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Abstract. For constructing unramified coverings of the affine line in characteristic p, a general
theorem about good reductions modulo p of coverings of characteristic zero curves is proved.
This is applied to modular curves to realize SL(2, Z/nZ)/{ + 1}, with GCD(n, 6) = 1, as Galois
groups of unramified coverings of the affine line in characteristic p, for p=2 or 3. It is
applied to the Klein curve to realize PSL(2,7) for p=2 or 3, and to the Macbeath curve
to realize PSL(2,8) for p= 3. By looking at curves with big automorphism groups, the
projective special unitary groups PSU(3,p") and the projective special linear groups
PSL(2,p") are realized for all p, and the Suzuki groups $z(22**!) are realized for p=2.
Jacobian varieties are used to realize certain extensions of realizable groups with abelian
kernels.
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1. Introduction

In characteristic zero, the affine line is simply connected and therefore has no nontrivial
unramified covering. In characteristic p > 0, however, only the prime-to-p part of its
algebraic fundamental group is isomorphic to the prime-to-p part of the algebraic
fundamental group of the corresponding characteristic zero curve and hence trivial.
Its p-part, however, is nontrivial; in fact by a conjecture of Abhyankar [A03] it should
be as nontrivial as can be: Every group which is generated by its p-Sylow subgroups
should occur as a Galois group of an unramified covering of the affine line. Such groups
are called quasi p-groups.

- In the last few years, in support of this conjecture, several quasi p-groups have
been realized as Galois groups of unramified coverings of the affine line in
characteristic p; see [A10] to [A16], [AOS], [APS], [AYi], [Nor], and [Se2]; for a
summary see [A14] to [A16]. It may be noted that the above quasi p-group conjecture
is a special case of Abhyankar’s general conjecture [A03] according to which the
algebraic fundamental group n,(C,,,) coincides with the set of all finite groups G
for which G/p(G) is generated by 2g + w generators where p(G) denotes the subgroup
of G generated by all of its p-Sylow subgroups. Here C, , = C,\{w + 1 points} where
w is a nonnegative integer and C, is a nonsingular projective curve of genus g over
an algebraically closed field of characteristic p. Recall that n,(C, ) is defined to be
the set of all finite groups which can be realized as Galois groups of unramified
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coverings of C_ . Thus, upon letting <, = the affine line over an algebraically closed
field k of characteristic p, and Q(p) = the set of all quasi p-groups, the quasi p-group
conjecture predicts that: n,(=/}) = Q(p).

One aim of this paper is to construct unramified coverings of the affine line for o

some more quasi p-groups, mostly for simple groups or for groups which are closely
related to simple groups. Note that a simple group is a quasi p-group iff its order is
divisible by p, because then the p-Sylow subgroups generate a nonidentity normal
subgroup.

A possible technique for doing this is the following: Having realized a group G of
the type we are interested in as an automorphism group of an algebraic curve & in
characteristic zero, we consider a reduction 2’ of £ modulo p. Briefly speaking, the
curve Z can be given by various sets of polynomial equations with integer coefficients,
and the curve Z” over the finite field GF(p) is obtained by reducing the coefficients
of a suitable set of equations of Z modulo p. To compare the Galois theories of Z
and Z” we regard them as the generic and special fibers E; and 3(T) of an arithmetic
surface E fibered over a discrete valuation ring T. At any rate, if Z” is irreducible and
the quotient 27/G is the projective line then the quotient map Z'—=2'/G is a first
candidate for the type of covering we are looking for, and we try to remove unwanted
ramification points using Abhyankar’s Lemma. In §2 we prove a general theorem
(2.4) of this type, which (supplemented by (2.6)) is a principal result of this paper,
and which briefly says that the prime-to-p parts of the ramification exponents of
those point of the generic fiber which specialize to a given point of the special fiber
are pairwise coprime and their product is the prime-to-p part of the ramification
exponent of the given point of the special fiber, whereas the p-parts of the ramification
exponents can (and often will) increase. In § 1 we prepare the ground work for this;
in particular, Proposition (1.4) is a local version of Theorem (2.4). In Remark (2.7)
of §2 we give necessary conditions for a characteristic zero curve  to have a good
reduction modulo p, i.e., briefly speaking, for the existence of equations for 2 which
when reduced modulo p give a nonsingular irreducible curve.

In §3 we apply the general theorem to modular curves to get SL(2,Z/nZ)/{ £ 1}
with GCD(n, 6) = 1 for p =2 or 3, where by “get” we mean “realize as Galois groups
of unramified coverings of the affine line”; see (3.2). Likewise, in §4 we apply the
general theorem to the Klein curve and the Macbeath curve to get PSL(2,7)forp=2
or 3 and PSL(2,8) for p = 3; see (4.1.1) and (4.1.2); the Macbeath case was also done
by Serre [Se5] and [Se6]. Note that the Klein curve and the Macbeath curve are
curves of genus g =3 and g = 7 in characteristic zero with automorphism groups of
order 84(g— 1) which is maximum possible by Hurwitz’s Theorem. In §4 we also

discuss the fact that, as discovered by Leopoldt [Leo], Stichtenoth [Sti] and Henn

[Hen], automorphism groups of curves in positive characteristic can be much bigger
than in characteristic zero, and by directly applying Abhyankar’s Lemma to some
of these curves with big automorphism groups we get the projective special unitary
group PSU(3,p") and the projective special linear group PSL(2,p”) for every p and
the Suzuki group Sz(2>**1) for p =2, where v is any positive integer; see (4.2.1) to
(4.2.3); other methods of getting PSL(2, p*) can be found in [A10] and [A16], and
other methods of getting PSU(3, p*) and Sz(22'*!) were indicated by Serre in [Se3].
In (5.3) of § 5, by using Jacobian varieties we show that given any Gen,(L,), for every
positive integer [ 0(p) and for infinitely many positive integers y, some extension of
G with kernel (Z/IZ)*" belongs to m,(L,); in some sense, this may be regarded as a
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special case of Serre’s recent result [Se2] according to which every quasi-p extension
of G with solvable kernel belongs to m,(s7;); the special case is also indicated in
Serre [Se4]. Finally, in §6 we pose some problems.

1. Some lemmas from local algebra

Geometric outline: Let T be a discrete valuation ring with quotient field k*, and let
k' be the residue field of T, i.e., k' = T/M(T) where M(T) is the maximal ideal in T.
Usually, the characteristic of k* will be zero and the characteristic of k¥’ will be p > 0;
for instance T could be the localization of Z at prime p. Let Z — %, be a covering of
curves over k* and let 2" — %', be the covering of curves over k’ obtained by reducing
it modulo p; we shall be mostly interested in the case when %'y and %', are the projective
lines 2L, and 2., over k* and k' respectively. To compare the Galois theories of these
two coverings, we regard & and % as the generic and special fibers E; and 3(T%) of
an arithmetic surface E over T, (where 3(Tg) is the zero-set of the ideal Ty which
will be defined in §2). To visualize the surface E geometrically, as a first shot, we may
think of it as consisting of two nonintersecting vertical curves, the generic fiber E; on
the left, and the special fiber 3(T) on the right. Now it is not easy to compare the
two curves E;-and 3(T) when they are sitting isolatedly without any intermediaries
between them. So we replace every point of the generic fiber E; by a horizontal curve
meeting the special fiber 3(T) in the corresponding point. But remember that many
points on the characteristic zero curve have the same reduction modulo p; for example
the points x=1, p+ 1, 2p + 1,... are all reduced to the point x = 1. Thus, whereas
a point of E; uniquely determines its reduction on 3(Tg), many horizontal curves
are going to meet at a common point Q on the special fiber; indeed infinitely many!
So the correspondence between E; and 3(Tg) is infinite to one, and that is why it
is difficult to draw a good geometric picture.* At any rate, 2, and Z';, may also be
regarded as the generic and special fibers of an arithmetic surface D over T, giving
us a covering of surfaces E— D. Postponing the global comparison of the Galois
theories of  and 2’ to §2, here we study the matter locally. To do this, choose a
point P of 3(Tp), let R be the local ring of P as a point of D, and let B be the
semilocal ring of its inverse image on E. Also let ® and U be the localizations of B
and R at the prime ideals in them generated by M(T). Note that then ® and U are
the local rings of 3(T%) and 3(Tp) on E and D respectively. In any case © is a discrete
valuation ring whose quotient field L coincides with the function field of %, i.e., with
the function field of E, and likewise U is a discrete valuation ring whose quotient
field K coincides with the function field of &, i.e., with the function field of D. Note
that if Q lies above P then the local ring S of Q on E is the localization of B at a
maximal ideal, and ©® together with the local rings (on E) of the infinitely many
horizontal curves meeting in Q are exactly all the localizations of S at its nonzero
minimal prime ideals and, by one of Krull’s many theorems, S (being normal) coincides
with their intersection; so the geometry of infinitely many curves meeting in a point
is reproduced algebraically. Finally let K’ and L’ be the residue fields of U and ©

*The other difficulty, namely the fact that only one curve passes through a poiht of the generic fiber,
can be mollified by thinking of the generic fiber as a very fat curve whose points are so fat that, like the
germs of analytic functions, each of them uniquely determines a curve passing through it.



