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Abstract
Troponin proteins in cooperative interaction with tropomyosin are responsible for controlling the contraction of the striated
muscles in response to changes in the intracellular calcium concentration. Contractility of the muscle is determined by the
constituent protein isoforms, and the isoforms can switch over from one form to another depending on physiological demands
and pathological conditions. In Drosophila, a majority of the myofibrillar proteins in the indirect flight muscles (IFMs) undergo
post-transcriptional and post-translational isoform changes during pupal to adult metamorphosis to meet the high energy and
mechanical demands of flight. Using a newly generated Gal4 strain (UH3-Gal4) which is expressed exclusively in the IFMs,
during later stages of development, we have looked at the developmental and functional importance of each of the troponin
subunits (troponin-I, troponin-T and troponin-C) and their isoforms. We show that all the troponin subunits are required for
normal myofibril assembly and flight, except for the troponin-C isoform 1 (TnC1). Moreover, rescue experiments conducted
with troponin-I embryonic isoform in the IFMs, where flies were rendered flightless, show developmental and functional
differences of TnI isoforms and importance of maintaining the right isoform.

[Singh S. H., Kumar P., Ramachandra N. B. and Nongthomba U. 2014 Roles of the troponin isoforms during indirect flight muscle
development in Drosophila. J. Genet. 93, 379–388]

Introduction

All the muscles in Drosophila are striated and their con-
traction is regulated by the troponin−tropomyosin (Tn–Tm)
complex similar to their vertebrate counterparts. However,
muscle contraction in the indirect flight muscles (IFMs) is
activated by mechanical stretch/applied strain in addition to
the Ca2+ activation, to produce and sustain high wing beat
frequency during flight (Peckham et al. 1990; Agianian et al.
2004; Moore 2006; Bullard and Pastore 2011). Most of
the structural proteins of the IFMs are homologous to their
vertebrate counterparts, performing similar function during
muscle contraction (Vigoreaux 2006). A majority of these
proteins undergo isoform switch during later stages of devel-
opment to meet the physiological demands of the adult
flight (Marden 2006; Orfanos and Sparrow 2013). The IFMs
are dispensable for survival under laboratory conditions,
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providing an effective genetic system to study the devel-
opmental and functional importance of different isoforms
(Nongthomba et al. 2004; Vigoreaux 2006). Isoform replace-
ment studies in the IFMs suggest that most of these
isoforms complement each other and do not hamper myofib-
ril assembly per se but have different mechanical proper-
ties as reflected from compromised flight (Miller et al. 1993;
Wells et al. 1996; Fyrberg et al. 1998; Swank et al. 2002).
Though the factors/signals, which lead to the isoform switch
are not clearly understood, these isoforms are spatio tempo-
rally regulated by cis-regulatory factors or alternative tran-
script splicing (Marin et al. 2004; Mas et al. 2004; Marden
2006).

In Drosophila, both troponin-I (TnI) and troponin-T (TnT)
proteins are encoded by a single gene in each case and all
their respective isoforms are produced by differential alterna-
tive splicing. TnI has been shown to produce 10 different iso-
forms, of which the exon 6b1 containing isoforms are solely
expressed in the IFMs and tergal depressor of trochanter
(TDT), with or without exon 3 (Barbas et al. 1993). The iso-
form that includes exon 3 is a major constituent of the adult
IFMs (Nongthomba et al. 2004); whereas, the TnT gene has
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11 exons, of which exons 3, 4 and 5 containing isoforms are
excluded from the IFMs and TDT (Benoist et al. 1998). Exon
10 is alternatively spliced to produce exon 10a and 10b iso-
forms, both of which are expressed in IFMs and TDT (Herranz
et al. 2005b; Nongthomba et al. 2007). Unlike TnI and TnT,
TnC isoforms are produced by five independent genes, of
which TnC1 and TnC4 isoforms are expressed in the IFMs
in the ratio 1:5 (Qiu et al. 2003; Herranz et al. 2005a).

