Centrality dependence of charged particle production at large transverse momentum in Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV

ALICE Collaboration

1. Introduction

High-energy collisions of heavy-ions enable the study of hot and dense strongly interacting matter [1–5]. At sufficiently high temperature, it is expected that partons (quarks and gluons) are the dominant degrees of freedom. During the very early stage of the collision, some of the incoming partons experience scatterings with large momentum transfers. These partons lose energy when they traverse the hot and dense medium that is formed. One of the major goals of the heavy-ion physics programme at the LHC is to understand the underlying mechanisms for parton energy loss and use this as a tool to probe the properties of the medium.

Parton energy loss in heavy-ion collisions was first observed at RHIC as the suppression of high-p_T particle production in Au–Au collisions compared to expectations from an independent superposition of nucleon–nucleon collisions [6–9]. At RHIC, the particle production in central (0–5%) Au–Au collisions at $\sqrt{s_{\text{NN}}} = 200$ GeV is suppressed by a factor of 5 at $p_T = 5–6$ GeV/c [8,9], and is consistent with being independent of p_T over the measured range $5 < p_T < 20$ GeV/c [10].

The increase of the charged particle density ($dN/d\eta$) at mid-rapidity from RHIC energies to actual LHC energies by a factor of around 2.2 [11] implies a similar increase in energy density. However, the observed suppression of high-p_T particle production also depends on the ratio of quarks to gluons due to their different color factors, and on the steepness of the p_T spectra of the scattered partons. At the LHC the initial parton p_T spectra are less steep than at RHIC and the ratio of gluons to quarks at a given p_T is higher [12]. The measurement of high-p_T hadron production at the LHC helps to disentangle the effects which cause the suppression and provides a critical test of existing energy loss calculations [13]. In particular, the large p_T reach provides a means to study the dependence of the energy loss on the initial parton energy.

We present a measurement of the p_T distributions of charged particles in 0.15 < p_T < 50 GeV/c with pseudo-rapidity $|\eta| < 0.8$, where $\eta = -\ln\tan(\theta/2)$, with θ the polar angle between the charged particle direction and the beam axis. Results are presented for different centrality intervals in Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV. They are compared with measurements in pp collisions, by calculating the nuclear modification factor

$$R_{\text{AA}}(p_T) = \frac{d^2N_{\text{ch}}^{\text{pp}}/d\eta dp_T}{\langle T_{\text{AA}} \rangle d^2\sigma_{\text{ch}}^{\text{pp}}/d\eta dp_T},$$

(1)

where $N_{\text{ch}}^{\text{AA}}$ and $\sigma_{\text{ch}}^{\text{pp}}$ represent the charged particle yield in nucleus–nucleus (AA) collisions and the cross section in pp collisions, respectively. The nuclear overlap function T_{AA} is calculated from the Glauber model [14] and averaged over each centrality interval, $\langle T_{\text{AA}} \rangle = \langle N_{\text{coll}} \rangle / \langle N_{\text{in}} \rangle$, where $\langle N_{\text{coll}} \rangle$ is the average number of binary nucleon–nucleus collisions and $\langle N_{\text{in}} \rangle$ is the inelastic nucleon–nucleon cross section.

Early results from ALICE [15] showed that the production of charged particles in central (0–5%) Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV is suppressed by more than a factor of 6 at $p_T = 6–7$ GeV/c compared to an independent superposition of nucleon–nucleon collisions, and that the suppression is stronger than that observed at RHIC. The present data extend the study of high-p_T
particle suppression in Pb–Pb out to $p_T = 50$ GeV/c with a systematic study of the centrality dependence.

Moreover, the systematic uncertainties related to the pp reference were significantly reduced with respect to the previous measurement by using the p_T distribution measured in pp collisions at $\sqrt{s} = 2.76$ TeV [16].

2. Experiment and data analysis

The ALICE detector is described in [17]. The Inner Tracking System (ITS) and the Time Projection Chamber (TPC) are used for vertex finding and tracking. The minimum-bias interaction trigger was derived from signals from the forward scintillators (VZERO), and the two innermost layers of the ITS (Silicon Pixel Detector – SPD). The collision centrality is determined using the VZERO. In addition, the information from two neutron Zero Degree Calorimeters (ZDCs) positioned at ±114 m from the interaction point was used to remove contributions from beam-gas and electromagnetic interactions. The trigger and centrality selection are described in more detail in [11].

