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ABSTRACT
In this paper, we introduce a novel technique (anomaly detection) for the online detection of
impending instability in a combustion system based on symbolic time series analysis. The
experimental results presented in this paper illustrate the application of anomaly detection to a
combustor in which the flame is stabilized either by a bluff body or by a swirler. The detection
unit works on the principle that in the transition region from combustion noise to thermoacoustic
instability, combustion systems exhibit peculiar dynamics which results in the formation of
specific patterns in the time series. Further, tools from symbolic time series analysis is used to
recognize these patterns and then define an anomaly measure indicative of the proximity of
system to regimes of thermoacoustic instability.

Keywords: Symbolic time series analysis; Anomaly detection; Instability detection;
Probabilistic finite state automata.

1. INTRODUCTION
One of the techniques used in many combustors to reduce emission is to employ ultra-lean
combustion which ensures low combustion temperature and consequently reduced 
NOx emission. However, in a confined environment such as a combustion chamber, ultra
lean combustion can lead to thermoacoustic instability characterized by high amplitude
pressure fluctuations. In systems such as gas turbine engines and rocket motors, these high
amplitude pressure fluctuations are a major concern considering the cyclic loads that the
structural components of the engine or rocket motor has to support during the instability [1].
Often, instability can lead to a permanent failure of the structure of the engine or at least
reduce its life time by a significant amount. Hence, a methodology to prevent the system
from entering regimes of instability or forewarn the operator about an impending
instability is essential in order to ensure improved performance of combustion systems.
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In the past, various techniques were introduced in order to detect and control
instabilities in combustion systems. Poinsot et al. [2], introduced a technique to control
instabilities in gas turbine engines. In this technique, the pressure fluctuation in the
combustion chamber is measured and a delayed signal (control signal) is generated
based on the pressure fluctuation signal, which in turn is used to modulate the fuel
pressure inside the fuel line. By selecting an appropriate delay for the control signal,
they were able to actively control the instability. Hobson et al. [3] analyzed the
stability of industrial gas turbine engines by monitoring the casing vibration and 
the pressure fluctuations inside the combustion chamber. They analyzed the stability
of the engine in terms of frequency and bandwidth of the principal peak in the
vibration and pressure spectra. It was observed that as the system approached the
stability limit, the bandwidth of the principal peak decreased. This was an indication
for damping approaching zero near the stability limit. In a similar way, Lieuwen [4]
used autocorrelation of the pressure signals inside the combustor to characterize the
damping of the system and thereby predict the stability margin. The techniques used
above rely on detecting the characteristics of the instability to detect it. In our work we
were interested in understanding the dynamics of the transition regime from
combustion noise to combustion instability in order to come up with a precursor which
can forewarn the operators about an impending instability.

Previously, there have been a few studies that focused on the dynamics of the regime
of transition from stable to unstable operation of a combustor. Chakravarthy et al. [5] in
an experimental study suggested that a lock on mechanism between vortex shedding
and duct acoustics was responsible for the transition. When the vortex shedding and the
acoustic modes are not locked on, the system has low amplitude broadband noise and
once the lock-on happens, the system has high amplitude tonal oscillations. 
Further, Gotoda et al. [6] reported that in a turbulent combustor, as the equivalence 
ratio is varied from stoichiometric to lean limits, transition from stochastic
fluctuations(combustion noise) to periodic oscillation happened through a state of low
dimensional chaos.

Recently, Nair et al. [7] studied the characteristics of the transition region using tools
from dynamical system theory. They established that combustion noise resulting from
combustion of a turbulent flow in a confined enviornment is not stochastic and is in fact
chaos of moderately high dimension (of the order of 8 to 10). Further, it was shown that
the onset of instability is essentially a transition from chaos to order. They used a test
for chaos, known as 0–1 test for chaos [8], as a measure of the proximity of the
combustor to an impending instability. Nair et al. [7] also indicated that the transition
from chaos to order happened through intermittency [9]. In this context, they introduced
recurrence parameters as precursors to the impending instability in a practical gas
turbine combustor [10]. In this paper, we introduce a method based on symbolic time
series analysis in order to detect the proximity of a particular dynamic state of the
combustor to that of instability by analyzing the peculiar patterns in time series data of
unsteady pressure fluctuations born out of the dynamics in the transition regime.