The defective splice site mutation (heldup3–hdp3) in TnI
exon 6b1 results in the absence of TnI and subsequently, the
IFMs are never formed due to unregulated actomyosin inter-
actions during early myofibril assembly (Nongthomba et al.
2004). Similarly, a mutation in the TnT exon 10a splice site
(upheld1–up1) leads to abnormal myofibrils (Nongthomba
et al. 2007). There is no reported mutation for either TnC1
or TnC4, though biochemical studies suggest that TnC1 is
required for isometric contraction and TnC4 for stretch acti-
vation (Linari et al. 2004; Krzic et al. 2010; Bullard and
Pastore 2011). Most of the Isoforms switch during later
stages of IFM development, around 65–75 hours after pupar-
ium formation (hAPF) (Nongthomba et al. 2004; Orfanos
and Sparrow 2013). Developmental and functional conse-
quences of reduction in the expression of specific troponin
isoforms during the isoform-switching stage have not been
addressed before. Defects in the isoform switch have been
implicated in many pathological conditions in higher verte-
brates including humans, particularly for the TnT (Wei and
Jin 2011). Using a newly isolated enhancer trap Gal4 strain
(UH3-Gal4), which is expressed exclusively in the IFMs
during the isoform switching stage, we have knocked down
troponin isoforms to study their myofibrillar assembly and
functional roles. We show that all the troponin proteins are
required for normal myofibril assembly and flight, except
for the troponin-C isoform 1 (TnC1), which showed normal
myofibrils with reduced flight. We also show that expres-
sion of embryonic TnI isoform in the place of adult isoform
in the IFMs allows the assembly of myofibrils but is not
functionally equivalent to the adult isoform.

Materials and methods

Fly strains

The fly strains used in the study were procured from
Bloomington Drosophila Stock Center, Indiana University,
USA; Vienna Drosophila RNAi Centre, Austria; and Fly
Facility, National Centre for Biological Sciences, Bangalore.
Flybase IDs along with specific strain numbers are given
within the brackets. The fly strains used in this study are:
P{GawB}c747 (FBti0007258-6494), UAS-GFP (FBti0003
040-1521), UAS-RedStinger (FBtp0018199-8547), UAS-
dcr2 (FBti0100276-24651), and tub-Gal80ts (FBtp0017264-
7019). RNAi lines used are: UAS-TnI IR (FBst0460508),
UAS-TnI V10 (VALIUM 10) (FBti0130301-31893), UAS-
TnT IR (FBst0457162), UAS-TnT V20 (FBst0032949-
32949), UAS-TnC1 V10 (FBst0027053) and UAS-TnC4

IR (FBst0469555). �2−3 Ki, hdp3 and UAS-TnI-L9 were a
kind gift from Prof. John Sparrow, University of York, UK.
Canton-S was used as a wild-type strain unless specified. All
stocks were maintained in cornmeal – yeast – sugar – agar
medium at 22◦C, and crosses were set up at 25◦C. All tem-
perature sensitive crosses were set at 18◦C in the presence of
tub-Gal80ts and later moved to 29◦C at specific hours.

Enhancer trap screen

Screen for enhancer trap lines was followed according to
O’Kane and Gehring (1987). P{GawB}c747 was crossed
with flies carrying transposase source �2−3 Ki. Male flies of
filial 1 (F1) generation or ‘jump starters’ were crossed with
green fluorescent protein (GFP) reporter construct (UAS-
GFP) and their progenies were screened under fluorescent
stereo microscope (Olympus SZX12 fluorescence stereo-
zoom microscope, Tokyo, Japan). F2 individual fly show-
ing GFP expression in adult thorax was crossed to different
balancer lines to establish stable lines. Progenies from each
cross were self-crossed, and the chromosome with P{GawB}
insertion was identified based on the eye marker in the next
generation. Each of these isolated strains was later crossed
with reporter UAS-GFP to confirm their expression.