The following analysis is based on 1.6 $\cdot 10^7$ minimum-bias Pb–Pb events recorded by ALICE in 2010. For this study, the events are divided into nine centrality intervals from the 70–80% to the 0–5% most central Pb–Pb collisions, expressed in percentage of the overlap function

$$\langle N_{\text{part}} \rangle \text{ and the nuclear overlap function } T_{\text{AA}} \text{ by using simulations based on the Glauber model [14]. The average values of } N_{\text{part}} \text{ and } T_{\text{AA}} \text{ for each centrality interval, } (N_{\text{part}}) \text{ and } (T_{\text{AA}}), \text{ along with their corresponding systematic uncertainties, are listed in Table 1. The errors include the experimental uncertainties on the inelastic nucleon–nucleon cross section } \sigma_{\text{NN}}^{\text{inel}} = 64 \pm 5 \text{ mb at } \sqrt{s_{\text{NN}}} = 2.76 \text{ TeV [18] and on the parameters of the nuclear density profile used in the Glauber simulations (more details in [11]).}

The primary vertex position was determined from the tracks reconstructed in the ITS and the TPC by using an analytic χ^2 minimization method, applied after approximating each of the tracks by a straight line in the vicinity of their common origin. The event is accepted if the coordinate of the reconstructed vertex measured along the beam direction (z-axis) is within ±10 cm around the nominal interaction point. The event vertex reconstruction is fully efficient for the event centralities covered.

Primary charged particles are defined as all prompt particles produced in the collision, including decay products, except those from weak decays of strange hadrons. A set of standard cuts based on the number of space points and the quality of the momentum fit in the TPC and ITS is applied to the reconstructed tracks. Track candidates in the TPC are required to have hits in at least 120 (out of a maximum of 159) pad-rows and χ^2 per point of the momentum fit smaller than 4. Such tracks are projected to the ITS and used for further analysis if at least 2 matching hits (out of a maximum of 6) in the ITS, including at least one in the SPD, are found. In addition, the χ^2 per point of the momentum fit in the ITS must be smaller than 36. In order to improve the purity of primary track reconstruction at high p_T we developed a procedure where we compare tracking information from the combined ITS and TPC track reconstruction algorithm to that derived only from the TPC and constrained by the interaction vertex point.

We calculated the $\chi^2_{\text{TPC-ITS}}$ between these tracks using the following formula

$$\chi^2_{\text{TPC-ITS}} = (v_{\text{TPC}} - v_{\text{TPC-ITS}})^T \cdot (\Delta_{\text{TPC}} + \Delta_{\text{TPC-ITS}})^{-1} \cdot (v_{\text{TPC}} - v_{\text{TPC-ITS}})$$

where v_{TPC}, $v_{\text{TPC-ITS}}$, and $\Delta_{\text{TPC-ITS}}$ represent the measured track parameter vectors $v = (x, y, z, \theta, \phi, 1/p_T)$ and their covariance matrices, respectively. If the $\chi^2_{\text{TPC-ITS}}$ is larger than 36 the track candidate is rejected. At $p_T = 0.15–50$ GeV/c, this procedure removes about 2–7% (1–3%) of the reconstructed tracks in the most central (peripheral) collisions. This procedure in fact removes high-p_T fake tracks, which originate from spurious matches of low p_T particles in the TPC to hits in the ITS, and would result in an incorrect momentum assignment.

Finally, tracks are rejected from the sample if their distance of closest approach to the reconstructed vertex in the longitudinal direction d_z is larger than 2 cm or $d_{xy} > 0.018 cm + 0.035 cm \cdot p_T^{-1}$ in the transverse direction with p_T in GeV/c, which corresponds to 7 standard deviations of the resolution in d_{xy} (see [19] for details). The upper limit on the d_z ($d_{z} < 2$ cm) was set to minimize the contribution of tracks coming from pileup and beam-gas background events. These cuts reject less than 0.5% of the reconstructed tracks independently of p_T and collision centrality.