[ e g i ST I e TS AR, ——

106 Shreeram S Abhyankar et al

respectively. Then by reducing R and B modulo p, i.e., by taking their images under
‘the maps U— K’ and ® — L', we get the local ring R’ of P on &' o and the semilocal
ring B’ of its inverse image on Z". All this may be schematically depicted in the @
following diagrams, where we note that the second column in the right-hand diagram
starting with @ does not correspond to the second column in the left-hand diagram
starting with E; but it corresponds to the fourth column in the left-hand diagram
starting with 3(7T%).

S et

Z=E;—E<3(Ty)= %' L~®«B—-B L
Vo 1 l [
Zo=Dr—D3(T))~ X, KeU«—Ro>R K
I | | [
k¥*=k* T k' =k k¥*—T=T-k =k

Actually, in this section we are only concerned with the right-hand diagram. To
recapitulate, B and B’ are corresponding “semilocal pieces” of an arithmetic surface y
E and its special fiber 3(T) whose local ring is ®, and we want to relate the Galois }
theory of the points of B with the Galois theory of the points of B'; we do this by e
interposing the Galois theory of the above mentioned “horizontal curves” passing ;
through the points of B; these horizontal curves correspond to those points of the |
generic fiber E; of E whose specializations are the points of B, ie., which when
reduced modulo p give the points of B'. At any rate, we start with three preparatory
Lemmas (1.1) to (1.3), and then we prove the main resuit of this section in Proposition
(1.4), which, briefly, says that the prime-to-p parts of the ramification exponents of
those point of the generic fiber which specialize to a given point of the special fiber
are pairwise coprime and their. product is the prime-to-p part of the ramification
exponent of the given point of the special fiber, whereas the p-parts of the ramification
exponents can (and often will) increase. In Lemmas (1.1) and (1.2) we deal with certain
localized versions of Proposition (1.4); these localized versions remain valid in higher
dimensions. In Lemma (1.3) we give a sufficient condition for two curves on a surface
to meet transversally. All this is put together in Proposition (1.4). Then in Proposition
(1.5) we recall some properties of prime divisors of second kind, and in Corollary
(1.6) we deduce some of their consequences. In particular we shall see that D, ~ P
implies 3(Tp) ~ #;. and that both the lines have a common “coordinate”. First let
us fix some algebraic terminology.

Algebraic terminology: We shall use the terminology of quadratic transformations as
given in [AO1], the terminology of Galois theory as given in Chapter 1 of [A04],
and the terminology of models as given in §2 and §3 of [AO7] and §1 and §6 of
[AO8]. In particular, B(A) stands for the set of all localizations of a domain A4 with
respect to the various prime ideals in 4. The maximal ideal in a local ring R is
denoted by M(R). A ring 4 (always commutative with 1) is said to be pseudogeometric
if 4 is noetherian and, for every domain which is a homomorphic image of A, we
have that its integral closure in any finite algebraic field extension of its quotient field
is a finite module over it. A noetherian domain A4 is said to be regular if all members
of B(4) are regular. By a DVR we mean a discrete valuation ring. For Ve B(R) where
Ris a local domain, V has a simple point at R means the local domain R/(M (V)N R)
is regular; if ¥ is a DVR and R is regular then this is equivalent to saying that
M(V)nR ¢ M(R)>. By a prime divisor of second kind of a regular local domain R we
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mean a DVR which birationally dominates R and for whose residual transcendence
degree § over R we have 6 >(dimR)—1 [and hence § =(dim R)—1]. Note that
birationally dominates means dominates and has a common quotient field. Given a
local domain U and a subring 4 of U, by a residual transcendental generator of U
over A we mean an element x of U (if it exists) su~h that upon letting w:U — U/M(U)
to be the canonical epimorphism and k = the quotient field of w(A4) we have that
w(x) is transcendental over k and U/M(U) = k(w(x)).

Given a normal local domain R and a finite algebraic field extension L of the
quotient field K of R, by an extension of R to L we mean a localization of the integral
closure of R in L at a maximal ideal; note that then R has at least one and at most
a finite number of extensions to L; R is said to be split or unsplit in L according as
it does or does not have more than one extension to L. An extension S of R to L is
said to be naively unramified over R if M(R)S = M(S); R is said to be naively unramified
in Lif every extension of R to L is naively unramified over R; S is said to be unramified
over R if it is naively unramified and residually separable algebraic over R; R is said
to be unramified in L if every extension of R to L is unramified over R; ramified means
not unramified. If R is a DVR then, for any extension S of R to L, by the ramification
exponent (resp: reduced ramification exponent) of S over R we mean the ramification
exponent (resp: reduced ramification exponent) of ordg over ordg, where we note
that the ramification exponent divided by the reduced ramification exponent equals
the residual degree of inseparability of S over R, ie., equals 1 or [S/M(S):R/M(R)];
according as the characteristic of R/M is zero or not; § is said to be tamely ramified
over R if the ramification exponent of S over R equals its part which is prime to the
residue characteristic of R, where by the residue characteristic of a local ring we mean
the characteristic of its residue field, and for w=0 or a prime number, by the part
of a positive integer which is prime to w we mean the largest factor of that integer
which is nondivisible by w; finally, R is said to be tamely ramified in L if every extension
of R to L is tamely ramified over R. Note that if R is a DVR and L/K is normal
then the ramification exponents (resp: reduced ramification exponents, their parts
prime to the residue characteristic of R) of the various extensions of R to L coincide
with each other. For a finite normal algebraic field extension L/K, as in the Galois
(= finite normal separable algebraic) case, by the Galois group of L over K we mean
the group of all K-automorphisms of L and we denote it by Gal(L, K).

Note that for any normal noetherian domain 4, say because of Krull’s Diskriminan-
tensatz (see pages 32 to 34 of [A04]), at most a finite number of DVRs in B(4) can
be ramified in any given finite separable algebraic field extension of the quotient field
of A. This observation, as well as other basic results from the Galois theory of local
rings, as given in Chapter 1 of [A04] and Chapter V of [ZSa], may be used tacitly.

Lemma 1.1. Let K = L* = L be fields such that L/L* is a finite algebraic extension
and L*/K is a cyclic Galois extension whose degree is coprime to the degree of L/L*.
Let d be a positive integer and let R and S be d-dimensional pseudogeometric regular
local domains with quotient fields K and L, respectively, such that S is integral and
residually rational over R. Assume that L* # K and [L*:K] is a power of a prime
number which is nondivisible by the characteristic of R/M(R). Then B(R) contains
exactly one DVR V which is ramified in L*. Moreover V is totally ramified in L*, i.e.,
it has a unique extension to L* and its reduced ramification exponent equals [L*:K].
Finally, if V has a simple point at R, then for every field K* with K < K* < L* we
have that S~ K* is a d-dimensional regular local domain. ‘
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Proof. Briefly speaking, this follows by extending residue fields, passing to
completions, and using standard tricks about Kummer extensions of UFDs as
employed in [A02]. In greater detail we may proceed thus.

Let [L*:K] = u. By assumption u = w® where e is a positive integer, and w is a
prime number which is nondivisible by the characteristic of R/M(R). Let {,, and ¢,
respectively be primitive wth and uth roots of 1 in an overfield of L. Likewise let {/,
and { respectively be primitive wth and uth roots of 1 in an overfield of R/M(R).
Since L*/K is cyclic, there is a unique field L¥ with K < L¥ < L* such that L#/K is
cyclic of degree w.

Let [K({,):K]=w* Then w* <w and K({,)/K is an abelian Galois extension.
Therefore the fields L* and K ({,,) are linearly disjoint over K, and hence L#({ W)/K(Cw
and L¥*({,,)/L* are abelian Galois extensions of degree w and w* respectively. Let R¥,
R%,...,R¥be the distinct extensions of R to K ({,,), and let [(R/M(R))(¢.):(R/M(R))] = W,
Smcc w 1s a prime number which is nondivisible by the characteristic of R/M(R), it
follows that the Y-discriminant of the polynomial Y™ —1 is a unit in R. Therefore
yw'=w* and for 1<i<y we have that R# is unramified over R and
[R¥/M(R#*):R/M(R)] =w, and hence in partlcular R* is a d-dimensional regular
local domain. Let S#= S L*. Then S* is the unique extension of R to L*. Since S*
is residually rational over R, it follows that S¥ has exactly y distinct extensions
S%,8%,...,8% to L*({,), and for 1 <i<y we have that §% is unramified over $* and
[S#/M(s#) S#/M(S#)] w'. Since S* is integral over R, the local rings §%,5%,..., 5%
can be labelled so that S¥ is integral and residually rational over R¥ for 1 <i < y
Since L*((,)/K(,) is cychc of degree w, we can write L*(,)= K (¢.,)(z) with
0#£2"eK((,,). Since R# is a UFD, upon dividing z by a suitable element in R we
can arrange matters so that z*=¢zf' 262 ... 2% where B; is a positive mteger
nondivisible by w for 1 <i<a, the ideals z, R# z,R¥...z R¥ are pairwise distinct
prime ideals in R¥, and ¢ s a unit in R*.Ifu were equal to Zero then the Y-discriminant
of the polynomial Y* — z* would be a unit in R¥ and hence the sum of the separable
parts of the residue degrees of the various extenswns of R¥ to L*({,,) would equal
w, and this would be a contradiction because S* is the only extensmn of R* to L*(¢,,)
and it is residually rational over R# Therefore we must have a #0. Let V be the
localization of R at the prime ideal (le#)nR

Now clearly V'is a DVR in 8B(R) which is ramified in L*. Since L*/K is cyclic of
prime power degree nondivisible by the characteristic of R/M(R), it follows that V
is totally ramified in L*, i.e., it has a unique extension to L* and its reduced ramification
exponent equals [L*:K].