Insertion localization by inverse PCR

The inverse PCR protocol given in the Berkeley Drosophila
Genome Project (http://www.fruitfly.org/about/methods/
inverse.pcr.html) was followed, except for changes in the
primers. Following primers were designed to amplify the 5′
region of Gal4 encoding sequences using the Gal4 Enhancer
Trap Database – PGaw2 (5′-CAGATAGATTGGCTTCAGT
GGAGAC-3′) and PGaw3 (5′- CGCATGCTTGTTCGATA
GAAGAC-3′). The genomic DNA was digested with
enzyme Sau3A1 and ligated to form circularized DNA.
Inverse PCR amplification was performed with above men-
tioned primers. The resulting amplified PCR product was
cloned into the sequencing vector pTZ57R/T (Fermentas,
USA) and transformed into bacterial cells following stan-
dard protocol. Positive clones were screened and plasmids
were sequenced using universal M13F/R primers (Macro-
gen, Seoul, Korea). The resulting nucleotide sequences
were BLAST analysed against the Drosophila melanogaster
genome using the Flybase database (http://www.flybase.org).

Real time PCR

Using Tri reagent� (Sigma, USA), total RNA from 1–
2 days old adult IFMs was isolated from control and
gene-specific knocked down flies. Complementary DNA
was prepared using the RevertAid First Strand cDNA
synthesis kit following manufacturer’s protocol (Thermo
Scientific, USA). The mRNA expression level of tar-
get genes was PCR-quantified using the DyNAmo SYBR
Green kit (Thermo Scientific) on Eppendorf Master
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cycler� ep realplex S (Hamburg, Germany). The oligo
primers used for the thermal amplifications are as
follows: rp49: forward 5′-AGATCGTGAAGAAGCGCACC
AAG-3′, reverse 5′-CACCAGGAACTTCTTGAATCCGG-
3′, TnI, forward 5′-TCGCGGCAAGTTCGTCAAGC-3′,
reverse 5′-GGACACTAGTGGACGTGTGG-3′, TnT, for-
ward 5′-AGCTCTTCGAGGGTTTGA-3′, reverse 5′-TTGT
GCGCTGAGTGAATC-3′, TnC1, forward 5′-CGCGTCAA
TACCAAGTTTATTTCTCGTC-3′, reverse 5′-CTTTTGAT
ATTGTTTTAGTCGTCGCCAC-3′, TnC4, forward 5′-CCT
AAACCTTAGCGGTGTAATTTG-3′, reverse 5′-CTTATCT
GCTTTTGGCCCGATATTTG-3′. All quantifications were
from two independent biological samples. To calculate the
fold changes of the expression level of mRNA, Ct values
were normalized to rp49 expression as endogenous control.
P values were calculated by one-way Anova using GraphPad
Prism 5 software, USA.

Other primers used for thermal cycler amplifications
of TnI gene are as follows: forward 5′-AACACAAATCA
AAATGGCTG-3′ designed at the 5′UTR, reverse 5′-CACA
TCAAATCTCTGATCAAG-3′ specific to exon 6a1, forward
5′-GTGAAGGCCAGAAATGGGAT-3′ specific to exon
6b1 and reverse 5′-GGACACTAGTGGACGTGTGG-3′
designed at the 3′UTR.

Imaging

Samples for polarized light imaging were prepared from 3–
5 days old adult thoraces following the protocol described in
Nongthomba and Ramachandra (1999). To take the fluores-
cent images, wing discs were dissected from third instar larva
and mounted on 20% glycerol. Aged pupae were removed
from pupal case at specific hours APF and adult flies were
briefly anaesthetized and fluorescence images were captured
by digital camera (Leica DFC 300 FX, Heerbrugg,
Switzerland) attached to the Olympus SZX12 stereomi-
croscope. Confocal microscopy was done following a protocol
described in Rai and Nongthomba (2013). Briefly, using a
sharp razor, flies were bisected after snap freezing in liquid
nitrogen and fixed in 4% paraformaldehyde in PBS.
Tissue samples were washed thoroughly with 0.3% PBTX
and then stained with Phalloidin TRITC in 1:250 dilutions
(P1951-TRITC, Sigma, MO, USA). After washing thor-
oughly, tissues were mounted in Vecta shield media (Vector
Laboratories, CA, USA), and images were taken using a
Zeiss confocal microscope (LSM 510, Cambridge, UK).
Images were later assembled using the Adobe Photoshop
CS3, CA, USA.

