
604 RESONANCE  July 2010

GENERAL  ARTICLE

Network Coding

K V Rashmi, Nihar B Shah and P Vijay Kumar

K. V. Rashmi is currently an M. E. student at the Indian Institute of Science. She received her B. Tech.

degree from the National Institute of Technology Karnataka, Surathkal. Her current research

interests are in coding theory, error-correction in networks and wireless communication.“

K V Rashmi (left) is

currently an ME student

at IISc. Her current

research interests are in

coding theory, error-

correction in networks and

wireless communication.

Nihar B Shah (right) is

currently pursuing his

masters in telecommunica-

tion at IISc. He is

interested in the various

facets of coding theory,

graph theory and

information theory.

P Vijay Kumar (bottom) is

a Professor at IISc,

Bangalore. His research

interests include coding

theory, low-correlation

sequences and signal

design for wireless

communicaiton. He is a

Fellow of the IEEE and a

co-recipient of the 1995

IEEE Information Theory

Paper Award.

Network coding is a technique to increase the
amount of information °ow in a network by mak-
ing the key observation that information °ow
is fundamentally di®erent from commodity °ow.
Whereas, under traditional methods of opera-
tion of data networks, intermediate nodes are
restricted to simply forwarding their incoming
message symbols downstream, network coding
achieves vast performance gains by permitting
intermediate nodes to carry out algebraic oper-
ations on the incoming data. In this article we
present a tutorial introduction to network coding
as well as an application to the e±cient operation
of distributed data-storage networks.

1. Introduction to Network Coding

Here is a classic puzzle: A gang of ¯ve pirates ¯nd a
treasure. The old chief of the pirates is on his death
bed, and is worried about the misuse of the treasure by
the other four pirates after his death. So, he dumps all
the treasure in a chest and puts a number lock on it.
Then he whispers something to each of the remaining
four pirates. Now he is assured that no pirate alone can
open the chest and take the treasure, and the chest can
be opened only if any two of them together wanted to do
so. What did he whisper into their ears?

The solution to this puzzle is simple. He set the number
key on the lock as an arbitrary number, say 81. He
divided the number key on the lock into two parts, say
x = 8 and y = 1. He revealed the number x to the ¯rst
pirate, y to the second, x+y to the third, and x+2y to
the fourth, also revealing what combination of the two
parts was revealed to each of them. In this way, any two



605RESONANCE  July 2010

GENERAL  ARTICLE

Figure1. The pirates puzzle

as a network coding prob-

lem.

Keywords

Information flow, multicast net-

works, max-flow min-cut, distrib-

uted storage.

pirates together can obtain the entire key, but any one
alone cannot open the lock!

This problem can also be posed as a Network Coding
problem. Construct a graph as shown in Figure 1. The
top-most node is a source, representing the chief pirate.
He chooses two numbers arbitrarily, which are the two
parts of the key. We say that the source has a rate of
2 symbols per unit time. The four nodes in the next
level are intermediate nodes, representing the four other
pirates. Since the chief tells each of them one num-
ber, there are links from the source to each of these
four nodes having capacities of 1 symbol per unit time.
Thus, a single pirate will have just one of the two num-
bers and hence will not be able to open the lock. To
enable any pair of pirates to obtain the key together,
each pair of intermediate nodes is connected to a sink
(labelled T1; : : : ; T6 in the ¯gure), which demands all
symbols produced by the source. Each such sink ob-
tains the symbols from the two pirates it connects to;
hence the edges have a capacity 1. Now, solving this
network coding problem amounts to solving the puzzle.

Let us look at a second example called the butter°y net-
work that highlights the main idea behind network cod-
ing. Figure 2a depicts a network with commodity °ow.
Node s is a source producing apples and strawberries.



606 RESONANCE  July 2010

GENERAL  ARTICLE

Nodes t1 and t2 are sinks, i.e., they are consumers for
these commodities. Each edge in the network has the
capacity to carry up to one fruit per unit time, and the
goal is to provide the maximum number of commodities
to the sinks per unit time. It is easy to see that at most
one apple and one strawberry can be delivered to the
consumers respectively per unit time.