Symbolic time series analysis provides a simpler way to analyze the dynamics of
nonlinear systems [11]. A symbolic time series can be generated from a time series
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obtained from experiments or simulations in various ways. The different approaches to
construct a symbolic time series is described by Daw et al. [12]. References [13] and
[14] describe different methods used to generate a symbolic time series. Further they
also describe a procedure for early detection of anomalous behaviors in dynamical
systems based on symbolic dynamic filtering (SDF). Application of anomaly detection
using SDF was carried out successfully in various physical systems [15, 16]. Gupta 
et al. [17], Chakraborty et al. [18] and Datta et al. [19] used SDF to detect the extinction
events in a mathematical model describing a pulse combustor. Dynamics of a spark
ignition engine was characterized by Daw et al. [20] using symbolic time series
analysis. Mukhopadhyay et al. [21] used symbolic time series analysis for prediction of
lean blow out in laboratory-scale gas turbine combustors.

In this paper, we describe a patent pending methodology to detect the proximity of
the dynamic state of a combustor to an impending instability [22]. This methodology
uses symbolic time series analysis for identifying the precursor to the impending
instability. A detailed description of symbolic time series analysis is given in the
following section.

2. SYMBOLIC TIME SERIES ANALYSIS
Symbolic time series analysis is a technique used in order to encode the complex
dynamics of a system embedded in a time series signal {T [k]|k = 0 … N − 1} into a set
of finite number of variables. The particular analysis technique used in this paper
involves a three-step process. The first step is the generation of the symbolic time series
{ST [k]} from the actual time series. The second step is the construction of a state vector
SVp corresponding to the symbolic time series, representing the dynamics of the state
that is responsible for the generation of the actual time series {T [k]|k = 0 … N − 1}. In
the third step, an anomaly measure M is defined which serves as an indicator of the
proximity of a dynamical state to the stability margin. Detailed explanations for these
processes are given in the following subsections.

2.a. Construction of a symbolic time series
Consider the time series signal {T [k]|k = 0 … N − 1}. This signal is a discrete function
in time represented by the N data points, N being the length of the time series signal.
The data point at the kth instant is T [k]. Each of the data point has a particular value
T [k] and a particular time stamp ‘k’ associated with it. Now in order to construct the
symbolic time series from the time series signal {T [k]|k = 0 … N − 1}, the N data
points constituting the time series signal are partitioned into a mutually exclusive and
exhaustive set of finitely many segments. In this paper, the partitioning is performed
by dividing the points into different sets based on the range of the instantaneous value
(T [k]) in which they lie (illustrated in Fig. 1a, the details on how the upper and lower
limit of value of T [k] for each partition is selected and how the number of partitions
is decided are described later). This technique of directly partitioning the time series is
called ‘simple partitioning’. Further descriptions of partitioning techniques are
described by Ray [11, 24]. In this paper the number of segments for partition is fixed
to be 10.
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Figure 1: Construction of symbolic state probability histogram from a finite time-
time series data (in this paper we use the unsteady pressure time series data
from a combustor). Note that the different steps involved are a) Simple
partitioning, b) generation of a ‘symbolic sequence’, c) construction of a
‘finite state machine’, and d) developing a ‘state probability
histogram’(representative of state probability vector).

Once the data points are partitioned, each partition is represented by a particular
symbol (For the purpose of illustration, assume that we are partitioning the data points
into 4 segments, α, β, γ  and δ). Now, the value of the time series data at each instant k
is replaced by the symbol corresponding to the partition to which that particular data
point belongs. Thus a symbolic time series is generated (Fig. 1.b).

