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What Is the Link between Drug Resistance and
Aneuploidy in Microbial Pathogens?

In a variety of pathogens, drug resistance and aneuploidy are

intimately associated. Anueploidy is believed to alter the dosage of

certain genes that can impart drug resistance. Generation of a new

chromosome by duplication of chromosome segments followed by

telomere addition in a pathogenic yeast Candida glabrata [1] and

isochromosome formation by breakage of chromosome 5 at the

centromere followed by joining two identical arms of chromosome

5 in an opportunistic yeast Candida albicans [2] have been shown to

occur frequently in drug-resistant isolates. Fluconazole-resistant

strains of another pathogenic fungus, Cryptococcus neoformans, have

been shown to be disomic for certain chromosomes [3].

Experimental evidence suggests that acquisition of chromosomes

by the plant pathogenic fungus Fusarium can convert a non-

pathogenic strain to a pathogenic one [4]. Anueploidy has been

shown to be the cause of drug resistance in the protozoan parasite

Leishmania as well [5].

Improper chromosome segregation is one route to aneuploidy.

The centromere–kinetochore complex facilitates interaction be-

tween a chromosome and the spindle microtubules to ensure equal

segregation of chromosomes from a mother to daughter cells. In

addition to serving as sites of protein assembly to form

kinetochores, centromeres also hold two sister chromatids together

until the onset of anaphase by balancing opposing forces acting on

them—a pole-ward (outward) force generated by spindle micro-

tubules depolymerizing toward opposite poles, and a cohesive

(inward) force between two sister chromatids. Paradoxically, in

spite of performing the conserved function of chromosome

segregation, centromere (CEN) DNA sequence and organization

of CEN DNA elements vary widely among eukaryotes. In contrast,

several kinetochore proteins are evolutionarily conserved, al-

though sometimes this conservation is restricted to a group of

organisms. For example, the Dam1 complex, an outer kinetochore

protein complex, is fungus specific and is essential for viability in C.

albicans [6,7]. Thus, this complex may be a suitable target for

development of anti-fungal drugs. However, a CEN-specific

histone H3 variant of the CENP-A/Cse4 family is found to be

universally associated with the formation of specialized and unique

chromatin at all functional CENs despite seemingly diverse CEN

DNA sequences.

What Are the Different Types of CENs in
Eukaryotic Pathogens?

Some organisms have holocentric chromosomes where the CEN

is diffused and CEN elements are distributed throughout a

chromosome. However, most organisms have monocentric

chromosomes where a CEN is localized to a single region on a

chromosome. Monocentric CENs are of three types: a) ‘‘point’’

CENs in which centromere function is retained in a short

(,400 bp) stretch of DNA with highly conserved protein binding

motifs and often a single CENP-A-containing nucleosome, b)

‘‘small regional’’ CENs with CENP-A-containing chromatin

formed on a stretch of DNA (,40 kb) that is longer than the

point centromere but often lacks any protein binding sequence

motifs or conserved pericentric repeats, and c) ‘‘large regional’’

CENs that span a long region (.40 kb–a few Mbs) usually rich in

repeats and often CENP-A-containing nucleosomes are inter-

spersed with H3-containing nucleosomes. Formation of a

kinetochore on most point CENs initiates with binding of a DNA

sequence-specific kinetochore protein [8]. In contrast, several lines

of evidence suggest that epigenetic factors, not the DNA sequence

alone, also contribute to centromere identity in organisms carrying

small or large regional centromeres [8–10].

How Are Centromeres Organized in Fungal
Pathogens?

The pathogenic fungi show wide diversity in CEN structure

(Figure 1; reviewed in [11]). C. glabrata, a human pathogenic

ascomycetous yeast, has short point CENs. CENs in C. glabrata, like

the well-studied CENs of baker’s yeast Saccharomyces cerevisiae, have

three CEN DNA elements (CDEs). CDEI (8 bp) and CDEIII

(18 bp) are well conserved in all the chromosomes, while CDEII

(77–79 bp) is not conserved in sequence but is highly AT-rich

(83%–93%) [12]. A circular mini-chromosome containing a short

CEN sequence (,160 bp total, inclusive of CDEs) and a

replication origin/autonomously replicating sequence (ARS) can

stably propagate through many generations. Both CDEI and

CDEIII are required for proper function of a centromere. CDEIII

has the crucial CCG sequence and certain mutations in CDEIII

result in a complete loss of centromere function. Candida maltosa, a

hemiascomycetous yeast that is phylogenetically closely related to

other human pathogenic Candida species of the CTG clade such as

C. albicans, is believed to be non-pathogenic to humans but has

been reported to be virulent occasionally when tested in the mouse

model [13]. Although a 325-bp C. maltosa CEN region with a

conserved CDEI and an AT-rich CDEII sequence can provide

mitotic stability to an otherwise unstable ARS plasmid, the

conserved CDEIII sequence, frequently found in point centro-

meres, is absent [14,15].