Unlike commodity, information can be replicated and
coded, and this is of great help when solving informa-
tion °ow networks. For example, Figure 2b shows the
same network as in Figure 2a but with node s being an
information source. Here, replication is allowed but not
coding. Consequently, sink t1 is able to get x whereas
sink t2 is able to get both the symbols x and y produced
by the source.

Figure 2c depicts the case where both replication and
coding are allowed. Node c passes a function of the in-
coming symbols on its outgoing link. This idea of inter-
mediate nodes coding the incoming symbols before pass-
ing it on their outgoing links as introduced by Ahlswede
et al. [1] is called network coding. Due to network cod-
ing, both sinks t1 and t2 are able to get both the symbols
x and y simultaneously.

In this article we will present the elements of network
coding on a basic class of networks for simplicity. The
broad range of possible networks and their classi¯cations
are provided in Box 1.

Figure 2. Comparison of

commodity to information

flow: (a) Commodity flow,

(b) information flow with

replication,and (c) informa-

tion flow with replication

and coding.

(a) (c)(b)



607RESONANCE  July 2010

GENERAL  ARTICLE

1When q is a prime number, the

finite field Fqq is just the set of

numbers {0,1,...,q –1} with addi-

tion and multiplication performed

modulo q. A brief introduction to

finite fields is available in [3].

Network Coding

problem is to

determine the linear

combinations that the

nodes perform and

pass, in order to

ensure that all the

source symbols are

delivered to all the

sinks.

Box 1. Various Classi¯cations of Networks

Linear vs Non-linear : A network coding solution is said to be linear if all intermediate
nodes take linear functions of the incoming symbols, else non-linear.

Multicast vs Non-multicast : Multicast networks have only one source and all the sinks
demand the source. For such networks, upper bounds on the achievable rates can be
calculated easily. Moreover, it was shown by Li et al [2] that one can design linear
network coding schemes to achieve these upper bounds. Non-multicast networks have
multiple sources with di®erent sinks demanding di®erent sets of sources, and the situation
is much more complicated in this case.

Directed vs Undirected : A directed graph has every edge associated with a direction, and
information along that edge can be carried only along that direction. If a link can carry
information both ways, it is represented via two edges, one in each direction.

Acyclic vs Cyclic: In an acyclic graph, if you trace any path, you will never come back
to the same point.

Following is a description of the class of networks that we
will consider. The network consists of a directed graph
G, i.e., each edge in the graph has an associated direction
in which it can carry data. The graph is assumed not
to have any cycles. One node in the graph is a source
which generates a certain number of symbols per unit
time, termed as its rate. Each symbol is assumed to
belong to some ¯nite ¯eld Fq of size q,1 and its value is
picked arbitrarily by the source.

Each edge has an associated capacity, i.e., the maximum
number of symbols it can carry per unit time. The rate
of the source and the capacities of the edges are all non-
negative integers. A subset of the nodes are sinks, and
each sink requires all the data that the source generates.
This is called a multicast network.

Every node can take some linear combination of the
symbols that are coming into it, and pass it on the out-
going edges. The Network Coding problem is to deter-
mine these linear combinations that the nodes perform
and pass, in order to ensure that all the source symbols
are delivered to all the sinks.



608 RESONANCE  July 2010

GENERAL  ARTICLE

The case of networks

with a single sink

plays a vital role in

proving results for the

general case of

multiple sinks.

Ford and Fulkerson

(and a little later

Elias, Feinstein and

Shannon) showed

that the maximum

value of a flow

through the network

equals the min-cut in

the network.

2. The Building Block: Networks with a Single
Sink

The case of networks with a single sink plays a vital
role in proving results for the general case of multiple
sinks. In this section, we will consider networks with one
sink from a commodity °ow viewpoint. In commodity
°ow, all the nodes other than the source and the sink
are subject to Kirchho®'s Current Laws (KCL). Some
essential terminology is introduced here.