Let [K({,):K] =u*. Then u* <u and K({,)/K is an abelian Galois extension. Since
V is totally ramified in L* and the Y-discriminant of the polynomial Y* — 1 is a unit
in R, we see that the fields L* and K({,) are linearly disjoint over K. Therefore
L*(,)/K({,) and L*({,)/L* are cyclic and abelian Galois extensions of degree u and
u* respectively. Let Rl,Rz,...,R,, be the distinct extensions of R to K({,), and let
[(R/M(R))(C,):(R/M(R))] =u'. Then hu' = u* and for 1<i<h we have that R, is
unramified over R and [R;/M(R;):R/M(R)] =, and hence in partlcular R;is a
d-dimensional regular local domain. Let S* = S~ L* Then §* is the unique extension
of R to L*. Since S* is residually rational over R, it follows that S* has exactly h
distinct extensions S¥,S%,...,S* to L*((,), and for 1<i<h we have that SF is
unramified over §* and [S*/M (8¥):S/M(S)] =u'. Since S* is integral over R, the
local rings S1.8%,..., 8y can be labelled so that S* is integral and residually rational
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over R, for 1<i<h. Since L*((,)/K((,) is cyclic of degree u, we can write
L*(,) = K(£,)(y) with 0 # y*e K ({,). Since R, is a UFD, upon dividing y by a suitable
element in R, we can arrange matters so that y* = dy5y3*--- )% where b; is a positive
integer nondivisible by u for 1 <i<a, the ideals y; R;,y,Ry,...,y,R, are pairwise
distinct prime ideals in R,, and 6 is a unit in R,. Since V is ramified in L*, we must
have a#0 and upon labelling the elements y;,y,,...,, suitably we can arrange
matters so that V' be the localization of R at the prime ideal (y, R;)nR. Since V is
totally ramified in L*, we must have GCD(by,u) =1. :
 Now the Y-discriminant of the polynomial Y*—11isa unit in R as well as S, and
hence the sum of the separable parts of the residue degrees of the various extensions
of R to K(Z,) (resp: S to L({,)) equals the field degree [K((,):K] (resp: [L(C,): L)
since S is the unique extension of R to L and it is residually rational over R, by
equating the double sum from R to L({,) via L with the double sum from R to L({,)
via K (¢,) we see that [L({,): L] > [K((,):K]; therefore [L((,): L] = [K(,):K] and the
fields L and K({,) must be linearly disjoint over K; (this also gives an alternative
proof of linear disjointness in the above two situations). It follows that L({,)/L*({,)
is a finite algebraic field extension and L*({,)/K({,) is a cyclic Galois extension of
degree u which is coprime to the degree of L((,)/L*({,). Moreover, S has exactly h
distinct extensions S, S5, ..., S, to L({,), and for 1 <i< h we have that §, is unramified
over S and [S;/M(S,):S/M(S)]=u/, and hence in particular S; is a d-dimensional
regular local domain. Finally, the local rings S;,S,,..., S, can be labelled so that §;
is integral and residually rational over §¥ for 1<i<h. ‘

_ Let R,, §’f and S, be the respective completions of R;, ST and S;. Then R, and
S, are d-dimensional regular local domains, and hence they are integrally closed in
their respective quotient fields K, and L,. In view of (37.8) on page 140 of [Nag] we
see that §’{‘ is also a d-dimensional local domain which is integrally closed in its qllotiegt
field I:’f In vichof (10.13) on page 243 of [A08] we may assume that R; < S¥cS§,
and K, c L* = L,, and then in view of standard properties of completions as given
in §2 to §6 of Chapter VIII of [ZSa] we see that: L, /L} is a finite algebraic field
eXthsion with [L, :f,’{:l = [L:L*]; I:’f /K, is a cyclic Galois extension of degree u = w*
which is coprime to [L;:L*]; e is a positive integer and w is a prime number which

“is nondivisible by the characteristic of R,/M (R,); 5’{‘ and S, are the unique extensions

of ﬁl to I:’; and L, respectively; §1 is residually rational over R;; and I:f =K,
By (36.4) and (36.5) on page 132 of [Nag], for 1gi<a we have y; = 8i¥irYiz Vi,
where v; is a positive integer, the ideals y;, Ry, ;. Ry Vi, Ry are pairwise distinct
prime ideals in R,, and §; is a unit in R,. Taking a factorization of y in the UFD

Sy raising it to the uth power, and then comparing the two factorizations of y* in

R,, we get &} iPiY?i with &,eS, and pie§1\lA\/I(§1) for 1 <i<a. Since S, is residually

rational over R,, we can find a unit.g; in R, with p; — ;€M (S,) for 1<i<a. For
1 <i<a we can take an element 7; in an overfield of L, such that t; = g;.
Let K, =R,(1;,...,7,), L¥=L*(ty,...,7,) and L, = L, (zy,..., 7o) Let R, and S,

-~

be the integral closures of R, and S, in K, and L , respectively. Now the Y-discriminants

~ of the polynomials .Y*—g,,..., Y*— 0, are units in R,, the local rings R, and S,

"~

are d-dimensional complete regular local domains, and S, is residually rational over
R; therefore: the fields L, and K, are linearly disjoint over the field K;; Ly/L*isa
finite algebraic field extension with [L,:L*]= [qui L*]; L*/K, is a cyclic Galois
extension of degree u = w® which is coprime to [L,:LT]; eis a positive integer and
w is a prime number which is nondivisible by the characteristic of R;/M(R,); R,
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and 8, are d-dimensional regular local domains with‘respeCtiVe _quotu—:nt ﬁe}ds K,
and L, such that §, dominates and is integral and residually rational over R,; the
ring R, contains ¢, which is a primitive uth root of 1; and y,; Ry, ¥, Ry, 9, R,
are pairwise distinct prime ideals in R,. Upon letting w;:S; —8,/M(S,) to be the
canonical epimorphism, for 1 <i<a, the polynomial Y* — @, (p;) complete’ly factors
in w1(5‘ 1)[ Y] into pairwise distinct monic linear factors and hence by Hensel s ngmr_na
we get i = p, for some 8 ; therefore upon letting 7; = &;/u; We obtain n; =y with
n:€8,; since u/[GCD(u, b;)] #1 = GCD(y, [lei,’l“]), we must have meL’l".‘ Uppn
letting A=1I, <i<oW/[GCD(u, b;)] we clearly have: a;évl¢>/1>u. By c;onsxc%erlng
ramification of the DVRs obtained by Iocaliziglg "R, at thev prime ideals
y11R1=y21R1,...,ya1.R1, we see that [K, (1,,...,7,):K;] =4 Since [L¥:K;]=u, we
must have a = 1. Therefore V is the only DVR in B(R) which is ramified in L*.

Now it only remains to show that, assuming V to have a simple point at R and
given any field K* with K < K*< L*, the local ring SNK* is regular. Since
GCD(u,b,) =1, we can find positive integers b, and u, such that byb, —ugu =1,
and upon letting y* = y*°/)% we get L* = K (y*) and y** = 6*y, with 6*eR,\M(R,).
Let [K*:K] =4 and j= y*“/% Then i=w’ with nonnegative integer < e and we
have K*({,) = K(£,)() with "= 6*y,. Let R* = S~ K* and RY=8FTnK*(,). Then
R* and Rf are the unique extensions of R and R, to K* and K*({,) respectively, R*
is unramified in K*({,), and R* is an extension of R¥ to K*({,). Since V has a simple
point at R, we must have y, e M (R, )\M (R 1)?, and hence R¥ is a d-dimensional regular
local domain. Therefore the completion ﬁ’f of RY is a d-dimensional regular local
domain, and hence in particular ﬁ‘f is integrally clgsed in its quotient field K¥. In
view of {37.8) on page 140 of [Nag] we see that R* is also a d-dimensional local
domain which is integrally closed in its quotient field K*. In view of (10.13) on page
243 of [A08] we may assume that R* = ﬁ’f and K* K’l", and then in view of standard
properties of completions as given in §2 to §6 of Chapter VIII of [ZSa] we see that:
Ii’f/ﬁ* s a finite algebraic separable field extension, R’; is the unique extension of
R* to K¥, R* is unramified in K%, and R¥ is regular. Now by Proposition 26 on
page 12 of [A06] we conclude that R* is regular. Therefore R* is regular, i.e., SN K*
is regular.

Lemma 1.2. Let K = L* = L be fields such that L/L* is a finite algebraic extension
and L*/K is a cyclic Galois extension whose degree is coprime to the degree of L/L*.
Let d be a positive integer and let R and S be d-dimensional pseudogeometric regular
local domains with quotient fields K and L, respectively, such that S is integral and
residually rational over R. Assume that L* #K and [L*:K] is nondivisible by the
characteristic of R/M(R). Then there is at least one and at most a finite number of
(pairwise distinct) DVRs V,, V,,..., V., in B(R) which are ramified in L*. Moreover,
upon letting r; to be the reduced ramification exponent of an extension of V;to L*, we
have that the integers r,,r,,...,r, are pairwise coprime and their product rir,---r,
equals [L*:K]. Finally, if for every field K* with K « K* < L* for which SNK* is
a regular local domain, and for every DVR V in B(SNK*) which is ramified in L*,
we have that V has a simple point at S~ K*, then Jor every field K* with K = K* = L*
we have that SNK* is a d-dimensional regular local domain, and if also L # L* then
some DVR in B(Sn L*) must be ramified in L.