Behavioural assays

The flight test was performed following the method
described previously by Drummond et al. (1991), and ability
of the flies to fly up, horizontal, down or flightless was plot-
ted as a percentage. The walking ability test was performed
with slight modification from Nongthomba et al. (2003). The
time taken to walk (negative geotaxis) a distance of 15 cm
towards the light source was measured in a transparent 15 mL
falcon tube. For each fly, the test was repeated thrice, and
the average time taken was plotted on the graph. The test
for the jumping ability was conducted following a protocol
described in Nongthomba et al. (2007).

Results

Screen for Gal4 strains that express in adult thoracic muscles

With an aim to generate the enhancer trap Gal4 strains
that spatio-temporally express in the subsets of fly thoracic
muscles, we crossed the P{GawB}c747 Gal4 line, in which
the P-element is located at the 41F region on the second
chromosome, with a stably inserted P-element transposase
source on the third chromosome. F1 male flies carrying both
the P{GawB} and transposase source, also known as jump
starters, were crossed with the reporter strain carrying the
UAS-GFP construct. Progenies (∼30,000) from more than
200 such crosses were screened under a fluorescent micro-
scope. All the flies that showed mild to strong expression in
the thorax region were selected for further analysis. Selected
individual lines were crossed to different chromosomal bal-
ancers to create stable lines. Expression pattern of each sta-
bilized strain was confirmed after crossing with the reporter
UAS-GFP strain again. A total of 30 strains were isolated
from the screen as summarized in table 1.

Isolation and characterization of UH3-Gal4

One of the enhancer trap lines, UH3-Gal4, isolated during
the screen showed expression in the adult IFMs. A detailed
expression profiling showed that it was expressed in certain
pockets of the whorl region of the wing imaginal disc in third
instar larvae (figure 1a). No remarkable GFP expression was
seen in the notum region where the myoblasts are harboured.
A ubiquitous expression was observed during early develop-
mental stages of pupae (figure 1, b–c). Over time, the expres-
sion was found restricted to the IFMs (figure 1, d–e) and
by the time the adult fly emerged, the expression was found
only in the IFMs as visualized through reporter proteins

Table 1. Summary of enhancer trap Gal4 strains isolated from the screen.