Flow: Flow on an edge represents the number of sym-
bols it will carry (per unit time) in the system, and will
obviously not exceed the capacity of that edge. At each
intermediate node, the °ows in and out of the node are
subject to KCL, i.e., the total °ow into the node should
be equal to the total °ow out of it. In other words, in
commodity °ow, intermediate nodes do not store any-
thing nor can they generate anything on their own; they
just pass on all that they receive. Introducing one imag-
inary edge into the source and one imaginary edge out
of the sink with °ows equal to the rate of the source,
the net °ow into the network is equal to the net °ow
out of the network. This amount of °ow is the value of
the °ow in the network.

A cut and its capacity: A cut is a partition of the
nodes in the network into two parts, S and Sc. The
source s 2 S and the sink t 2 Sc. The total capacity of
all the edges leading from nodes in S to nodes in Sc is
called the capacity of the cut. The min-cut capacity of
the network is the minimum of the capacities of all the
cuts in the network.

Max-°ow equals min-cut: Ford and Fulkerson (and
a little later Elias, Feinstein and Shannon) showed that
the maximum value of a °ow through the network equals
the min-cut in the network. They also showed that when
the capacity of every edge is an integer (as we have



609RESONANCE  July 2010

GENERAL  ARTICLE

Figure 3. A cut in a net-

work. All the edges in the

network have capacities of

one symbol per unit time.

The main

contribution of

network coding

towards increasing

the achievable rate

of a network is in

the multicast case,

i.e., when multiple

sinks are present.

assumed here), the max-°ow is also an integer, and so
is the °ow on every edge.

Menger's Theorem: Menger showed that the number
of edge-disjoint paths from the source to the sink is equal
to the max-°ow of the network. In our case when the
edge capacities can be any non-negative integer, each
edge can be split into multiple parallel edges with unit
capacities, to make it amenable to Menger's Theorem.

Thus, in a single sink network, a number of symbols
equal to the min-cut of the network can be transferred
from source to sink per unit time by making each symbol
°ow on di®erent edge-disjoint paths.

Figure 3 shows a cut in a network. The value of this cut
is 2 symbols per unit time, and it can be easily veri¯ed
that this is the min-cut capacity. We can see that there
are two edge-disjoint paths from the source to the sink
on which commodities can be transmitted. Hence the
max-°ow in this network is also equal to 2 symbols per
unit time.

3. Multicast Networks

We saw in the previous section that when there is only
one sink in the network, the min-cut capacity can be
achieved using commodity °ow itself. The main contri-
bution of network coding towards increasing the achiev-
able rate of a network is in the multicast case, i.e., when
multiple sinks are present. An example of a multicast
network is shown in Figure 4.

We will need some notation to formally describe the gen-
eral network coding setup. Let s be the source node pro-
ducing ¹ symbols per unit time. Nodes t1; t2; : : : ; tK
are the K sink nodes. Let X(1); X(2); ¢ ¢ ¢ ; X(¹) be ¹
source messages. The output at the kth sink is denoted
by Zk(1); Zk(2); ¢ ¢ ¢ ; Zk(¹) for k = 1; : : : ; K.



610 RESONANCE  July 2010

GENERAL  ARTICLE

Figure 5. Notation for input/

output symbols at different

nodes: (a) the source, (b)

an intermediate node, and

(c) a sink.

Figure 4. A multicasting

example.

Each node in the network can perform linear operations
on the incoming symbols. At the source node, we have,

Y (e) =
X

k

®(k; e)X(k) ;

where Y (e) is the symbol on edge e emanating from the
source, ®(k; e) is the coe±cient of the message X(k) for
the symbol on the outgoing edge e and the summation
is over all source messages. At any intermediate node,

Y (e) =
X

e
0

Á(e0; e)Y (e0) ;

where the summation is over all the incoming edges e0

of the intermediate node of which e is an outgoing edge.
Á(e0; e) is the coe±cient of the incoming message Y (e0)
from incoming edge e0 to the outgoing edge e. And at a
sink,

Zk(j) =
X

e0

¯(e0; j)Y (e0);

where the summation is over all the incoming edges e0

of the sink node under consideration. An illustration of
these operations is provided in Figure 5.