2.b. Construction of probabilistic finite state automata(PFSA)[23][24]
Once the symbolic time series {ST [k]} is generated, a probabilistic finite time
automata is constructed to represent the dynamic state that generated the time series
{T [k]|k = 0 … N − 1}. The main assumption in construction of PFSA is that the
symbolic process (represented by the symbolic series) under all conditions can be
approximated as a Markov chain of order D (D- Markov machine) representing a
quasi-stationary stochastic process. For a D- Markov machine, probability of
occurrence of a new symbol depends only on the last D symbols, implying that the



memory of the system is only extended up to D past observational instances. With this
assumption, the states of the D- Markov machine are essentially represented by a word
of length D in the symbol string of the symbolic time series. Hence, for a symbolic
series represented by P symbols, the number of possible states in a D- Markov
machine is PD. With increase in the word size D, the memory embedded in the Markov
states of the PFSA increases. However, as D increases, the total number of possible
states for PFSA increases and hence the computational expenses needed to construct
the PFSA also increases [25]. Keeping this in mind, in this paper we have restricted
the word size D to 1. Hence, the number of states possible for the PFSA constructed
in this paper is P. It is seen from the experiments that with a word size of 1 itself, the
predictability of the control system for the instability analysis is quite impressive
although D > 1 is expected to produce more accurate results at the expense of
significant increase in computational effort.

2.c. Construction of the anomaly measure
First step in constructing an anomaly measure is identifying a reference state. The
anomaly measure in this particular work is expected to indicate the proximity of 
the current state to the onset of instability (here, the current state is the state for which
the anomaly measure is estimated). Hence, it is only natural to select the dynamical
state corresponding to the onset of instability as the reference state. Once the reference
state is identified (in the context of this paper, a method for identifying the appropriate
reference state, i.e. the state that is considered as the onset of instability/ stability margin
is described in Section 4), then the data points in the pressure time series corresponding
to the reference state is partitioned into P mutually exclusive and exhaustive segments
in such a way that each of the segment contains approximately equal number of data
points. The partition technique used here is equiprobable partitioning, which is based
on maximization of information entropy, as seen in Fig. 1. The implication is that when
PFSA is constructed using this partition, the reference state will have a uniform
probability for all symbolic states (P0 is the state probability vector for the reference
state). Once the partitioning of reference state is performed, same partition is used in
order to construct the symbolic time series corresponding to the other dynamical states.
Hence, when PFSA is constructed for dynamical states other than the reference
dynamical state, the probabilities associated with symbolic states have a non-uniform
distribution (Pk is the state probability vector for the current state). Thus, an anomaly
measure, which is an indicator of proximity of a dynamical state to the reference state,
is defined as follows,

Here, < PkP0> is the inner product of the state probability vectors Pk and P0 and ||P||
denotes the Euclidian norm of the vector P. More details of anomaly detection using
symbolic logic have been described by Ray [11].
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3. EXPERIMENTAL SETUP
The experiments discussed in this paper were performed on two burners, (1) a swirl
stabilized burner with an axial swirl generator and (2) a bluff body stabilized burner. In
both the configuration, the fuel used is LPG. The fuel and the air get partially mixed
before entering into the combustion chamber. The flame is stabilized in the combustor
either by the use of a swirler or by the use of a bluff body. Pressure transducers are
mounted along the combustion chamber in order to measure the acoustic oscillations.
The total length of the combustion chamber is 700 mm, and the cross sectional area is
90 × 90 sq. mm. The experiments are performed at Reynolds numbers(∼20,000) where
the flow is turbulent. A more detailed description of the experimental setup and the
uncertainties in the measurements is available in [7].