Proof. We can take a factorization [L*:K] = wi‘wgz---wfcu with positive integers
€1, €,,...,e, and pairwise distinct prime numbers W1, Wa,...,w,. Since L*/K is cyclic,

|
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for 1 <v <y, there is a unique field L* with K = L¥ c L* such that [L}:K]=w{.
By Lemma (1.1) we have a surjective map y of the integral segment [1, 4] onto the
integral segment [1,m] such that, for 1<v<y, the DVR V), is totally ramified in
L¥* and the DVR V, is unramified in L} for every ie[1,m]\{y(v)}. Obviously
ri=I - oWy forl<i<m, and hence the integersr,,75,..., ", are pairwise coprime
and their productr,7,,...,r, equals [L*:K]. By induction on the sume; +e, + -+« + e,
we shall now prove the claim that if: (*) for every field K* with K « K* < L* for
which S~ K* is a regular local domain, and for every DVR V in B(S~ K*) which
is ramified in L*, we have that V has a simple point at SN K*, then: (') for every
field K* with K = K* = L* we have that SNnK* is a d-dimensional regular local
domain. If the sum is 1 then the claim follows from Lemma 1.1. So let the sum be
at least 2 and assume that the claim is true for all values of the sum smaller than
the given value. Also assume (*) and let there be given any field K < K* = L*. Now
if K* # L* then by the induction hypothesis it follows that S~ K* is a d-dimensional
regular local domain. On the other hand, if K* = L* then we can take a field K,
with K = K, < K* such that [K*:K,] is a prime number, and now by the induction
hypothesis we see that SN K is a d-dimensional regular local domain and hence by
Lemma 1.1 we conclude that SN K* is a d-dimensional regular local domain. This
completes the induction and hence proves the claim. Finally, continue to assume (*)
and also assume that L # L*; now by the claim we know that SN L* is regular and
hence by the purity of branch locus (see Theorem 41.1 on page 158 of [Nag]) we
conclude that some DVR in B(S~ L*) must be ramified in L. :

Lemma 1.3. Let R be a 2-dimensional local domain dominating a DVR T such that
R/M(T)R is regular. Then R is regular and upon letting U to be the DVR in B(R)
obtained by localizing R at M(T)R we have that U has a simple point at R, and for
every DVR V in B(R\{U} which is residually rational over T we have that {u,v}
has a normal crossing at R and hence in particular V has a simple point at R. Morever,
if there does exist a DVR in B(R)\{U} which is residually rational over T, then R
must be residually rational over T. :

Proof. Since T is a DVR, we have M(T)=tTfor some 0 #te T. By assumption R is
a 2-dimensional local domain dominating T such that R/M(T)R is regular; therefore
R/M(T)R must be a 1-dimensional regular local domain and hence its maximal ideal
is generated by the image of some 0 # yeM(R). Clearly M(R) =(y,)R and hence R
is regular; also M(U)n R = M(T) and hence U has a simple point at R. Given any
DVR V in B(R)\{U}, we have M(V)nR = zR for some ze M (R)\(tR). Now assume
that V is residually rational over T. Then, for any 7€R we can find n’ in the quotient
field of T such that n—#'eM(V). If ' ¢ T then there is a positive integer b such that
n'e T\M(T), and this gives t*n —t*'eM(V)nR = M(R) which is a contradiction
because #neM(R) and t*n'¢ M(R). Therefore n'e T and hence n—n'eM(V)nR =
(zR) = M(R); It follows that if neM(R) then n'eM(R)NT= (tR); consequently
(z,t)R = M(R) and hence {U, V} have a normal crossing at R and V has a simple
point at R. Since for every neR we have n —n'eM(R) with 'eT, we also see that R
is residually rational over T.

PROPOSITION 1.4.

Let R be a 2-dimensional regular local domain dominating a DVR T such that R/M (T)R
is regular, and let U be the DVR in B(R) obtained by localizing R at M (T)R. Let B
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be the integral closure of R in a Galois extension L of the quotient field K of R.

Assume that B/M(T)B is a regular domain, and let ® be the localization of B at the

prime ideal M(T)B. [Clearly then: ® is a DVR which is the integral closure of U in

L, and U is unsplit and naively unramified in L.] Let G and L respectively be the inertia

group and the inertia field of © over U, let $:©—~ L'=©/M(®) be the canonical

epimorphism let K'=¢(U) and L' = ¢(®) with © =OnL, and let k’=q§(T) and
= ¢(R) and B' = ¢(B).

[Clearly then (see Chapter 1 of [A04] and Chapter V of [ZSa]): M(®)nU = M(U)
and K'=U/M(U), M@)NT=M(T) and k'~ T/M(T); M(®)nR=M(T)R and

~ R/M(T)R; M(®)nB=M(T)B and B' ~ B/M(T)B; G is a normal subgroup of
Gal(L K) and L is the fixed field of G; the order of G equals 1 or a nonnegative
power of the characteristic of k" according as the said characteristic is zero or not;
U is unramified in I; L'/K’ is a finite normal algebraic field extension and ¢ induces
an epimorphism of Gal(L, K) onto Gal(L’, K') with kernel G; L'/L’ is purely inseparable
with [L:L']=[L: L] |Gl; L’/K’ is a Galois extension with Gal(L, K')~ Gal(L',K');
R’ is a DVR with quotient field K’ and subfield k’; and B’ is the integral closure of
R in L'.]

Assume that every extension to L of any DVR in B(R)\{U}, which is ramified in L,
is residually rational over T. Let V,,V,,...,V,, be all the distinct DVRs in B(R)\{U}
which are ramified in L. For 1 <i<m, let r; be the ramification exponent of an extension
of V;to L, and let's; be the part of r; prime to the residue characteristic of T. Let r be
the reduced ramification exponent of an extension of R’ to L', and let s be the part of
r prime to the residue characteristic of T. Then we have the following.

Ifm=0then: R’ is unramzf edinL'. If m> 0 then: S1582,..-,8,, are pairwise coprime,
and their product s, 5s,;...,S,, equals s. If m> 0 then: R is reszdually rational over T,
and V; has a simple pomt at R for 1 <i<m. If m>0 then: R’ is residually rational
over k', and r/s = r;/s; for 1 <i<m. Finally, if m>0 then: r=s<L=L and r,=s,
for 1<igm.

Proof. Let §,,8,,...,S, be all the distinct extensions of R to L, i.e., the localizations
of B at its various maxnnal ideals. Note that M(T)B<= M(S;)nBfor 1<j< h and let
S’ be the localization of B’ at its maximal ideal ¢ (M (S;n B)). Then clearly §', oS,
are exactly all the distinct extensions of R’ to L. Let S’ S0 L for 1< J < h Then
S’ S’ S are exactly all the distinct extensions of R’ to L’ and for 1€j< h we
have that S’ is the unique extension of §' to L.

Forl1<j< < h,let G} and G be the splitting and inertia groups of §; over R and note -

that then Gf is a subgroup of Gal(L, K) and G is a normal subgroup of Gf, and let
K? and K7 be the splitting and inertia fields of S over R and note these are the fixed
ﬁelds of G° and G; respectively. Let ¢__ :Gal(L, K)-—»Gal(L’ K')and ¢ :Gal(L,K)—

gal®

Gal(L, K’) be the epimorphisms induced by ¢, and note that for everZ geGal(L, K) '

we have qbgal(g) Pa(9)] L', and for 1 <j<h we have ker(¢> ) =ker(,,) = Gc G;.

Again for 1 <j<h, let G and G" be the splitting and 1nert1a groups of S’ over R’ |

and note that then G"’ 1s a subgroup of Gal(L’,K’) and G;’ is a normal subgroup
of G"’ and let K" and K;’ be the splitting and inertia fields of S; over R’ and note
these are the fixed fields of G"’ and G” respectively. Now clearly Peu(G)) = G"’ and
ngal(G‘) = G" for 1<j<h.

Since U IS unramified in L, in view of (10. 13) of [A08] and (37.8) and (41. 4) of
[Nag] and §2 to §6 of Chapter VIII [ZSa], we see that if m=0 then Ki= L for
1 <j<h and hence G" for 1 <j < h, and therefore R’ is unramified in L’

. W4
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So henceforth assume that m>0. Then in view of Lemma (1.3) we see that
S,,S,,...,8,are residually rational over T, and hence R and R’ are residually rational
over T and k' respectively, and S;,S,,...,S, are residually rational over R, and
therefore G = G for 1 <j<h, and hence G;F = G;.‘ for 1 <j < h. By Lemma (1.3) we
also see that V; has a simple point at R for 1 <i<m.

Since R’ is a DVR, for 1<j<h, the group @;’ has a unique (normal) p-Sylow
subgroup G* where p is the residue characteristic of T (take G7* =1 in case the residue
cllaracteristioof T is zero) and the factor group G}/G* s cyclic; now upon letting
K'* to be the fixed field of G}* we clearly have [L":. Ki]l=r and [L;.*: Ki]=s, and
hence upon letting L} to be the fixed field of qbg‘all (G7*) we see that: K < K{ =K}
L* < Lc L, the extension L¥/Kj is a cyclic Galois extension of degree s which is
nondivisible by the residue characteristic of T, and the extension L/LY is a Galois
extension of degree r/s where r/s equals 1 or a nonnegative power of the residue
characteristic of T according as the said characteristic is zero or not.