Chromosome Chromosome Chromosome Homozygous/
X 2 3 partially lethal

No. of strains 1 18 7 4
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Figure 1. Expression pattern and localization of UH3-Gal4. Fluorescent images of the reporter GFP expressed under UH3-Gal4. (a) Wing
imaginal disc from a third instar larva showing a pronounced expression in whorl region (star indicates the notum region). (b–e) Pupae
showing GFP expression at different stages of IFM development (APF, after puparium formation). (f) Schematic representation of dorsal
coronal-plane view of thorax. A pair of six vertically tiered dorsolongitudinal muscle (DLM) fascicles aligned along the anteroposterior
median axis (arrows) is bracketed by three separate dorsoventral muscle (DVM) fascicles bundled up in 3: 2: 2 muscle fibres (asterisks).
Tergal depressor of trochanter or the jump muscle is represented by two orange colour crescent-shaped structures, ‘A’ on scale map depicts
anterior. (g) Adult thorax showing strong GFP in the IFMs. Confocal images of (h) hemithorax showing UH3-Gal4-driven nuclear localized
RedStinger in DLMs and DVMs and are represented by arrows and asterisk, respectively. (i) phalloidin TRITC labelled myofibrils of UH3-
Gal4. DLMs and DVMs are represented by arrows and asterisks respectively. M and Z indicate M-line and Z-disc, respectively. Scale =
5 μm. (j) The BLAST analysis of flanking genomic DNA sequences recovered from an inverse PCR (grey region) indicates that UH3-Gal4
(represented by red triangle below the grey region) is inserted in an intron common to five annotated transcripts of Hk with an orientation
towards the minus strand (indicated by arrow). Insertion site also lies within the intron of a non-coding RNA gene, CR43959, encoded by
the opposite strand (snapshot from Flybase).
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(figure 1g). It showed expression both in the dorsal longi-
tudinal muscles (DLMs) and dorso-ventral muscles (DVMs)
(figure 1h). Visible expression could not be detected dur-
ing embryonic stages. However, over expression of the toxic
protein – ricin (using UAS-ricin transgene), caused embry-
onic lethality (data not shown), indicating that the UH3-Gal4
line could have an early embryonic expression also. Insertion
of 11.2 kb long P-element construct itself did not affect the
flight (figure 2h), walking or jumping (data not shown) and
showed normal sarcomeric structures (figure 1i), suggesting
that UH3-Gal4 could serve as an elegant tool for studying
the IFM myofibrillogenesis.

Analysis of the flanking sequences recovered from inverse
PCR indicated that UH3-Gal4 is inserted at cytological
region 9B5 on the X chromosome at nucleotide position
10151572 of the scaffold GB:AE014298. This corresponds
to an intron common to five transcripts of Hyperkinetic
(Hk) gene, which has annotated function of voltage-gated

potassium channel and oxidoreductase activity (Flybase).
The insertion site also lies within the intron of a non-coding
RNA, CR43959. However, orientation of the P{GawB}
points towards minus strand which encodes Hk (figure 1j).
The flanking genomic DNA has been submitted to the Gen-
Bank with accession number KF682142.

Knockdown of troponin isoforms during development of the IFM

As described earlier, the UH3-Gal4 expression is restricted
to the IFMs in later stages of development, which coincides
with isoform switching for most of the structural proteins.
Muscle structural proteins – TnI, TnT, TnC1 and TnC4 were
knocked down using UH3-Gal4 and RNAi construct for each
gene at an optimum temperature of 29◦C, after growing the
flies at 18◦C till 50 hAPF. Quantification of mRNA levels
for the targeted genes by real time PCR showed significant
reduction (figure 2, a–d). That the knockdown was specific

Figure 2. Knockdown of muscle structural proteins and behavioural assays. (a–d) Quantification of the mRNA expression levels of all
the troponin genes in 1–2 days old adult IFMs by real time PCR. Each troponin gene was knocked down during later stages of IFM
development using UH3-Gal4 driver in combination with Gal80ts. One-way ANOVA with Dunnett’s multiple comparison after the test
revealed a significant decrease of transcript levels (**P < 0.01, ***P < 0.001; ns, not significant). (e–g) Confocal images showing normally
developed adult IFMs when the muscle structural genes (TnI and TnT) were knocked down in the presence of Gal80ts at 18◦C. Knockdown
of all the troponin isoforms gives (i) flightless phenotype, except for TnC1 (Up, up flighted; Hor, horizontal flighted; Dn, down flighted,
Fl, flightless) as compared to (h) control parental lines. (j) Walking and (k) jumping abilities are not significantly affected. Genotypes are
given at the lower panel of each image. Red is Phalloidin TRITC. Scale = 5 μm.
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to later stages of IFM development was evident from the fact
that confocal images of the developing IFMs taken before
the temperature shift showed normal muscles (figure 2, e–g).
However, the adult flies that eclosed after the tempera-
ture shift experiment (as mentioned earlier), showed flight-
less phenotype (figure 2i) compared to controls (figure 2h).
Enhanced reduction in flight ability was achieved by addition
of a copy of UAS-dcr2 (Dietzl et al. 2007) (figure 2i). The
case of TnC1 was an exception, where only a small reduc-
tion in flight ability was observed. As expected, the walk-
ing and jumping behaviours were not significantly affected
(figure 2, j–k), also supporting the fact that the knockdowns
were IFM-specific.