The efficiency and purity of the primary charged particle selection are estimated using a Monte Carlo simulation with HIJING [20] events and a GEANT3 [21] model of the detector response. We used a HIJING tune which reproduces approximately the measured charged particle density in central collisions [11]. In the most central events, the overall primary charged particle reconstruction efficiency (tracking efficiency and acceptance) in $|y| < 0.8$ is 36% at $p_T = 0.15$ GeV/c and increases to 65% for $p_T > 0.6$ GeV/c. In the most peripheral events the efficiency is larger than that for the central events by about 1–3%. The contribution from secondary particles was estimated using the d_{xy} distributions of data and HIJING and is consistent with the measured strangeness to charged particle ratio from the reconstruction of K_S^0, Λ and $\bar{\Lambda}$ invariant mass peaks in Pb–Pb [22]. The total contribution from secondary tracks at $p_T = 0.15$ GeV/c is 13 (7)% for central (peripheral) events and decreases to about 0.6% above $p_T = 4$ GeV/c for both central and peripheral events. From a systematic variation of the $\chi^2_{\text{TPC-ITS}}$ cut and comparison of track properties in MC to data we conclude that the number of properly reconstructed tracks rejected as high-p_T fake tracks is around 1–2% (0.5–1%) in the most central (peripheral) collisions. We also conclude that the contribution from the high-p_T fake tracks to the p_T spectra is negligible independently of the collision centrality and p_T.

The transverse momentum of charged particles is reconstructed from the track curvature measured in the magnetic field $B = 0.5$ T using the ITS and TPC detectors. The p_T resolution is estimated from the track residuals to the momentum fit and verified by cosmic muon events, and the width of the invariant mass peaks of Λ, $\bar{\Lambda}$ and K_S^0 reconstructed from their decays to two charged particles. For the selected tracks the relative p_T resolution ($\sigma(p_T)/p_T$) amounts to 3.5% at $p_T = 0$ GeV/c, has a minimum of 1% at $p_T = 1$ GeV/c, and increases linearly to 10% at $p_T = 50$ GeV/c. It is independent of the centrality of the selected events. From the study of the invariant mass distributions of Λ and K_S^0 as a
function of \(p_T \) we estimate that the relative uncertainty on the \(p_T \) resolution is around 20%. From the mass difference between \(\Lambda \) and \(\overline{\Lambda} \) and the ratio of positively to negatively charged tracks, assuming charge symmetry at high \(p_T \), the upper limit of the systematic uncertainty of the momentum scale is estimated to be \(|\Delta(p_T)/p_T| < 0.005 \) at \(p_T = 50 \) GeV/c. This has an effect of around 1.5% on the yield of the measured spectra at the highest \(p_T \). To account for the finite \(p_T \) resolution, correction factors for the reconstructed \(p_T \) spectra at \(p_T > 10 \) GeV/c are derived using a folding procedure. The corrections depend on collision centrality due to the change of the spectral shape and reach 4 (8%) at \(p_T = 50 \) GeV/c in the most central (peripheral) collisions.

The systematic uncertainties on the \(p_T \) spectra are summarized in Table 2. The systematic uncertainties related to centrality selection were estimated by a comparison of the \(p_T \) spectra when the limits of the centrality classes are shifted by ±1% (e.g. for the 70–80% centrality class, 70.7–80.8% and 69.3–79.2%), which is a relative uncertainty on the fraction of the hadronic cross section used in the Glauber fit [11] to determine the centrality classes. We also varied the event and track quality selection criteria and the Monte Carlo assumptions to estimate systematic uncertainties on the \(p_T \) spectra. In particular, we studied a variation of the most abundant charged particle species (pions, kaons, protons) by ±30% to match the measured ratios and their uncertainties [22]. The material budget was varied by ±7% [23], and the secondary yield from strangeness decays in the Monte Carlo by ±30% to match the measured \(dN/dy \) distributions. Moreover, we used a different event generator, DPMJET [24], to calculate MC correction maps. The systematic uncertainties on the \(p_T \) spectra, related to the high-\(p_T \) fake track rejection procedure, were estimated by varying the track matching criteria in the range \(25 < \chi^2_{\text{TPC-ITS}} < 49 \), and amount to 1–4% (1–2%) in the most central (peripheral) collisions. The total systematic uncertainties on the corrected \(p_T \) spectra depend on \(p_T \) and event centrality and amount to 8.2–13.5% (10.3–13.4%) in the most central (peripheral) collisions.

A dedicated run of the LHC to collect pp reference data at \(\sqrt{s} = 7.6 \) TeV took place in March 2011. Data taken in this run were used to measure the charged particle \(p_T \) spectrum that forms the basis of the pp reference spectrum for \(R_{AA} \). Using these data the systematic uncertainties in \(R_{AA} \) related to the pp reference could be significantly improved (Table 2) compared to the previous publication [15], allowing for an exploration of high-\(p_T \) particle suppression in Pb–Pb out to 50 GeV/c. More details about the pp reference determination can be found in [16].