Upon letting R, = S; n K we have that R and R are d-dimensional regular local
domains such that R] is unramified and residually rational over R; for 1 <i<m, we
know that V, has a simple point at R and every extension of V; to L is residually
rational over 7T, and hence V; has a unique extension V] to Kj which belongs to
B(R?) and this unique extension V7 is unramified and residually rational over V;,
and therefore r; is the ramification exponent of every extension of ¥} to L, and s; is
the part of r; prime to the residue characteristic of T. Upon letting U} = @ " K7 we
see that U? is a DVR in B(RY), and V7,V5,...,V; are exactly all the DVRs in
B(R)\{U?} which are ramified in L; since U is unramified in L, we see that U7 is
unramified in L¥. ,

Upon relabelling V,, V,,..., V, suitably, we can arrange matters so that V7, V5,....V;
are ramified in L* and V', Vi ,,...,V} are unramified in L*. Now clearly
Syuq=Sy4,=""=35,=landfor1<i<nwehave that s; is the ramification exponent
of every extension of ¥} to L¥, and for 1 <i<m we have that r;/s; is the ramification
exponent of every extension of ¥} to L and hence r/s = 0(r;/s;).

If L¥=Kj then s=1 and n= 0, and hence obviously: the local ring §; "R is
regular, the integers s,,5,,...,S, are pairwise coprime, and their product s, s;:*Sp,
equals s. If L* K7 then by taking (K%, L¥, LR}, S,,n Vi, V5, V7,851,825 55)
for (K,L*,L,R,S,m, VisVaseros Vs F1sT2,---5 ) in Lemma (1.2) we see that: n>0,
the local ring §; N L* is regular, the integers 5;,53,-..,5, are pairwise coprime, and
their product s, s, ---s,, equals s. » ‘

Now it only remains to note that if L= Landr,=s; for 1 <i<mthen S;nL} is
a regular local domain with quotient field L}, S, is the unique extension if §; N L}
to L, S, is residually rational over S; n L}, and every DVR in B(S; n L¥)is unramified
in L, and hence, in view of (10.13) of [A08] and (41.4) of [Nag] and §2 to §6 of
Chapter VIII [ZSa], we must have L= LT and therefore r = s. ‘

The following proposition about divisors of second kind is proved in [AO1].

PROPOSITION 1.5.

Let U be a prime divisor of second kind of a 2-dimensional regular local domain R and
let R=R,cR, =R, - be the quadratic sequence along U. Then the residue field
of U is a simple transcendental extension of a finite algebraic extension of the residue
field of R and there is a unique positive integer s such that Ry # R, # Ry # R, =
U=R,,, =R, _,=.... Moreover, dimR,=2 for 1<i<s, and ordy(z) = ordy _ (2)
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for every element z in the quotient field of R. Finally, if M(R) = (xo, )R with ord,(t) = 1,
the residue field of R is relatively algebraically closed in the residue field of U, and t
is a coefficient set for R, then there exist unique elements ¢y, Ca,...,C; in  with ¢, =0
such that upon letting x;=x;_t ' —¢ for 1<i<s we have M(R;)=(x;,t)R; for
1 <i<s, and x4 is a residual transcendental generator of U over R.

As a consequence of the above Proposition (1.5) we have the following.

COROLLARY 1.6

Let U be a DVR dominating another DVR T such that: the quotient field K of U is
a simple transcendental extension of the quotient field k* of T, the residue field of U
is transcendental over the residue field of T, the residue field of T is relatively
algebraically closed in the residue field of U, and M(U)= M(T)U. Then K = k*(x)
for some x which is a residual transcendental generator of U over T. Moreover, Sor
every such x we have that U is the localization of T[x] at the prime ideal M(T) T[x].

Namely, by assumption M(T)=¢T for some ¢, and K = k*(x*) for some x*. Now
ord,(t)=1, and we can find an integer e such that e + ord,(x*)> 0. Let Xq =1°x%*,
let R be the localization of T[x,] at the prime ideal (xo,?) T[x,], and let f be a
coefficient set for 7. Then U is a prime divisor of second kind of the 2-dimensional
regular local domain R, and f is a coefficient set for R, and hence it suffices to take
x = x; with x; as in the above Proposition (1.5).

2. Specializations of coverings of the line

Referring to the preamble to § 1 for geometric outline, we want to compare the Galois
theories of the generic and special fibers of an arithmetic surface over a discrete
valuation ring. As remarked before, the correspondence between these two fibers is
infinite to one, which causes some difficulty in showing that different automorphisms
of the generic fiber induce different automorphisms of the special fiber. Assuming the
genus to be at least two, this is overcome by passing to points of finite order of the
Jacobian varieties of the two fibers. In precise algebraic terms we proceed thus.

Let L/k* be a 1-dimensional function field, ie., Lis a field which is finitely generated
and of transcendence degree 1 over the subfield k*. Recall that for any subring k of
any field L, the Riemann—Zariski space R(L/) is the set of all valuation rings of L
which contain k. In our case, Le R(L/k*) and the members of R(L/k*)\{L} are DVRs
which are in 1-1 correspondence with the points of a nonsingular projective algebraic
curve over k*. More precisely, R(L/k*) is the unique nonsingular projective model
of L/k*; L is its generic point and all others are its closed points. So we may visualize
R(L/k*) as a (nonsingular projective algebraic) curve. Eventually we shall assume
that L/k* is regular (as a function field), ie., k* is relatively algebraically closed in L
and L is separably generated over k*.

Let T be a pseudogeometric DVR with quotient field k*; note that a DVR of
characteristic zero is automatically pseudogeometric. Eventually we shall assume that
the residue field of T is perfect; note that a finitely generated field extension of a
perfect field is automatically separably generated, and also note that a field of
characteristic zero is always perfect.

Let E be a projective model of L/T; for definition see page 27 of [A08]. Now
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dim E =2 and hence we may think of E as an arithmetic surface. Let Er be the set
of all those members of E which do not dominate T; obviously Er is a projective
model of L/k* and we call it the generic fiber of E over T. We shall only be interested
in the case when E is nonsingular; note that this is so iff Er = R(L/k*). Clearly there
is a unique ideal T on E such that for every SeE we have TS = M(T)S and for

every affine ring 4 over T with B(4) < E we have AN Ty = M(T)A; we call Tg the

ideal induced by T on E; for the definition of an ideal on a model see page 169 of
[AO8]. Note that E is the disjoint union of Ey and the zero-set 3(Tg). The zero-set
3(Tg) together with the ideal T may be called the special fiber of E at T; since we
are only interested in the case when the special fiber is reduced, i.., when its ideal
3(3(Tg), E) on E is equal to Ty, we may simply refer to 3(Tg) as the special fiber.
Note that if 3(Tj) is irreducible then its generic point is 1-dimensional and its
remaining points are exactly all the 2-dimensional members of E.

Henceforth assume that E is good (as a model of L/T), by which we mean that
3(Tg) is irreducible and nonsingular and for its ideal on E we have 3(3(Tx), E) = Tg.
In view of (1.3) we see that E is nonsingular, and hence in particular E = R(L/k*)
and the generic point ® of 3(T;) is a DVR dominating T. Also note that every
Se3(TE)\{®} is the intersection of all the DVRs in B(S). Let p:0 - L' =0O/M(O)
be the canonical epimorphism, and let k' = ¢(T). Now clearly L'/k' is a 1-dimensional
function field and S ¢(S) gives a bijection of 3(Tg) onto R(L'/k’). Some of the
things said so far may be depicted in the following diagram.

¢
L—®->L'
I

¢
k¥ T—k

Now let Div(L/k*) be the group of all divisors of L/k* which we regard as functions
R(L/k*)\{L} — Z with finite support, let Prin(L/k*) < Divy(L/k*) = Div(L/k*) be the
subgroups of principal divisors and divisors of degree zero respectively, and let
Jac(L/k*) be the factor group Div,(L/k*)/Prin(L/k*); likewise for L'/k’. By referring
to [Lam] for details, for WeR(L/Kk*)\{L} we get @, (W)eDiv(L'/k') by putting
6. (W)$(S) =0 if Se3(T\(O} is such that W¢B(S), and ¢, (W)($(S) =
ord s ¢(M(W)N S)if Se 3(T)\{®} is such that WeB(S), and we note that the degree
of ¢,,,(W) equals [W/M(W):k*]. In particular, for every WeR(L/k*)\{L} we have
WeB(S) for some Se3(Tg)\{®}, and hence the members of 3(Te)\{®} are exactly
all the closed points of E. By additivity this gives a degree preserving (group)
homomorphism ¢>div:Div(L/k*)—»Div(L’/k’). It is easily seen that ¢, preserves
principalness and hence it gives rise to a homomorphism ¢ :Jac(L/k*)—J ac(L'/k'").
For any positive integer v, this induces a homomorphism ¢, Jac™ (L/k*) -] ac(L'/K')
where Jac®(L/k*) and Jac®(L'/k') are the respective subgroups of Jac(L/k*) and
Jac(L'/k’) consisting all those points whose order divides v.

Henceforth assume that T/M(T) is perfect, some member of R(L/k*) is residually
rational over k*, and L is separably generated over k*; note that then L/k* and L'/k
are regular function fields. Under these conditions, by a result of Hironaka [Hir]
and Popp [Pop] we have the following.