For simplicity, let us ¯rst consider a single sink network
and understand the notation. An example of such a

(a)

(b)

(c)



611RESONANCE  July 2010

GENERAL  ARTICLE

Figure 8. Topological sort-

ing of G giving a total or-

dering of edges of G .

Figure 6. Single sink net-

work G considered for il-

lustration.

Figure 7. Edge graph G or

the example network G .

network is shown in Figure 6. We will use G to denote
the associated graph.

The operations that the source node s performs can be
represented by the following matrix operation:

[Y (e1) Y (e2) ¢ ¢ ¢ Y (e5)]

= [X(1) X(2)]

"
®(1; e1) ¢ ¢ ¢ ®(1; e5)
®(2; e1) ¢ ¢ ¢ ®(2; e5)

#

;

i.e., Y t = XtA .

The matrix A is termed as Source-Coupling Matrix and
it encapsulates how the source symbols enter the net-
work. For the example network, A is given by

A =

"
®(1; e1) ®(1; e2) 0 0 0
®(2; e1) ®(2; e2) 0 0 0

#

:

Now, let us look at how these symbols propagate in the
network. Every intermediate node in the network takes
linear combinations of the symbols arriving on its in-
coming edges and passes them on its outgoing edges.
First, a new graph G 0 is constructed with edges of G as
the nodes, called Edge Graph. Edges in G0 are directed
from incoming edges at a node (in G) to outgoing edges
of the node (in G). The edge graph for the example is
shown in Figure 7.

The edge graph provides a partial ordering of the edges
of G. Partial ordering of edges in a graph gives an or-
dering for certain pairs of edges. In Figure 7 there is an
ordering between e1 and e3, i.e., e1 feeds e3, and similarly
between e2 and e5. But there is no ordering between e3
and e4 or between e1 and e2.

Total ordering of edges in a graph provides an ordering
for all pairs of edges. Topological sorting of the nodes in
G 0 gives a total ordering of edges of G (Figure 8). This is
simply a `single-line' ordering of the edges in G making
sure that the partial ordering is respected.



612 RESONANCE  July 2010

GENERAL  ARTICLE

A square matrix is

said to be nilpotent

if some power of

the matrix is a zero

matrix.

Assume that the

network is delay

free, i.e., symbols

propagate through

all the layers

simultaneously

without any delay.

Since each node takes a linear combination of the in-
coming symbols to compute the outgoing symbols, it is
natural to consider an edge matrix which captures the
coe±cients used in the linear combination to obtain an
outgoing symbol in terms of the incoming symbols at
each node. The edge matrix for the example graph is

F =

2

6
6
6
6
6
6
6
6
4

from=to e1 e2 e3 e4 e5

e1 0 0 Á(e1; e3) Á(e1; e4) 0
e2 0 0 0 0 Á(e2; e5)
e3 0 0 0 0 Á(e3; e5)
e4 0 0 0 0 0
e5 0 0 0 0 0

3

7
7
7
7
7
7
7
7
5

:

Observe that the topological sorting of the edges of G
provides a nice structure to the edge matrix F . It is
always upper triangular with 0's on the diagonal.

A square matrix is said to be nilpotent if some power of
the matrix is a zero matrix. In this case,

F 2 =

2

6
6
6
6
6
6
4

0 0 0 0 Á(e1; e3)Á(e3; e5)
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3

7
7
7
7
7
7
5

; F3 = [0].

Hence F is a nilpotent matrix.

The symbols propagate in the network in a layer by layer
fashion, i.e., from incoming edges of the nodes at one
level to outgoing edges of those nodes and then into
outgoing edges of nodes of next level and so on. Assume
that the network is delay free, i.e., symbols propagate
through all the layers simultaneously without any delay.
Then, if the total number of layers in the network is
N , the propagation of symbols can be represented in
the following matrix form called the Multi-Step Coupling
Matrix:

= I + F + ¢ ¢ ¢+ FN



613RESONANCE  July 2010

GENERAL  ARTICLE

The sink can

recover the source

messages if and

only if the input-

output relation

matrix

A [I + F + F2] B

is invertible.