4. RESULTS AND DISCUSSIONS
In this study, the experiments were conducted as follows. For a given value of fuel flow
rate (for example, 28 SLPM), the air flow rate was varied in a quasi-steady manner. The
initial airflow rate was chosen in such a way that it corresponded to an equivalence ratio
of one. Subsequently air flow rate was increased, thereby reducing the equivalence
ratio. At each equivalence ratio, the dynamics of the pressure fluctuations inside the
combustor was recorded by acquiring the unsteady pressure time trace using a
piezoelectric transducer. The time series data of these pressure fluctuations at various
air flow rates are then used to perform symbolic time series analysis for anomaly
detection. As described in Section 2c, the first step in the analysis is identifying an
appropriate reference dynamical state. In order to identify that, we adopt the following
procedure. Henceforth, we refer to this procedure as the training drill for online
anomaly detection.

The aim of the training drill is to identify that particular pattern of oscillations in the
combustor, which is to be considered as the appropriate margin for the operational
regime of the combustor such that instability can be avoided. In order to identify such
a margin, we apply anomaly detection technique to the normalized time series data
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Figure 2: The schematic of experimental setup. Note that a pressure transducer is
attached to the combustor to measure the unsteady pressure fluctuations
in the combustor.



taking a unit amplitude sinusoidal wave with a frequency approximately equal to the
instability frequency (in this context, the instability frequency corresponds to 
the natural frequency of the combustor at which an instability is expected) as the
reference state. On doing so, we essentially are comparing the pattern of the normalized
time series representing a particular dynamical state to that of a state of instability.
Hence, an anomaly measure defined in this context as described in the Section 2 will
approach zero as we approach a state of instability (Fig. 3a and Fig.4a). Due to the
particular nature of the partitioning performed in this work (simple equiprobable
partitioning), this decrease in anomaly measure is rather rapid and very close to the
onset of instability (note that the anomaly ratio is almost constant prior to the first drop).
Nevertheless, this decrease in anomaly measure is an indicator for the dynamics of the
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state being close to that of a limit cycle behavior. Hence, from this training drill, we
select the time series corresponding to point ‘A’ (marked in both Fig. 3a and Fig. 4a) as
the representative time series for the reference dynamical state to be used in the online
anomaly detection for the respective cases. However, depending up on the discretion of
the operator and the design of a particular combustor, dynamic states further close to
instability can also be used as the reference state. Further, it is to be noted that a rise is
pressure amplitude is not necessarily suggestive of presence of instability. The rise in
the amplitude of pressure signals could even correspond to an increase in the intensity
of combustion noise. Whereas, with the aforementioned technique, we can clearly
identify whether we are approaching an impending instability since a decrease in the
anomaly measure is a sure indicator of the increased presence of sinusoidal component
in the time series.
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Once the reference state for online anomaly detection is fixed, the anomaly measure
for online detection of an impending instability is defined as described in Section 2.
Examining the variation of anomaly measure with airflow rate, we see that (Fig. 3b and
Fig. 4b) as the system approaches the reference state, the anomaly measure starts to
reduce; i.e., the angle between the PFSA of the reference state and the current state
approaches zero as the current state approaches the reference state. Furthermore, unlike
in the case of anomaly measure defined for the training drill, the anomaly measure for
online detection starts reducing towards zero much before the reference dynamical
state. These behaviors are explained in the following paragraphs.

At low airflow rates (i.e., near stoichiometric equivalence ratios), the pressure
fluctuation inside the combustor is mainly due to combustion and flow noise. These
oscillations have amplitudes of the order of 200 Pa (Fig. 5.a). Further, it has been
already shown that these oscillations are chaos of moderately high dimension (8 to 10
dimensions) [7]. Hence when the PFSA is formed for the time series corresponding to
combustion and flow noise, using the partition corresponding to the time series
representing the reference state (A), most of the data points fall in those symbolic
segments which correspond to low values of |P|. Hence, the corresponding PFSA has a
probability distribution as seen in the Fig. 5.e.