Since the flight was defective, we analysed the IFM
morphology through polarized light imaging. TnI and TnT
knockdown flies showed remarkable abnormalities of the
IFM fascicles (figure 3, b–c) as compared to the wild type
(figure 3a). TnC4 knockdown flies however showed no

visible phenotype at the IFM fascicle level (figure 3d). TnC1
flies had completely normal fascicles (not shown), exhibiting
only a slight reduction in their flight. When the myofibril-
lar structures of these flightless flies were observed under
confocal microscope, the sarcomeres were found to be dis-
organized (figure 3, j–l). It was also quite evident that co-
expression of dcr2 and UAS-RNAi enhanced the severity of
these sarcomeric defects (figure 3, j′–l′) compared to controls
(figure 2, e–i). Knockdown of TnC1 gave normal myofibrils
such as that of wild type (data not shown). When UH3-Gal4
was brought together with Gal80ts – an antagonist of Gal4, at
18◦C, the defective phenotypes seen while growing at 29◦C
could be completely evaded (figure 3, m–p). These flies also
exhibited normal flight similar to controls (data not shown).
These results demonstrate the suitability of this Gal4, in com-
bination with Gal80ts, to be used for targeted knocked down
of troponin isoforms or other muscle genes in the later stages
of IFM development.

Figure 3. Myofibrillar morphology associated with the knockdown of each of the troponin genes (TnI, TnT and TnC4) using UH3-Gal4.
(b–d) Polarized images show remarkable abnormalities in TnI and TnT knockdown as compared to (a) wild type (1–6 represents six DLM
fascicles). Myofibrillar structure of DLMs shows disorganized sarcomeric structures (j–l) which become severe when the knockdown is
enhanced by adding a copy of UAS-dcr2 (j’–l’). (e–i) images show the normal myofibrils of the wild type and control parent strains. M
and Z indicate M-line and Z-disc, respectively. (m–p) Co-expression of Gal80ts at 18◦C can prevent defective knockdown effects. Red is
Phalloidin TRITC. Scale = 5 μm.
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Embryonic isoform of TnI rescues myofibril structure
of null allele
The hdp3, a null allele of the TnI gene in the IFMs, is caused
by a mutation in the splice site preceding exon 6b1, which is
specific to IFMs and TDT (Barbas et al. 1993). In the absence
of TnI, an inhibitory component within the troponin-complex

proteins, the unregulated actomyosin interactions cause
hypercontraction of the IFMs and TDT during early myofib-
rillogenesis (Nongthomba et al. 2004). Using the UH3-Gal4
line, we attempted to rescue the hdp3 allele with a non-
flight muscle isoform of TnI, TnI-L9 (embryonic isoform)
(Sahota et al. 2009), to study the importance of isoform

Figure 4. Rescue of the TnI null adult IFM phenotype with an embryonic isoform of TnI. Polarized images of (a) wild-type thorax showing
six normal DLMs and (b) UH3-Gal4 recombined with hdp3 without any IFMs and TDT (indicated by star). Expression of non-flight
muscle TnI embryonic isoform (TnI-L9) under UH3-Gal4 can rescue the hdp3 phenotype as seen in (c) hemizygous and (d) heterozygous
conditions. (g) and (h) show confocal images of myofibrils rescued with TnI-L9 in hdp3 hemizygous and heterozygous conditions as
compared to control (e) wild type and (f) recombined UH3-Gal4 hdp3 heterozygous counterpart. Arrows indicate abnormal accumulation
of actin. M and Z indicate M-line and Z-disc, respectively. (i–j) Agarose gels showing the amplified DNA products of TnI containing
exon 6a1 and exon 6b1 in rescued and wild-type IFMs, respectively. The last lane in (i) shows the two isoforms of TnI which are with
(arrow) or without (arrowhead) exon 3 in wild-type IFMs. Genotypes of each image are given at the lower panel. Red is Phalloidin TRITC.
Scale = 5 μm.
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switching. Since, the driver UH3-Gal4 and the mutant allele
hdp3 are located on the X chromosome, we first recom-
bined both alleles into a single chromosome and confirmed
the muscle phenotype (figure 4b), which retained the hdp3