PROPOSITION 2.1.
The genus of L'/k' equals the genus of L[k*.
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Henceforth assume that the genus of L/k* is at least 2, and let K be g subfield of L
such that L/K is Galois and K is a simple transcendental extension of k*. Let U = © NK,
and note that then U is a DVR with quotient field K such that U dominates T and
M(T)U = M(U); also @ is the unique extension of U to L, and @ is naively unramified
over U. Let K’ = ¢(U) and note that then L'/K is a finite normal field extension and L'/k’
is a simple transcendental extension; also we get an epimorphism Ppa-Gal(L, K)—
Gal(L', K') whose kernel is the inertia group G of ® over U and we have that: P oar
is injective <> L'/K" is Galois. With all these assumptions, in Proposition (2.2) we
shall now prove that we can find a good “common” coordinate function x for K and
K’ as indicated in the following diagram.

¢
L -~ C) - r
1 | ) !
K=k*(x) « U=T[x] - K =k(¢(x))
| | I
k* - T 4

l s

PROPOSITION 2.2.

There exists a residual transcendental generator x of U over T and, for any such x,
the localization of T[x] at the prime ideal M(T) T[x] coincides with U. Moreover,
upon letting D to be the projective line over T defined by x, i.e., upon letting D to be
the model of K/T given by D=B(T[x])uB(T[1/x]), we have that E is the
normalization of D in L, i.e., E consists of all the extensions of the various members

of D to L. (Therefore D= ENK in the sense that: for any field extension L’/K® and

any set E° of subrings of L°, by E’ AK’ we may denote the set of subrings of K’ given
by {S"nK’:S"cE"}).

Proof. By (1.6) there exists a residual transcendental generator x of U over T and,
for any such x, the localization of T[x] at the prime ideal M(T) T[x] coincides with
U, and hence upon letting D to be the projective line over T defined by any such x,
ie., upon letting D to be the model of K/T given by D = B(T[x])u B(T[1/x]), we
have UeD. Let E* be the normalization of D in L. Then clearly (R(L/k*)L{©}) < E*
and E*\(R(L/k*)u{®}) is a set of 2-dimensional normal local domains. Also L' is
the residue field of @ and by (2.1) we know that the genus of L'/k’ is at least two.
Consequently by (1.5) we see that in the birational correspondence between E and
E* there can be no fundamental points on E, and hence E dominates E*, and therefore
by ZMT (= Zariski’s Main Theorem) we must have E = E*, (for the arithmetic
versions of ZMT and the concept of fundamental points etc., see [A07] and [AO8]).
With all the above assumptions in force, we shall now prove the following.

PROPOSITION 2.3
@, is injective.
Proof. Let g be the genus of L/k*, and hence by (2.1) also the genus of L'/K’. Let k

be an algebraic closure of k*, let k' be an algebraic closure of k', and let K = K (k),
L=L(k, K'=K'(k), and L' = L'(k’). Then the genus of L/k as well as that of I.'/k’

st RS ETRe o




Construction techniques for Galois coverings 117

is g, and Gal(L, K) and Gal(L',K’) can be identified with Gal(L, K) and Gal(L’,K") .

respectively. Let [.be a prime number nondivisible by the characteristic of k', and let
p = I" where m is a positive integer. Then by Weil's Theorem on points of finite order
of abelian varieties (see Corollary 1 on page 127 of [Wei]) we have |JacW(L/k)| = v¥ =
|Jac®(L'/k’)|. Therefore the homomorphism ¢! induces an isomorphism
dW:Jac(L/K) Jac®(L'/k'). Since g is positive, the Galois groups act faithfully on the
corresponding Jacobians, and by Weil’s Theorem on Tate modules (see Theorem 3 on
page 176 of [Mum] and Lemma 12.2 on page 122 of [Mil]) we know that, for large
enough m, the Galois groups Gal(L, K) = Gal(L/K) and Gal(L',K') = Gal(L'/K') act
faithfully on Jac®(L/k) and Jac™(L'/k') respectively. Therefore ¢, is injective.

Note that, in the Riemann—Hurwitz genus formula, the contribution of a nontamely
ramified point is greater than the contribution in characteristic zero for the same
ramification exponent. Therefore, in view of (2.1) to (2.3), by (1.4) we get the following
General Theorem.

General theorem 2.4. Recall that L/k* is a 1-dimensional regular function field such
that some member of R(L/k*) is residually rational over k*, the genus of L/k* is at
least 2, T is a pseudogeometric DVR with quotient field k* such that the residue field
of T is perfect, E is a good projective model of LT, Ey = R(L/k*)= the generic fiber
of E over T, the DVR @ with quotient field L is the generic point of the special fiber
3(Tg) of E over T, ¢:0 — L' = ©/M(0) is the canonical epimorphism, k' = ¢(T), K is
a subfield of L such that L/K is Galois and K/k* is a simple transcendental extension,
the DVR U with quotient field K is defined by putting U = O®nK, K' = ¢(U), and by
(2.3)'¢ induces an isomorphism ¢ _,,:Gal(L, K)— Gal(L',K').

Now assume that all the members of R(L/k*), which are ramified over their contractions
to K, are residually rational over k*, and let x' = & (x) with x as in (2.2). Then K’ =K'(x')
and L'/K' is a Galois extension whose Galois group is isomorphic to the Galois group
of LK. Let P,,P,,..., P, be the branch points of L'/K', i.e., those members of R(K'[k')
which are ramified in L'. Then there is a disjoint partition TL, ;¢ o{Viis Vigs-- o> Vi,
of the set of all branch points of L/K, with m;>0 and V,;# V. for 1<i<a and
1<j<j <m, such that, for 1 <i<a, upon letting R, to be the unique member of D
with ¢(R;) = P; where D is as in (2.2), we have that Vi, Vigs-eos Vi, 7€ exactly those
branch points of L/K which belong to B(R;). Let r; be the ramification exponent of an
extension of P;to L' and let s; be the part of r; prime to the residue characteristic of
T. Also let r;; be the ramification exponent of an extension of V;toL and let s;; be
the part of r;; prime to the residue characteristic of T. Then for 1 <i<a we have that
the integers S;;,S;,,---»S;y, are pdirwise coprime and their product equals s;, and
rifs; = rii/si; for 1<j<smy, and moreover: 1;= ;<1 =5, for 1 <j<m. Finally, if
the ramification exponent of an extension to L of some member of R(K/k¥*) is divisible
by the residue characteristic of T, then we must have m;> 1 for some i.

DEFINITION 2.5.

If a good model E of L/T exists, we may express this by saying that L/k* (or the
corresponding nonsingular projective algebraic curve &) has a good reduction via T

_or modulo M(T),and we may refer to L'/k’ (or the corresponding nonsingular projective

algebraic curve ") as a good reduction of L/k* via T or modulo M(T); we may also
call K’ the corresponding reduction of K. In case the characteristic of T is zero and
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the characteristic of T/M (T)is p > 0, briefly speaking, we may talk of reduction modulo
p instead of reduction modulo M(T).*

Abhyankar’s Lemma 2.6. This has many versions. For one version see pages 181-186
of [AO5]. At any rate, using it we see that if k' is a field of characteristic p > 0 and
L' is a Galois extension of k'(x) which is unramified except at x’ = co and x’' = 0 and
for which the ramification exponent at x' =0 is nondivisible by p, then upon letting
A= L'(k(X)), where X? = x’ with any positive integer p divisible by the ramification
exponent at x'=0 and k is any algebraically closed overfield of k' such that X is
transcendental over k', we have that the Galois extension A/k(X) is unramified except
at X = c0. Moreover, if the extensions of x’ = oo to L’ are residually rational over k'
then Gal(L' /K') remains unchanged when we replace k' by its algebraic closure and
hence, in view of (3.1) of [A10], Gal(A, k(X)) is (isomorphic to) a normal subgroup
of Gal(L',k'(x")) and the corresponding factor group is a cyclic group whose order
divides p but is nondivisible by p; consequently, in view of Result 4 on page 841 of

[A03], Gal(L,k'(x))/p(Gal(L,k'(x'))) must be cyclic and we must have

Gal(A, k(X)) = p(Gal(L', k'(x'))); (recall that for any finite group G, by p(G) we denote
the normal subgroup of G generated by all of its p-Sylow subgroups). Therefore in
the situation of (2.4), if the characteristic of k' is p >0 and L/K has at most three
branch points, exactly one of which has ramification exponent divisible by p, then,
by making a suitable fractional linear transformation on x’, we get a Galois extension
L'/K'(x"), having x' = o0 as the only nontame branch point and having x' =0 as the
only other possible branch point, such that Gal(L'/k'(x")) = Gal(L, K), and hence
upon letting A = L'(k(X)), where X* = x’ with any positive integer p divisible by the
ramification exponent at x' =0 and k is any algebraically closed overfield of k' such
that X is transcendental over k', we get a Galois extension A/k(X), having X = oo
as the only branch point, such that Gal(A, k(X)) = p(Gal(L, K)).

Remark 2.7. Let Z be a nonsingular Galois covering of the projective line 2! in
characteristic zero. Let r,,,,...,r, be the ramification exponents of the branch points
on #%. Let p be a prime number and let §1,82,...,8, be the prime to p parts of
T1sT2,..., 1, rESPECtively. Assume that GCD(s;,s;) > 1 for all i #j. Also assume that
r;=0(p) for some i. Finally assume that the genus of & is at least 2. Then by (2.4) we
see that & cannot have a good reduction modulo p.