Table 2

<table>
<thead>
<tr>
<th>Centrality class</th>
<th>0–5%</th>
<th>70–80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrality selection</td>
<td>0.4%</td>
<td>6.7%</td>
</tr>
<tr>
<td>Event selection</td>
<td>3.2%</td>
<td>3.4%</td>
</tr>
<tr>
<td>Tracking efficiency</td>
<td>4.1–7.3%</td>
<td>3.6–6.0%</td>
</tr>
<tr>
<td>(p_T) resolution correction</td>
<td>< 1.8%</td>
<td>< 3%</td>
</tr>
<tr>
<td>Material budget</td>
<td>0.9±1.2%</td>
<td>0.5–1.7%</td>
</tr>
<tr>
<td>Particle composition</td>
<td>0.6–10%</td>
<td>0.5–7.7%</td>
</tr>
<tr>
<td>MC generator</td>
<td>2.2%</td>
<td>1.5%</td>
</tr>
<tr>
<td>Secondary particle rejection</td>
<td>< 1%</td>
<td>< 1%</td>
</tr>
<tr>
<td>Total for (p_T) spectra</td>
<td>8.2–13.5%</td>
<td>10.3–13.4%</td>
</tr>
<tr>
<td>Total for pp reference</td>
<td>6.3–18.8%</td>
<td>1.9%</td>
</tr>
<tr>
<td>pp reference normalization</td>
<td>1.9%</td>
<td></td>
</tr>
</tbody>
</table>

3. Results

The fully corrected \(p_T \) spectra of inclusive charged particles measured in Pb–Pb collisions at \(\sqrt{s_{\text{NN}}} = 2.76 \) TeV in nine different centrality intervals, and the scaled pp reference spectra are shown in Fig. 1. At low \(p_T \), the transverse momentum spectra differ from the pp reference. This is in agreement with the previously observed scaling behavior of the total charged particle production as a function of centrality [11]. A marked depletion of the spectra at high transverse momentum (\(p_T > 5 \) GeV/c) develops gradually as centrality increases, indicating strong suppression of high-\(p_T \) particle production in central collisions.

The nuclear modification factors for nine centrality intervals are shown in Fig. 2. In peripheral collisions (70–80%), only moderate suppression (\(R_{AA} = 0.6–0.7 \)) and a weak \(p_T \) dependence is observed. Towards more central collisions, a pronounced minimum at \(p_T = 6–7 \) GeV/c develops while for \(p_T > 7 \) GeV/c there is a significant rise of the nuclear modification factor. This rise becomes gradually less steep with increasing \(p_T \). In the most central collisions (0–5%), the yield is most suppressed, \(R_{AA} \approx 0.13 \) at \(p_T = 6–7 \) GeV/c, and \(R_{AA} \) reaches \(\approx 0.4 \) with no significant \(p_T \) dependence for \(p_T > 30 \) GeV/c.

The dependence of \(R_{AA} \) on the collision centrality, expressed in terms of \(N_{\text{part}} \) and the charged particle multiplicity density \((dN_{\text{ch}}/dN) \), are shown in Fig. 3 for different intervals of \(p_T \). Also shown are results from PHENIX at RHIC in Au–Au collisions at \(\sqrt{s_{\text{NN}}} = 200 \) GeV [9]. The strongest centrality dependence is observed for particles with \(5 < p_T < 7 \) GeV/c. At higher \(p_T \), the

![Fig. 1. Charged particle \(p_T \) distribution measured in Pb–Pb collisions in different centrality intervals. The spectra are scaled for better visibility. The dashed lines show the pp reference [16] scaled by the nuclear overlap function determined for each centrality interval (Table 1) and by the Pb–Pb spectra scaling factors. The systematic and statistical uncertainties for Pb–Pb are added quadratically. The uncertainties on the pp reference are not shown.](image-url)
Fig. 2. Nuclear modification factor R_{AA} of charged particles measured in Pb–Pb collisions in nine centrality intervals. The boxes around data points denote p_T-dependent systematic uncertainties. The systematic uncertainties on the normalization which are related to $\langle T_{AA}\rangle$ and the normalization of the pp data are added in quadrature and shown as boxes at $R_{AA} = 1$.