C. albicans, the most common fungal pathogen isolated from

patients, and Candida dubliniensis, a less frequently observed but

closely related species, have small regional CENs. C. albicans CENs
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were identified as binding sites of Cse4, a CENP-A homolog [16].

Each of the eight CENs has a 3–5-kb CENP-A-rich sequence

present in a 4–18-kb ORF-free region [17]. Only chromosome 5

has long inverted pericentric repeats. The AT-richness at the CEN

region is similar to the overall AT-content of the genome. CEN

formation in this organism requires a pre-existing epigenetic

memory, and thus an exogeneously introduced CEN/ARS plasmid

is mitotically unstable in C. albicans [18]. Strikingly, when a native

centromere is replaced by a transcribed, selectable gene, the

acentric chromosome often is stabilized by forming a neocen-

tromere very efficiently elsewhere on the chromosome on a region

with no sequence homology to the native centromere [19]. CENs

in C. dublineinsis have been identified by synteny analysis with C.

albicans and are found to be rich in CENP-A binding [20].

Although all the features of CdCENs are very similar to those of

CaCENs, CEN DNA sequences in these two organisms were found

to be rapidly evolving. The CEN sequence of another pathogenic

yeast, Candida lusitaniae, has been identified by bioinformatic

analysis but not experimentally verified [21]. A GC-poor trough

approximately 4 kb in length found in every chromosome is the

putative centromere in this organism.

A basidiomycetous fungus, C. neoformans, which causes fungal

meningitis in humans, has been predicted to have long regional

centromeres. Transposon (Tcn5, Tcn6)-rich sequences, located

within 40–110 ORF-free regions that are present once per

chromosome, are the presumptive CENs [22]. Moreover,

measurement of meiotic recombination rates by random spore

analysis also indicates that URA5 and ADE2 are CEN-linked in

agreement with the physical map [23]. These CENs are similar to

those of the opportunistic pathogen Aspergillus nidulins, an

ascomycete [24].

How Are Centromeres Organized in Ancient
Eukaryotic Pathogens, the Protozoan Parasites?

Topoisomerase II (Topo-II) has been implicated in chromosome

segregation in a range of organisms from yeast to humans

[25,26,27]. After DNA replication in S phase, sister chromatids

remain attached together partly by strand catenation at centro-

meres as cells enter mitosis. During sister chromatid separation,

Topo-II decatenates by creating double-strand DNA breaks

followed by passage of uncut DNA through breaks and ligation

to repair the breaks. Topo-II has even been implicated to be an

epigenetic marker for kinetochore assembly [28]. Etoposide, a

Topo-II inhibitor, blocks the ligation step and results in DNA

breaks at Topo-II binding sites [29]. In the malaria parasite

Plasmodium falciparum, an apicomplexan, an etoposide-mediated

Topo-II cleavage site was mapped to a single 10-kb region in each

of the 14 chromosomes [30]. Further analysis shows that, with the

exception of chromosome 10, this site corresponds to a 6–12-kb

ORF-free region with a highly AT-rich region of 2.3–2.5 kb that

contains a repetitive region and a core region. Both the core and

the repeat region are important for centromere function. Various

repetitive DNA elements present in these regions do not show any

interchromosomal conservation, but nucleotide content (AT-

richness) and the size of these putative CENs are strictly conserved.

Another human malaria parasite, Plasmodium vivax, has AT-rich

syntenic regions in three chromosomes [30]. Thus, both these

Plasmodium species have centromere properties similar to the small

regional centromeres found in C. albicans and C. dubliniensis

(Figure 1). Based on the syntenic locations of PfCENs, centromeres

were identified in genetically tractable Plasmodium berghei, which

causes malaria in rodents [31]. A 1.2-kb highly AT-rich (96%)