3. Modular curves

Recall that for any ring 4 and positive integer m, the group of all m by m matrices
with entries in 4 and with determinant a unit in A, is denoted by GL(m, 4), and the
subgroup of those matrices whose determinant is 1 is denoted by SL(m, A). Moreover
GL(m, 4)/{ + 1} and SL(m, A)/{ + 1) are the factor groups by the subgroups consisting
of the diagonal matrices with all the entries 1 or all the entries — 1; in case of SL(m, A4)
we take the latter only if (— 1)" = 1. Likewise PGL(m, A) and PSL(m, A) are the factor
groups of GL(m, A) and SL(m, A) by their subgroups of scalar matrices, i.e., diagonal
matrices with all entries in the diagonal equal to each other.

*See Remark_ (3.3) of §3.
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For the finite field GF(g) of ¢ elements, we may write GL(m,q), SL(m,q),... and so
on in place of GL(m, GF(q)), SL(m, GF(g)),- .. and so on. Note that the projective special
linear group PSL(m,q) is a finite simple group provided m > 2 with the exclusion of
(m,q) = (2,2), (2,3). Likewise, the projective special unitary group PSU(m,q) is a finite
simple group provide m > 2 with the exclusion of (m, q)=1(2,2),(2,3),(3,2). For a discus-
sion of unitary groups, reference may be made to [Car] or [Suz]. In particular note
that the general unitary group GU(m, q) is the subgroup of those members of GL(m, ¢%)
which leave a Hermitian form invariant, the special unitary group SU(m, q) is the group
consisting of those members of GU(m,q) whose determinant is 1, and the projective
general unitary group PGU(m,q) and the projective special unitary group PSU(m,q)
are the factor groups of GU(m, 4) and SU(m, 4) by their subgroups of scalar matrices.
Also recall that |PGL(2,9)| =(g + Dg(g— 1), |PGL(2,g)/PSL(2,q)| = GCD(2,q + 1),
IPGU(,9)|=(¢* + 1)g*(¢>*—1) and |PGU(3,q)/PSUB,¢)|= GCDE,g+1) it
follows that if ¢ is a power of the prime p then PSL(2, ) (resp: PSU(3, g)) is the only
quasi-p normal subgroup of PGL(2, g) (resp: PGU(3, q)) such that the corresponding
factor group is cyclic. Now PSL(m, g) and PSU(m, g) are two of the 16 infinite families
of finite simple groups (for a survey of finite simple groups see [A10]). The third
infinite family of finite simple groups relevant to us is the family of Suzuki groups
Sz(q) with g =22"*! where v is any positive integer. Note that Sz(qg) is a certain
subgroup of GL(4,4) and for its order we have [Sz(g)| = (q® + 1)g*(q — 1); this also
holds for g =2, but Sz(2) is not simple. The relevance of the unitary groups and the
Suzuki groups for us will become clear in (4.2.1) and (4.2.3) respectively.

For any positive integer n, let I(n) be the inhomogeneous principal congruence
subgroup of level n, i.e., the kernel of the natural epimorphism

SL(2, Z)/{ + 1} »SL(2, Z/nZ)/{ £ 1}.

Referring to [Sch] for details, SL(2, Z)/{ £ 1} acts in a natural way on the upper half
plane $ (consisting of all complex numbers with positive imaginary part) and has
the complex projective line ¢ as compactified quotient. This induces an action of
I'(n) on $ and now the compactified quotient is called the modular curve Z (n) of level
n. Clearly T'(1) = SL(2, Z/nZ)/{ £ 1} and hence (1) = 2P¢. Let §, o be the function
field of % (n). Then &, ¢ is generated over C by the famous transcendental function
j,and §, /T, ¢ is @ Galois extension with Galois group SL(2, Z/nZ)/{+ 1}.

Let Q, be the field extension of Q obtained by adjoining to it all the nth roots of
1 in C.* Then, referring to [Shi] for details, the modular curve Z (n) is defined over
Q, in the sense that there are a finite number of generators {fa:aen™1Z\Z?} of
F..c over C(j), called Fricke functions in [Lan], which are algebraic over Q(j), and

~ upon letting §, to be the field generated by them over Q(j) we have that the algebraic

closure of Q in &, is Q,. Moreover, §,/Q(j) and &, /Q,(j) are Galois extensions with
Galois groups GL(2, Z/nZ)/{ + 1} and SL(2,Z/nZ)/{ + 1} respectively.

Henceforth assume that n> 6. Then by the classical theory [Sch] it follows that
&,/Q,() has exactly three branch points, which are all residually rational over Q,,
and the ramification exponents of their extensions to &, are 2,3,n. We can take a
finite algebraic field extension QF of Q4, in C such that, for any algebraic field
extension k* of Q* in C, upon letting K, and L, to be the compositums of Q,(j)

*Qur notation Q, should not be confused with the notation Q, frequently used for l-adic numbers.
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and §, with k* we have that the extensions to L, of any branch point of L,/K, are
all residually rational over k*. Now clearly K, /k¥ and L, /k* are 1-dimensional regular
function fields, K, /k* is a simple transcendental extension, the genus of L,/k* is at
least 2, L,/K, is a Galois extension with Galois group SL(2,Z/nZ)/{+ 1} and with
exactly three branch points, and the ramification exponents of their extensions to L,
are 2,3,n. By the (Riemann-Hurwitz) genus formula, it follows that the genus of
L,/k¥ is at least 2.

Given a prime number p, in view of Lemma 12 on page 138 of [A07] we can take
ky to be the quotient field of a pseudogeometric DVR T, such that T,/M(T,) is an
algebraic closure of GF(p). The following beautiful result was proved by Igusa [Igu]
(for a more modern treatment see 4a on page 152 of [DRa] or Chapter 2 of [MWi]
or Chapter 12 of [KMa]).

PROPOSITION 3.1.
If n£0(p) then L,/k* has a good reduction L /k, modulo M(T,).

Let K| be the corresponding reduction of K,. Now, according to Feit [Fel], if
GCD(n, 6) =1 then SL(2, Z/nZ)/{+ 1} is a quasi 2-group as well as a quasi 3-group.
Therefore, in view of (3.1) and Abhyankar’s Lemma (2.6), by (2.4) we get the following.

Theorem 3.2. Assume that n% 0(p) and p =2 or 3. Then K’ is a simple transcendental
extension of the algebraically closed field k! of characteristic p, L' [k, is a 1-dimensional
regular function field of genus at least 2, L) /K, is a Galois extension with Galois group
SL(2,Z[nZ)/{ + 1}, and, for a suitable choice of X' with K = k! (x'), we have that x' = o0
is a nontame branch point of L /K, x"=0 is the only other possible branch point of
L./K,, and the reduced ramification exponent of any extension to L of X' =0 is a
Jactor of 6n/p. Moreover, if GCD(n, 6) = 1, then upon letting A, = L’ (k,(X)), where X
is an element in an overfield of L, with X®"? = x' and k, is any algebraically closed
overfield of k] such that X is transcendental over k,, we have that A, /k,(X) is a Galois

extension with X = oo as the only branch point and with Galois group SL(2, Z/nZ)/{ + 1}.

Note 3.2*. Let us call a group anti-p if it is finite and does not have any nonidentity
normal subgroup whose order is a power of p; note that then a nonabelian finite
simple group is always anti-p. Now in the situation of (2.3), assuming the characteristic
of k' to be p > 0, the order of the kernel of ® 1 15 @ power of p, and hence if Gal(L/k*)
is an anti-p group then obviously (and hence without invoking the present proof of
2.3)) ¢, 1S injective. According to Feit [Fe2], assuming GCD(n, 6) = 1, the group
SL(2,Z/nZ)/{ £ 1} is always anti-3, and moreover: it is anti-2<sn is a power of a
single prime. Therefore in these cases of the above theorem we can disregard the
present proof of (2.3).

Remark 3.3. Instead of considering good reductions when they exist, Mumford [MFo]
introduces the more general concept of stable reduction, where the reduction is
allowed to be a reducible curve but is required to be free from multiple components
and have no singularities worse than nodes; it is also required that every rational
component of the reduction intersect the other components in at least 3 different
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points so that the automorphism group of the reduction is always finite. He goes on
to prove that it always exists provided we allow for a finite extension 1 of T. In brief,
start with any reduction, i.e., any arithmetic surface, over a pseudogeometric DVR T,
with given generic fiber. Resolve its singularities by Abhyankar [A07] and Abhyankar
[A09]. Then shrink unwarnted (= exceptional) curves to get a minimal model a la
[Lic] or [Saf] on which the special fiber is stable. To achieve this, we may have to
make a “base change” by replacing T by an extension T of T to a finite algebraic
field extension k of the quotient field k* of T. So instead of saying “assume good
reduction”, we may say “assume the stable reduction to be good”. Here the article
“the” before “stable” is justified because Mumford proved that the stable reduction
is essentially unique. If we follow this route, then we could shorten some of the proofs
in §1 and §2 by citing Theorem 1.11 and Lemma 1.12 of [DMu]. We did not have
to refer to [Lic] or [Saf] because we could fall back on [A01] where much of the
ground work for minimal models in the arithmetical case was done.

In point of fact, Mumford was not doing all this only for reduction modulo p. His
objective was to get a compact moduli variety M, of curves of genus g. Namely, if
we follow the classical approach and restrict to nonsingular curves of genus g, then
the moduli variety is not compact. Permitting stable curves, makes it compact.