phenotype. It was then crossed with the embryonic iso-
form transgene, UAS-TnI-L9. Analysis of the polarized light
images from succeeding progenies showed that the TnI-
L9 isoform could rescue the hdp3 muscle structural defects
(figure 4, c–d), though not completely. Expression level of
the TnI embryonic isoform was confirmed by PCR method
using primers designed for exon 6a1 sequences, which are
specific to embryonic isoforms. Expression level of exon
6a1 isoform in rescued flies was albeit less compared to the
6b1 expression levels in the controls (figure 4, i–j). Rescued
flies were completely flightless (data not shown). As revealed
by confocal images, the sizes of myofibrils were compara-
tively smaller in the rescued flies (figure 4, g–h) as compared
to the controls (figure 4e). The major thin filament protein
actin was found abnormally accumulated in IFMs of UH3-
Gal4 hdp3 heterozygous (figure 4f) and hdp3 hemizygous
flies (figure 4g, arrows). In comparison, rescued heterozy-
gous flies (UH3-Gal4 hdp3/+; UAS-TnI-L9/+) showed a
better myofibrillar structure where the sarcomeres looked
near-normal (figure 4h). However, the inability of these res-
cued flies to fly even in the heterozygous condition highlights
the importance of the presence of the right isoform.

Discussion

Two of the troponin subunits, TnT and TnI, undergo isoform
switching during later stages of IFM development
(Nongthomba et al. 2004, 2007). For TnT, the 10b isoform,
which is the major isoform during pupal development, is
completely replaced by the 10a isoform in the adult IFMs.
In the up1 mutant, the TnT 10a isoform variant, which is
expressed only in the IFMs and TDT, is completly absent in
the adult IFMs (Nongthomba et al. 2007). Since, both the
isoforms coexist in equal proportion in the TDT, loss of the
10a isoform is compensated up to some extent by the 10b
isoform. Knocking down TnT during the isoform switching
stage gives rise to abnormal myofibrils, more or less similar
to what was observed in the up1 mutant, suggesting that TnT
is important for assembly and maintenance of the myofibrils.
In the absence of the proper troponin complex (due to lack of
TnT), the thick and thin filaments will interact in an unreg-
ulated manner to produce disassembly of the myofibrils and
sarcomeres (figure 3, k&k′). The 10a isoform has more num-
ber of residues which can be phosphorylated, which may
be necessary for increased power production during flight,
but this needs experimental validation.

The TnI isoform of the adult IFM has an extended N-
terminal sequence of 60 residues, encoded by exon 3 (Barbas
et al. 1993; Nongthomba et al. 2004). The exon 3 isoform is
always found with the exon 6b1 isoform. Therefore, mutation
in the exon 6b1 splice site results in the absence of both the

