef(XN ). (5.2)

If ir(-) is a measure on S, define the measure tt(-) on S (J A by

P(x,E) =
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tt(E) = w(E)- ptr(A)<p(A n E),    E C S,

■tt(A)=pit(A). (5.3)

(5.4) Equivalence Theorem, (i) Let {A"„} be recurrent and strongly aperio-

dic, and {Xn} be an M.C. with transition function P. Then for any initial

distribution p on S

EJ(Xn) = Ej(Xn). (5.5)

(ii) If it is a stationary measure for P, then m is a stationary measure for P,

and conversely. If either m or ñ is unique (up to multiplicative constants), then so

is the other. If it or i is a probability measure, so is the other.

The proof is a straightforward verification of definitions and formulas, so

we will leave it to the reader.

6. Invariant measures. Harris-recurrent chains are known to have unique,

a-finite, invariant measures (Harris [6], Orey [8]). (Uniqueness will always be

understood to be up to a multiplicative constant.) The proofs have been quite

involved, but our regeneration scheme now provides an easy alternative.

(6.1) Theorem. A recurrent, strongly aperiodic M.C. {Xn) has a unique

invariant measure. It is finite if and only if E^N < oo.

Proof. By part (ii) of the Equivalence Theorem (5.4) it is sufficient to

prove the theorem when {A'„} has a recurrence point (say xQ). Note that in

this case

U {x: P" (x, x0) > 0} = S. (6.2)
n

Let TV = inf{w: n > 1, Xn — x0], and define

v(E) = Ex"±l XeW),   £ES. (6.3)
/ = 0

Clearly v(-) is finite iff EVN < oo.

(i) v(-) is an invariant measure. To see this write

"(E) = Xe(x0) + 2 EXo {xeiXy, N > i - 1)} - f EXo {^(X,); N = i}
1=1 ,=i

= Xe(x0) + EXo j !>(*",-., £)Xuv>,-»| - ExM(XN).

The first and last terms cancel, and the middle term

= £Xo2 P(Xi,E) = [v(dx)P(x,E).
; = 0 J

(ii) v(-) is unique (up to multiplicative constants). Suppose that X(-) is
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another invariant measure. Then

X(E) = (X(dx)P(x, E) = \(x0)P(x0, E)+ f     X(dx)P(x, E)
JS JS-x0

= X(x0)PXo(Xx EE)+ \(x0)PXq(Xx * x0, X2 E E)

+ (       [     X(dz)P(z,dx)P(x,E).
JS-x0JS-x0

Iterating this relation, we get for all « > 1,

X(E) > X(x0){PXo(Xx EE)+ PXo(Xx *x0,X2EE)+ ...

+ PXo(Xx * x0, . . ., Xn_x * x0, X„ E E)}.

Letting n -> oo and observing that A^ = x0, yields

X(E) > X(x0) f EXo (x£(A-,.); N > i) = X(x0)EXo 2 X£(*,) = Hx0)v(E).
i=i i=i

(6.4)

Thus, since v(x0) = 1 by definition of v(-),

X(x0) =fx(dx)P" (x, x0) > X(x0)fv(dx)Pn (x, x0) = X(x0)v(x0) = X(x0)

and hence

fX(dx)P» (x, x0) = X(x0)jv(dx)P" (x, x0). (6.5)

Let D„ = {x: P"(x, x0) > 0}. To complete the proof it is sufficient (by (6.2))

to show that

X^) = X(x0)i'(£')       for allí1 c Dn,   n>\. (6.6)

If this is false, then by (6.4) there must be an E0 c Dn for some n < oo such

that X(.E0) > X(x0)v(E0). But then

f P" (x, x0)X(dx) > X(x0) [ P" (x, x0)v(dx),

while

f      P" (x, x0)X(dx) > X(x0) (      P" (x, x0)v(dx).
JS-E0 JS-E0

This contradicts (6.5).   □

Addendum. We have recently learned of concurrent work along similar

lines by E. Nummelin, Helsinki University of Technology.
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