Now we know how

symbols propagate

from the source to

the sink, and are

ready to write the

overall input-output

relation for our

example network

= [I ¡ F ]¡1:

Here the nilpotent property of F is made use of to termi-
nate the summation. Now, we come to the last part of
the symbol propagation in the network, i.e., at the sink.
Again using the matrix representation, for the example
network we have

[Z(1) Z(2)]

= [Y (e1) Y (e2) ¢ ¢ ¢ Y (e5)]

2

6
6
4

¯(e1; 1) ¯(e1; 2)
...

...
¯(e5; 1) ¯(e5; 2)

3

7
7
5 ;

i.e., Zt = Y tB ,

and the matrix B is called the Sink-Coupling Matrix.
For the example network, B is given by

B =

2

6
6
6
6
6
6
4

0 0
0 0
0 0

¯(e4; 1) ¯(e4; 2)
¯(e5; 1) ¯(e5; 2)

3

7
7
7
7
7
7
5

:

Now we know how symbols propagate from the source to
the sink, and are ready to write the overall input-output
relation for our example network:

[Z(1) Z(2)] = [X(1) X(2)] A [I + F + F 2] B:

The sink can recover the source messages if and only if
the input-output relation matrix A [I + F + F 2] B is
invertible. Hence the values of the variables ®; ¯; Á are
to be chosen such that the matrix A [I + F + F 2] B
is full rank, i.e., have non-zero determinant. Now, we
can leverage Menger's theorem result to obtain values
for these variables in the single sink case. Following is
a simple solution using the edge-disjoint paths, which
achieves min-cut for the example network.

A =

"
1 0 0 0 0
0 1 0 0 0

#

;



614 RESONANCE  July 2010

GENERAL  ARTICLE

Using network coding,

min-cut can be

achieved for all the

sinks simultaneously.

Koetter and Medard

[3] showed an easy

algebraic way in which

this can be done.

F =

2

6
6
6
6
6
6
6
6
4

from=to e1 e2 e3 e4 e5

e1 0 0 0 1 0
e2 0 0 0 0 1
e3 0 0 0 0 0
e4 0 0 0 0 0
e5 0 0 0 0 0

3

7
7
7
7
7
7
7
7
5

;

B =

2

6
6
6
6
6
6
4

0 0
0 0
0 0
1 0
0 1

3

7
7
7
7
7
7
5

:

This gives the overall input-output matrix,

A [I + F + F 2] B =

"
1 0
0 1

#

:

Hence the sink can recover both the source messages,

Z(1) = X(1) ;

Z(2) = X(2) :

The network we considered for illustration had only one
sink. So a natural question is, what if there are multi-
ple sinks? This scenario where there is a single source
and multiple sinks and all the sinks want the source is
termed as multicast scenario. Surprisingly, using net-
work coding, min-cut can be achieved for all the sinks
simultaneously. Koetter and Medard [4] showed an easy
algebraic way in which this can be done. Let us revisit
the butter°y example with single source s and two sinks
t1 and t2 as shown in Figure 9a. Since there are two sinks
in this network, we will have two input-output relations,

[Z1(1) Z1(2)] = [X(1)X(2)] A[I + F + F 2 + F 3] B(1);

[Z2(1) Z2(2)] = [X(1)X(2)] A[I + F + F 2 + F 3] B(2):



615RESONANCE  July 2010

GENERAL  ARTICLE

Figure 9. Menger’s theo-

rem applied to the butterfly

network:Two edge-disjoint

paths from the source to

each sink. All edges have

capacities of 1 symbol per

unit time.

(a)

(b)

(c)

For source s to be able to deliver 2 symbols per unit
time to both the sinks t1 and t2, both the matrices
A [I + F + F 2 + F 3] B(1) andA [I + F + F 2 + F 3] B(2)

need to be full rank. An interesting way of looking
at these determinants is to treat them as polynomials
with the entries ®(i; ej); Á(ei; ej); ¯(1)(ej; i); ¯(2)(ej ; i)
of the matrices A;F;B(1); B(2) respectively as the vari-
ables. Showing that these determinants are non-zero is
equivalent to showing that the respective polynomials
are non-zero polynomials.