Now as we increase the airflow rate (i.e., move towards lean equivalence ratios), the
pressure oscillations start to become intermittent. This intermittent behavior of the
pressure signals arise from the fact that the state point corresponding to the dynamical
state responsible for these oscillations follow a homoclinic orbit in the phase space [9].
In this homoclinic orbit, the state point alternates between a chaotic attractor
corresponding to the low amplitude fluctuations to an attractor corresponding to the high
amplitude limit cycle oscillations in an apparently random fashion. As the equivalence
ratio decreases away from the stoichiometric equivalence ratio, the time spent by the
state point in the chaotic attractors reduces and the time spent in the attractor
corresponding to the limit cycle increases. In the time series, the effect of this dynamical
behavior is reflected.

During intermittency, the time series is characterized by alternating low amplitude
chaotic oscillations and high amplitude limit cycle oscillations. As we approach closer
to instability, in the time series, the duration for which the limit cycle oscillations are
observed increases and the duration of chaotic oscillation decreases. This implies 
the probability associated with the symbols corresponding to the high amplitude
oscillations increases as we approach the instability. Also, the symbol sequence
increasingly matches to that of the reference state (a near limit cycle state).Ultimately
at the reference state all the symbols have an equal probability associated with it 
(Fig. 5.g). If we move beyond reference state, the amplitude of the time series increases
due to increased proximity to the instability and hence the symbols corresponding to the
higher amplitudes have a higher occurrence probability (Fig. 5.h). This leads to an
increase in the anomaly measure beyond the reference state. From Fig. 3b and Fig. 4b
it can be observed that a state before and beyond the reference state can have the same
value of anomaly measure.
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equivalence ratio 1. b) and f) represent an intermediate state, c) and 
g) represent the reference state and d) and h) represent a state beyond the
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However, in such a case, they can be distinguished by comparing the probability
distribution of the symbolic states. For example, Fig. 5b and Fig. 5d represent two time
series with similar value for anomaly measure. However, comparing the corresponding
occurrence probability distribution, it is clear that Fig. 5d represents a dynamical state
beyond the reference state. From the above discussions, it is clear that the anomaly
measure approaching zero is a precursor to the onset of instability.

In essence, using symbolic time series analysis, we are able to compare the patterns
present in the time series corresponding to any dynamical state to that of the reference
state by defining a vector measure (state probability vector, Fig. 4) corresponding to
each pattern. We see that the occurrence probability distribution of symbolic state varies
continuously as we approach the reference state (Fig. 4). We exploit this behavior of
state probability vectors to define the anomaly measure which indicates the proximity
of any state to the reference state. Since the particular patterns found in the pressure
time series arises due to intermittency and intermittency is a dynamic behavior, time
series corresponding to other measurements (such as heat release rate fluctuations,
temperature fluctuations etc.) from the combustion system must also exhibit similar
patterns close to instability. Hence, such measurements also could be used in a similar
fashion to predict the onset of instability.

CONCLUSIONS
Anomaly detection technique, a novel strategy of online prediction of an impending
instability is developed based on symbolic time series analysis. A precursor for an
impending instability, i.e. the anomaly measure, was identified from unsteady pressure
measurements for two types of combustors (a swirl stabilized combustor and a bluff
body stabilized combustor). Using anomaly detection technique, we were able to
compare the pattern of a time series at any instant to that of a reference pattern and
thereby quantify the proximity of the instantaneous dynamical state to a reference
dynamical state (a dynamical state close to onset of instability). In this context, a novel
method of identifying an appropriate reference state for online instability detection, i.e.
the training drill, was introduced. The current technique of anomaly detection uses a
simple method for partition of time series data known as simple equiprobable partition.
More research has to be performed in order to identify the optimal partitioning
technique to be used for predicting an impending instability in a combustor. Further, 
the effects of increasing the word size D for the formation of PFSA on the predictive
capabilities of anomaly measure also have to be studied. However, anomaly measure
thus identified was able to indicate the proximity of the combustion system to regimes
of instability for both the combustors.
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