With the notion of stable curves at hand, we could have formulated Proposition
(2.3) slightly more generally thus. For every geometrically irreducible curve of genus
at least 2 over a perfect field k*, by Corollary 2.7 of [DMu], we can find a finite
algebraic field extension k/k* and an extension T of T to k such that reduction of
the curve modulo M(T) is a stable curve. Given any subfield K of the function field
L of the curve such that k* = K and L/K is Galois, by Theorem 1.11 and Lemma 1.12
of [DMu], every automorphism of L/K can be extended to a T-automorphism of
the corresponding arithmetic surfaces such that no two automorphisms coincide after
specialization. Therefore, we do not really need good models; it would be sufficient
to demand that the stable reduction is irreducible, because then every automorphism
of the special fiber defines a unique automorphism of the nonsingular model of this
fiber. It seems to be a problem, however, to find a criterion, which shows irreducibility
of the special fiber without proving nonsingularity.

Remark 3.4. The modular curve % (n) can be interpreted as parametrizing the space
of all elliptic curves (and their stable reductions) with a level-n-structure, ie., with
assigned basis for the group of points whose order divides n. In Deuring [De2] and
[De3], it is shown that a similar interpretation can be given to % (n) in characteristic
p>0 provided n#0(p).* An alternative treatment of (3.2) could be based on this
work of Deuring. Briefly, the inertia group of a point in the covering Z (n)— Rk ()/k,)
is equal to the reduced automorphism group of the elliptic curve which corresponds
to that point, and hence by Deuring [De2] we obtain an explicit description of the
said inertia group. According to Deuring, in characteristic 3 or 2, only the elliptic
curves with j = 0= 12% have nontrivial automorphisms. The reduced automorphism
group of such a curve has order 6 or 12 according as the characteristic is 3 or 2.
And so on. '

*1t may be noted that, in [MWi] and [KMa], an analogous interpretation of % (n) for n = 0(p) is given,
by using the so called Drinfeld bases.
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4. Curves with big automorphism groups

Hurwitz Groups (4.1). By Hurwitz [Hur], a curve of genus g > 2 in characteristic zero
has at most 84(g — 1) automorphisms. This bound is sharp for infinitely many g. The
structure of maximal automorphism groups is known: they are called Hurwitz groups
and are defined as finite groups which can be generated by two elements of orders
2 and 3 respectively, whose product has order 7; they occur as Galois groups of
characteristic zero coverings 4 — 2! with three ramification points of exponents 2, 3,
and 7; for a survey of Hurwitz groups see [Con]. Therefore Hurwitz groups are
candidates for Galois groups to be realized in characteristics 2,3, and 7.

Klein Curve 4.1.1. In § 3 we assumed n > 6, and so % (7) was the smallest level modular
curve which gave rise to an unramified covering of the affine line in positive
characteristic, namely p = 2 and p = 3. The genus of & (7) is 3 and the resulting Galois
group is SL(2,Z/7Z)/{ 4+ 1} = PSL(2, 7). In view of what was said in § 3, clearly Z'(7)
is a Hurwitz curve. Klein [Kle] gave x3y + y®z + z23x =0 as a homogeneous equation
for a plane model of Z(7), and showed that its full automorphism group is indeed
PSL(2,7). Hence this is called the Klein curve. By direct calculation we see that, for
p=2 and p =3, this equation gives a nonsingular irreducible curve. This confirms
the fact that 2'(7) has good reductions modulo 2 and modulo 3 which, in view of
Abhyankar’s Lemma (2.6), by (2.4) give rise to unramified coverings of the affine line
with Galois group PSL(2,7) for p=2 and p=3. '

Macbeath Curve 4.1.2. Macbeath [Mac] showed that the next possible genus of a
Hurwitz curve is 7, and constructed such a curve & , Which is now called the Macbeath
curve, with full automorphism group G = PSL(2,8). Regarding G as acting on the
projective line over GF(8), its 1-point stabilizer G, is the group of all affine linear
transformations x+ax + b with a and b in GF(8) and a #0. Upon letting & L to be
the quotient Z/G, , Macbeath [Mac] has shown that 1 has genus zero and the Galois
covering & — & | has three ramification points with exponents 2, 7, and 7. We can find
a specialization of 2! modulo 3 such that no two of these three points coincide, and
then, in characteristic 3, construct a nonsingular covering with the same ramification
exponents which is a specialization of the covering from characteristic zero. Since all
three ramification points are tame, this covering again has genus 7. Thus & has good
reduction modulo 3 and hence, in view of Abhyankar’s Lemma (2.6), by (2.4)** we
get an unramified covering of the affine line in characteristic 3 with Galois group
PSL(2,8). As indicated by Serre [Se6], an explicit equation for this covering can be
deduced from the discussion of the Macbeath curve given .in Serre [Se4].

Positive Characteristic 4.2. For an algebraically closed field k of positive characteristic
p,itisno longer true that a curve of genus g > 2 has at most 84(g — 1) automorphisms.
In an effort to get some other bound, Leopoldt [Leo], Stichtenoth [Sti] and Henn
[Hen] have studied curves with big automorphism groups G; in Satz 1 of his paper,
Henn gives a complete list of all curves for which |G| > 843 In all cases, the curves

tSince PSL(2,7) is simple, the present proof of (2.3) can be avoided; see Note (3.2* )
**Since PSL(2,8) is simple, the present proof of (2.3) can be avoided; see Note (3.2%).
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are coverings of the projective line 2} with exactly one wild and at most one tame

- ramification point; (it may be noted that by pages 536-537 of [Sti], this is so whenever

g>2and |G| > 24g%). Using Abhyankar’s Lemma (2.6), we can get rid of the tame
ramification point, if it occurs, and therefore all these curves lead to examples of
unramified coverings of &/, . There are the following four series, all of which are given
by equations for their affine plane models, where v is any positive integer and where
“can be realized” means “belongs to m,(=;)".

4.2.1. The unitary Fermat curve x" + y"+1=0 with n = p® + 1. Here G =PGU(3,p"),
and hence PSU(3,p") can be realized in characteristic p. (Henn [Hen] writes
PGU(3,p*") and PSUQ3, p?*) for what we have called PGU(3,p") and PSU(3,p")
respectively). (Another way of realizing PSU(3,p"), by using Deligne—Lusztig curves,
is indicated in Serre [Se3]).

4.2.2. The Fermat-like curve x" + y™ + 1 =0 with n=p* +1 and m a proper divisor
of n. In this case, G has C=Z/mZ as its centre, and G/C = PGL(2,p"). Therefore
PSL(2,p") can be realized in characteristic p. (For other ways of realizing PSL(2,p")
see [A10] and [A16]).

42.3. The equation x4+ x=y?"¢ 4+ y* ** with ¢ = 2¢’* and ¢’ = 2’, in characteristic
p =2 has the Suzuki group Sz(22**1) as automorphism group. Therefore Sz(22v+1)
can be realized in characteristic p = 2. (Another way of realizing Sz(22**!), by using
Deligne-Lusztig curves, is indicated in Serre [Se3]). '

424. The equation xf—Xx= yl*?" for n>1 also defines a curve with a big
automorphism group G in characteristic p. The corresponding curve is a covering of
2} with only one ramification point, so G is explicitly realized; the structure of G
has been determined by Serre [Se6].

5, Use of unramified abelian coverings

If % -, is an unramified covering of the affine line over an algebraically closed
field k of positive characteristic p, and if #* % is an unramified covering of %,
then, of course, we get as new unramified covering % — /. This holds in particular,
even if we have an unramified covering £* —% where & - P, is the corresponding
covering of the projective line which is ramified only at co. Among the unramified
coverings &* — %, the abelian ones are well-known: They correspond biuniquely to
the finite subgroups of the Jacobian Jac(Z) (see for example [Del] or [Se1]). Therefore
we get the following. ‘ ‘

Theorem 5.1. Let & — 2. be a Galois covering with Galois group G, ramified only at
o0, and let N be a finite subgroup of Jac (%), invariant under all automorphisms of Z.
Then there exists a covering X* — P, , ramified only at o, whose Galois group G* is
an extension of G with kernel N.

This implies, in particular, that G* isa quasi p-group. Note that for group extensions
which are known to be quasi-p, Serre [Se2] has proved a stronger result which says



124 Shreeram S Abhyankar et al

that: with G as above, for any extension
0->N-G*->G-0

with solvable kernel N and a quasi-p group G, we have G*en A1)

By corollary 1 on page 127 of [Wei] we know that, for any positive integer |
nondivisible by p, the points of Jac(%) whose order divides | constitute a subgroup
which is isomorphic to (Z/IZ)*. Therefore as a consequence of (5.1) we get the
following.

COROLLARY 5.2

Let Z - 2| be a Galois covering with Galois group G, ramified only at oo, and let g be
the genus of Z. Then, for any | prime to p, there exists an extension

0-(Z/1Z)** - G*—>G—0
Jor which we have G*er ,(sf}).

As in §4 of [A12], while ‘keeping G unchanged, we can make the genus of &
arbitrarily large. Therefore by (5.2) we get the following.

COROLLARY 5.3

Given any 1 # Gen A(H}), for every positive integer 1% 0(p) and for infinitely mdny
positive integers y, some extension of G with kernel (Z/1Z)* belongs to (A 5

6. Problems

Prob!em 6.1. Given an algebraically closed field k of characteristic p > 0, for several
quasi p-groups G we have constructed Galois extensions A/k(X) which are ramified
only at X = oo and whose Galois group is G. It would be interesting to find explicit

expressions for small degree monic polynomials in Y with coefficients in k[X] and
with splitting field A.

Proble_m 6.2. In (2.7) we have given necessary conditions for the existence of good
reduction. Can we refine these into sufficient conditions?
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