Now, let us apply Menger's theorem to sink t1. Since
the min-cut between s and t1 equals 2, there are two
edge-disjoint paths from s to t1 as shown in Figure 9b.
As in the single sink example we just saw, there is an
assignment of 0 or 1 value to the variables ®(i; ej);
Á(ei; ej); ¯

(1)(ej; i) such that

A[I + F + F 2 + F 3]B(1) = I :

i.e.,

det
¡
A[I + F + F 2 + F 3]B(1)

¢
= 1 6= 0 :

Hence, viewed as a polynomial, det (A[I +F +F 2 +F 3]
B(1)) is a non-zero polynomial over Fq.

Similarly Menger's theorem when applied to sink t2 which
also has min-cut 2 (Figure 9b), says that there is an as-
signment of 0 or 1 value to the variables ®(i; ej); Á(ei; ej);
¯(2)(ej; i) such that

A [I + F + F 2 + F 3] B(2) = I ;

i.e.,

det
¡
A [I + F + F 2 + F 3] B(2)

¢
= 1 6= 0 :

Hence, det
¡
A [I + F + F 2 + F 3] B(2)

¢
is also a non-

zero polynomial over Fq. Thus, the product

det
¡
A [I + F + F 2 + F 3] B(1)

¢

¡ ¢

³ ´

£ det
³
A [I + F + F 2 + F 3] B(2)

´



616 RESONANCE  July 2010

GENERAL  ARTICLE

is also a non-zero polynomial.

Following is a lemma regarding non-zero polynomials
which is very useful.

Lemma 3.1 Let f(X1; : : : ; Xm) be a non-zero polyno-
mial over Fq with a degree at most d in any variable. If
q > d, there exists at least one assignment (µ1; : : : ; µm)
of the variables (X1; : : : ; Xm) such that

f(µ1; : : : ; µm) 6= 0:

The probabilistic form of this lemma is called the
Schwartz{Zippel Lemma.

Proof: The proof uses induction on the number of vari-
ables. The result is trivially true for m = 1. As-
sume that the result holds for m ¡ 1 variables. Then
f(X1; : : : ; Xm) can be regarded as a polynomial in (X2;
: : : ; Xm) with coe±cients that are themselves polyno-
mials in X1 over Fq. Each such coe±cient is of degree
d, and a value can be assigned to X1 such that at

least one coe±cient is non-zero. This gives a non-zero
polynomial in m¡ 1 variables of degree d.

Thus, if q > d, there exists an assignment of values to the
variables ®(i; ej); Á(ei; ej); ¯

(1)(ej ; i); ¯
(2)(ej; i) from Fq

such that the product of the polynomials evaluates to a
non-zero value. In this case, we see that there will be
an assignment of values to the variables such that both
determinants are non-zero, i.e., both sinks can recover
all the data. This ¯nally leads us to the basic theorem
of network coding, as stated below.

Theorem 3.2 Let q be a su±ciently large power of 2.
We treat a symbol over Fq as a unit of information. In
a directed, delay-free, acyclic graph, with single source
s and multiple sinks t1; t2; : : : ; tK and where all edges
have integral capacity, if the capacity of the min-cut from
source to each of the K sinks is at least ¹, then there







617RESONANCE  July 2010

GENERAL  ARTICLE

A data collector

(DC) which

downloads data

stored in any k out

of the n nodes

should be able to

reconstruct the

entire file.

When dealing with

such large

magnitudes of data,

achieving reliable

storage is a non-trivial

task. Another aspect

of any distributed

storage system is

handling failures of

storage nodes. When

a node fails, it is

replaced by a new

node by downloading

data from the existing

nodes.

exists a linear network solution that will deliver ¹ units
of information to each of the K sinks simultaneously.

4. An Application { The Distributed Storage
Problem

In a distributed storage system, the data of the order
of petabytes is stored across multiple nodes. Each data
centre runs up to the size of a warehouse! When deal-
ing with such large magnitudes of data, achieving re-
liable storage is a non-trivial task. Another aspect of
any distributed storage system is handling failures of
storage nodes. When a node fails, it is replaced by a
new node by downloading data from the existing nodes.
This amount of download consumes a large amount of
network bandwidth, and hence needs to be minimized.