sequence found in PbCEN5 also contains a non-repetitive core and

a repetitive region. Centromere function was formally demon-

strated by cloning this region in a plasmid. The PbCEN5 plasmid

was evenly segregated and was stably maintained at low copy

number in 90% of the parasites 21 days post-transfection in the

absence of drug selection for the plasmid. A linear Plamodium

artificial chromosome (L-PAC), constructed by adding telomeres

to the CEN plasmid, was also stably maintained like a natural

chromosome. L-PAC exhibited a 10- to 100-fold increase in

transfection efficiency as compared to the circular CEN plasmid. In

another apicomplexan, Toxoplasma gondii, centromeres were

identified as binding sites of the centromeric histone CENP-A

[32]. One CENP-A binding region per chromosome was identified

in 12 of the 14 chromosomes. CENP-A binding regions were

restricted to 1663.4 kb sequences that are present in 1765.6 kb

regions largely devoid of ORFs. Etoposide-mediated cleavage in

these regions further confirmed centromere identity. Again, no

obvious sequence bias or conserved sequence elements were

detected, suggesting Toxoplasma centromeres belong to the class of

short regional centromere (Figure 1). Centromeres have been

identified in two kinetoplastid protozoans, Trypanosma cruzi and

Figure 1. Structural organization of centromeres in various microbial pathogens. (A) A schematic showing relatedness of various microbial
pathogens. (B) A table summarizing essential features of different types of centromeres identified in microbial pathogens.
doi:10.1371/journal.ppat.1002463.g001
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Trypansoma brucii, the causative agents of Chagas disease in Latin

America and of sleeping sickness in humans and nagana in cattle

in sub-Saharan Africa, respectively (Figure 1). By telomere-

mediated chromosome truncation, a 16-kb GC-rich transcription-

al ‘‘strand switch’’ domain was identified as the centromere in T.

cruzi [33]. Etoposide cleavage analysis also confirmed that a Topo-

II binding site colocalizes to this single locus on T. cruzi

chromosome I. This 16-kb region has degenerate retroelements

(VIPER/SIRE) and non-LTR transposons but does not contain

any satellite repeats. This region is also flanked by transcriptionally

quiescent polycistronic satellite units. T. brucii also has a similar 11-

kb GC-rich domain in a syntenic region between directionally

oriented gene clusters that contain degenerate retroelements

(DIRE) and a 5.5-kb AT-rich stretch with 58-bp degenerate

repeats [34].

What Are the Factors That Determine CEN
Identity?

Since centromeres in certain pathogenic budding yeasts form in

a DNA sequence-dependent manner while in most other microbial

pathogens centromeres form in a sequence-independent manner, a

universal mechanism determining centromere identity seems to be

improbable. The best example of DNA sequence-independent

assembly is the formation of neocentromeres on non-native loci

with no apparent sequence similarity when a native CEN is deleted

or inactivated. Centromeres are found to be clustered and occupy

a distinct locus at the nuclear periphery in most yeasts, including

C. albicans [17] and C. dublineinsis [20], as well as in the protozoan

parasite T. gondii [32]. A three-dimensional higher order

chromatin structure (clustered centromeres) that occupies a

favorable nuclear space (such as the one with high CENP-A

concentration) may be the determining factor for CEN identity in

these organisms. CENs have been shown to replicate earliest in S

phase in C. albicans [35], which indicates that replication timing

can be a determinant of CEN identity. Certain post-translational

modifications of canonical histone H3 can also support CEN

formation [36]. Di- and tri-methylated Lys 9 of histone H3

(H3K9Me2/H3K9Me3), marks associated with pericentric het-

erochromatin, have been shown to be enriched at centromeric

regions of T. gondii [32]. Interestingly, although H3K9Me3

molecules are enriched in transcriptionally silent loci, centromere

regions in P. falciparum are largely devoid of such molecules. Non-

coding RNA (ncRNA) and the RNAi machinery also play a role in

centromere formation in certain eukaryotes [36]. In P. falciparum,

short ncRNAs (75–175 nucleotides) transcribed from both strands

of CEN regions localize to the nucleus [37] even though Plasmodium

species lack components of the RNAi machinery. T. bruceii is the

first protozoan parasite in which RNAi has been shown to be

functional [38]. Disruption of RNAi causes defects in chromosome

segregation in this organism [39]. Strikingly, the related species T.

cruzi does not have RNAi machinery. Thus, a variety of factors,

often species specific, may contribute to formation of a functional

CEN, but elucidation of a specific mechanism that determines CEN

identity in most pathogenic eukaryotes is a puzzle to be solved.

Understanding centromere-kinetochore structure-function of these

pathogens can help us develop specific drugs with fewer side effects

to combat microbial infection.
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