isoforms (containing exons 6b1 and 3) and the IFMs degen-
erate just after differentiation, which may result from unregu-
lated actomyosin interactions (Barbas et al. 1993; Nongthomba
et al. 2004). As expected, knocking down of TnI also
gives abnormal myofibrils and sarcomeres (figure 3, j&j′),
but slightly less severe than TnT knockdown. The less severe
phenotype of TnI may be attributed to the fact that in the
absence of TnT, whole of the troponin complex will be lost
as TnT anchors the troponin complex to the tropomyosin
(Farah and Reinach 1995; Gordon et al. 2000), allowing the
thick and thin filament to interact in an unregulated man-
ner. However, in the case of TnI, there could be still a few
functional troponin complexes formed as TnT will be intact.
As a result, uncontrolled interactions between the thick and
thin filaments will be less severe. The muscle phenotype
achieved by knocking down of TnI is also less severe than
hdp3 or hdp3/+. This supports our hypothesis that the inhi-
bition of the actomyosin interaction during early assembly
of the thick and thin filament proteins is very important for
sarcomere formation, which is the case in the hdp3 mutation
(Nongthomba et al. 2004). As reported previously for
other structural protein isoforms (Miller et al. 1993; Wells
et al. 1996; Fyrberg et al. 1998; Swank et al. 2002),
replacement of the IFM isoform by the TnI embryonic
isoform (TnI-L9) led to normal assembly of myofib-
rils, except for mild structural defects in few sarcom-
eres (figure 4, f–g).The embryonic isoform was equally
potent in replacing reduced amount of TnI in hdp3/+,
and no myofibrillar or sarcomeric defect was observed
(figure 4h). This also suggests nonequivalent functional
properties of the isoforms. Differences may be ascribed to
exon 6b1 and/or exon 3. The exon 3 codes for extended
N-terminal region at the protein level with more phosphory-
lation sites which could be important for more power pro-
duction. The exon 6b1 region is the most variable region of
TnI and is known to interact with the C-lobe of the TnC
(De Nicola et al. 2007).

Two isoforms of TnC, TnC1 and TnC4, are expressed
in the IFMs in the ratio of 1:5 (Qiu et al. 2003; Herranz
et al. 2005a). TnC1 has two Ca2+-binding sites and TnC4
has one (Agianian et al. 2004). Based on Ca2+ affin-
ity studies, it has been predicted that TnC1 is required
for isometric contraction and TnC4 for stretch activation
(Linari et al. 2004; Krzic et al. 2010; Bullard and Pastore
2011; Martin et al. 2011). However, our in vivo data sug-
gest that TnC4 is required for proper assembly of myofib-
rils and function, and TnC1 cannot compensate its loss.
Whereas, knockdown of the TnC1 does not affect assem-
bly of myofibrils or sarcomere except for mild reduction
in flight ability (figure 2i), suggesting that the major iso-
form TnC4 can compensate the loss of TnC1. Reduction
in flight could be attributed to the loss of TnC1 which has
higher Ca2+ affinity. Such a compensation mechanism has
been reported for TnT isoforms in TDT muscle of the up1

mutant (Nongthomba et al. 2007). Our in vivo knockdown
data of TnC1 also suggest that TnC4 is capable of regulating
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muscle contraction. In other words, its single Ca2+-binding
domain, which has high affinity for Mg2+ (Potter and
Gergely 1975), can also bind to Ca2+ to regulate muscle
contraction.

Mutations of the troponin complex proteins are preva-
lent in many species, from Caenorhabditis elegans (Myers
et al. 1996; McArdle et al. 1998), zebrafish (Sehnert et al.
2002; Ohte et al. 2009) to humans (Perry 1998; Johnston
et al. 2000; Roberts and Sigwart 2001; Morimoto et al.
2002; Towbin and Bowles 2002; Marston and Redwood
2003; Wei and Jin 2011). Our previous studies in Drosophila
(Nongthomba et al. 2003, 2004, 2007) have contributed to
mechanisms that could be responsible for the development
of cellular structures like zebra-bodies which are widely seen
in many human myopathic conditions. In the present study,
a newly isolated enhancer trap Gal4 strain that expresses in
the IFMs is reported and using it, we have been able to illus-
trate the importance of all the troponin proteins during iso-
form switching stage. Considering the importance of mus-
cles in preventing ageing and in other physiological activities
that have been discovered in recent times, we believe that the
isolated strain can serve as a potential tool for studies where
the IFM system is used as a model. We have also shown the
functional differences of isoforms and compensatory mech-
anisms. Further experimental studies, both in vivo (rescue
experiments with different isoforms), and in vitro (chemo-
mechanical studies of muscles) will be required to fully
understand the physiological and evolutionary importance of
isoform switching in muscles.
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