Given below is a description of a problem in distributed
storage and how network coding can be used to solve
this.

4.1 The Problem

A ¯le of size B is to be stored in a distributed manner
across n storage nodes, each having a storage capacity
of ® units of data (symbols). Each symbol belongs to
a ¯nite ¯eld Fq of size q. A data collector (DC) which
downloads data stored in any k out of the n nodes should
be able to reconstruct the entire ¯le. Hence each node
needs to store at least B=k symbols. We consider the
setting in which each node stores this minimum amount
of data, i.e.,

® = B=k :

k out of the n nodes are systematic, i.e., store data in
uncoded form. A data collector connecting to these k
nodes obtains uncoded data without any need for further
computation. Hence any data collector would preferably
connect to these k nodes. When a systematic node fails,



618 RESONANCE  July 2010

GENERAL  ARTICLE

We now present

the distributed

storage problem

as an instance of a

non-multicast

network coding

problem in which

the graph of the

network is

directed, delay-

free and acyclic.

Figure 10. An example of

reconstruction and regen-

eration in a n = 4, k = 2

distributed storage system.

the new node replacing the failed node is permitted to
download ¯ symbols each from the n¡ 1 existing nodes
in order to obtain (and store) the same data that the
failed node had stored. This is termed as exact regener-
ation. Figure 10 shows reconstruction and regeneration
operations in a distributed storage network with n = 4
and k = 2.

The amount of download (= (n¡ 1)¯) during repair of
a failed node is termed as repair bandwidth. The repair
operation consumes a lot of network bandwidth, and
also since repair needs to be done fast, it is of great
interest to reduce the repair bandwidth of the systematic
nodes.

In the subsequent sections, we will formulate this prob-
lem as a non-multicast network coding problem. We
will derive a min-cut bound, and provide codes which
achieve this min-cut.

4.2 As a Non-Multicast Problem

We now present the distributed storage problem as an
instance of a non-multicast network coding problem in
which the graph of the network is directed, delay-free
and acyclic.

The network is viewed as having k source nodes, each
corresponding to a systematic node and generating ®
symbols each per unit time. The non-systematic nodes



619RESONANCE  July 2010

GENERAL  ARTICLE

Figure 11. Part of the

multicast network of the

general distributed storage

problem. Unmarked edges

have capacity .

are simply viewed as intermediate nodes. Since it is
possible to store only ® symbols in a non-systematic
node, this is taken care of in the graph by (i) splitting
each non-systematic node, say node m, into two nodes:
min and mout with an edge of capacity ® linking the
two with (ii) all incoming edges arriving into min and
all outgoing edges emanating from mout. Since a non-
systematic node can store any linear combinations of the
source data, each non-systematic node is connected via
® capacity edges to every systematic node. This way of
representing a storage node was introduced in [5].

The sinks in the network are of two types. The ¯rst type
correspond to data collectors which connect to some col-
lection of k nodes in the network (with ® capacity links)
for the purposes of data reconstruction. Hence there

are
¡n
k

¢
sinks of this type. The second type of sinks rep-

resent a new node that is replacing a failed systematic
node. Sinks of this type are assumed to connect to the
remaining n ¡ 1 nodes with links of capacities ¯ each.
Hence there are k sinks of this type.

Figure 11 shows a part of the network for the general
problem, and depicts one of the DCs which connect to
some k nodes, and a new node corresponding to failure
of the ¯rst systematic node. A sink representing a new
node on failure of node i is denoted as i0.



620 RESONANCE  July 2010

GENERAL  ARTICLE

The edges in the

cut consist of the

n – k edges from

the non-systematic

nodes to 1', each

of which have a

capacity of 

symbols.