centrality dependence weakens gradually. In comparison to results from RHIC, the LHC data in the same p_T window show a suppression which is larger by a factor of about 1.2 at all $\langle N_{\text{part}}\rangle$ (Fig. 3, top panel). This implies that the shape of the N_{part} dependence at RHIC and the LHC is very similar when the same p_T is compared, indicating a strong relation between collision geometry and energy loss. The overall increase of suppression at the LHC as compared to RHIC may be expected from the larger density and longer lifetime of the fireball. The suppression reaches similar values when results from RHIC are compared to results from the LHC in terms of $dN_{\text{ch}}/d\eta$, as shown in Fig. 3 (bottom panel). Larger values of suppression than at RHIC are observed in central collisions at the LHC, where the charged particle multiplicity exceeds that of the most central collisions at RHIC. It should be noted that the suppression at a given centrality results from a subtle interplay between the parton p_T spectrum, the quark-to-gluon ratio, and the medium density, all of which exhibit a significant energy dependence. Further model studies are needed to evaluate their relative contributions.

The ALICE measurement of R_{AA} in the most central Pb–Pb collisions (0–5%) is compared to the CMS result [25] in Fig. 4. Both measurements agree within their respective statistical and systematic uncertainties.

In Fig. 4, the measured R_{AA} for 0–5% central collisions is also compared to model calculations. All selected models use RHIC data to calibrate the medium density and were available before the preliminary version of the data reported in this Letter. All model calculations except WHDG [26] use a hydrodynamical description of the medium, but different extrapolation assumptions from RHIC to LHC. A variety of energy loss formalisms is used. An increase of R_{AA} due to a decrease of the relative energy loss with increasing p_T is seen for all the models.

The curves labeled WHDG, ASW, and Higher Twist (HT) are based on analytical radiative energy loss formulations that include interference effects. Of those curves, the multiple soft gluon approximation (ASW [27]) and the opacity expansion (WHDG [26]) show a larger suppression than seen in the measurement, while one of the HT curves (Chen [28]) with lower density provides a good description. The other HT (Majumder [29]) curve shows a stronger rise with p_T than measured. The elastic energy loss model by Renk (elastic) [30] does not rise steeply enough with p_T and overshoots the data at low p_T. The YajEM-D model [31], which is based on medium-induced virtuality increases in a parton shower, shows too strong a p_T-dependence of R_{AA} due to a formation time cut-off.

A more systematic study of the energy loss formalisms, preferably with the same model(s) for the medium density is needed to rule out or confirm the various effects. Deviations of the nuclear parton distribution functions (PDFs) from a simple scaling of the nucleon PDF with mass number A (e.g. shadowing) are also expected to affect the nuclear modification factor. These effects are predicted to be small for $p_T > 10$ GeV/c at the LHC [26] and will be quantified in future p–Pb measurements.

4. Summary

We have reported the measurements of charged particle p_T spectra and nuclear modification factors R_{AA} as a function of event centrality in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. The results indicate a strong suppression of charged particle production in Pb–Pb
collisions and a characteristic centrality and p_T dependence of the nuclear modification factors. In central collisions (0–5%) the yield is most strongly suppressed ($R_{AA} \approx 0.13$) at $p_T = 6–7$ GeV/c. Above $p_T = 7$ GeV/c, there is a significant rise in the nuclear modification factor, which reaches $R_{AA} \approx 0.4$ for $p_T > 30$ GeV/c. This result is in agreement with the CMS measurement within statistical and systematic uncertainties. The suppression is weaker in peripheral collisions (70–80%) with $R_{AA} = 0.6–0.7$ and no strong p_T dependence. The observed suppression of high-p_T particles in central Pb–Pb collisions provides evidence for strong parton energy loss and a large medium density at the LHC. We observe that the suppression of charged particles with $5 < p_T < 7$ GeV/c reaches similar values when results from RHIC are compared to results from LHC in terms of the $dN_{ch}/d\eta$. The measured R_{AA} in 0–5% central collisions is compared to model calculations. An increase of R_{AA} due to a decrease of the relative energy loss with increasing p_T is seen for all the models. The measurement presented here, together with measurements of particle correlations [32] and measurements using jet reconstruction [33], will help in understanding the mechanism of jet quenching and the properties of the medium produced in heavy-ion collisions.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: Calouste Gulbenkian Foundation from Lisbon and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community’s Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the ‘Region Pays de Loire’, ‘Region Alsace’, ‘Region Auvergne’ and CEA, France; German BMBF and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian OTKA and National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) of Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); CONACYT, DGAPA, México, ALFA-EC and the HELEN Program.
This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References