4.3 The Min-Cut Bound

Recall that a cut is a partition of the nodes into two
sets. In the non-multicast setup, a cut needs to have at
least one source node on the source-side of the cut whose
corresponding sink lies on the sink-side. Consider the
cut with nodes 10; 2; : : : ; k on the sink-side of the cut,
and the remaining nodes on the source-side. Since sink
10 is on the sink-side with its corresponding source 1 on
the source-side, the ® units of information from source
1 need to pass through the cut. The edges in the cut
consist of the n¡k edges from the non-systematic nodes
to 10, each of which have a capacity of ¯ symbols. Thus
we need

(n ¡ k)¯ ¸ ® :

Rewriting this equation, we get a bound on ¯ as

¯ ¸
®

n¡ k
:

In the next section, we will demonstrate codes which
actually achieve this bound on ¯, hence also showing
that this is indeed the min-cut.

4.4 Solution to this Network

In this section we will provide a solution to the distrib-
uted storage problem for the parameters (n = 4; k =
2; B = 4). Interested readers can refer to [6] for a solu-
tion for the general parameters.

The network corresponding to this set of parameters is
shown in Figure 12. These parameters force ® = B

k
= 2,

and to achieve the cut-set bound we set ¯ = 1. Let all
symbols belong to the ¯nite ¯eld F5. Let the two source
symbols produced by the ¯rst source be x1 and x2, and
the two source symbols generated by the second source
be y1 and y2. The code is as follows.

The ¯rst non-systematic node stores the two symbols



621RESONANCE  July 2010

GENERAL  ARTICLE

Address for Correspondence

K V Rashmi, Nihar B Shah

and P Vijay Kumar

Department of Electrical

Communication Engineering

Indian Institute of Science

Bangalore 560 012.

Email:

rashmikv@ece.iisc.ernet.in

nihar@ece.iisc.ernet.in

vijay@ece.iisc.ernet.in

Figure 12. Complete network for the distributed storage problem for

n = 4, k = 2 and = 2. Unmarked edges have capacity = 2.

2x1 + 2x2 + y1 and x2 + 2y1 + 2y2. The second non-
systematic node stores 2x1+4x2+2y1 and x2+2y1+4y2.

The four symbols from any two nodes correspond to four
independent linear equations in four variables, which can
be solved to obtain values of the source symbols. Hence
reconstruction when a data collector connects to any two
nodes is satis¯ed.

For regeneration of the ¯rst systematic node, the other
three nodes pass their ¯rst symbols, namely y1, 2x1 +
2x2 + y1 and 2x1 + 4x2 + 2y1. On subtracting y1 from
the other two symbols passed, the new node can obtain
the values of 2x1 + 2x2 and 2x1 + 4x2. These are two
linearly independent equations in two variables, and can
be easily solved to obtain the values of x1 and x2. Thus
the ¯rst systematic node is exactly regenerated.

Similarly, for regeneration of the second systematic node,
each of the three existing nodes passes its second sym-
bols. In an analogous fashion, the new node can obtain
the symbols y1 and y2.

Thus this code achieves the cut-set bound for the net-
work, and we have an optimal (4; 2) exact regenerating
code for distributed storage.

Suggested Reading

[1] R Ahlswede, N Cai, S Y R Li,

and R W Yeung, Network in-

formation flow, IEEE Trans.

Inform. Theory, Vol.46,

pp.1204–1216, July 2000.

[2] S Y R Li, R W Yeung, and N

Cai, Linear network coding,

IEEE Trans. Inform. Theory,

Vol.49, p.371, Feb.2003.

[3] PritiShankar,Decoding Reed

Solomon Codes Using Euclids

Algorithm, Resonance,

Vol.12, No.4, 2007.

[4] Ralf Koetter and Muriel

Medard, An algebraic ap-

proach to network coding,

IEEE/ACM Transactions on

Networking , Vol.11 No.5,

pp.782–795, Oct. 2003.

[5] A G Dimakis, P B Godfrey,

M Wainwright and K Ram-

chandran, Network Coding

for Distributed Storage Sys-

tems, Proc. IEEE INFOCOM,

2007.

[6] N B Shah, K V Rashmi, P V

Kumar and K Ramchandran,

Explicit codes minimizing re-

pair bandwidth for distrib-

uted storage, Proc. Informa-

tion Theory Workshop, Cairo,

January 2010.




