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In smart piezoelectric laminated structures, the interfaces between the piezoelectric layers and the host laminate are prone

to weak bonding due to the high transverse shear stresses that are induced under electrothermomechanical loading. The

weak interfaces may severely affect the actuation and sensing performance and consequently the integrity of the smart

structure. In this work, an analytical solution is presented based on the three dimensional piezoelasticity for dynamic

response of angle-ply piezolaminated cylindrical shells in cylindrical bending with interlaminar bonding imperfections.

The piezoelectric layers are radially polarized and hence useful for structural applications. The discontinuities in

displacement, electric and thermal fields at the imperfect interfaces are modelled using a generalized spring layer model.

The formulation includes the provision for prescribing potentials at interfaces, which is useful for effective actuation/

sensing. The effect of imperfection on the through-thickness distributions of displacements and stresses, natural frequencies

and steady state harmonic response are studied for hybrid composite and sandwich shells. The numerical results will also

serve as useful benchmark in assessing simplified theories incorporating interface imperfections.

Key Words: Hybrid Composite; Cylindrical Shell; Weak Interface; Exact Solution; Piezothermoelasticity

1. Introduction

The integration of distributed piezoelectric sensors
and actuators in advanced composite structures offers
the ability to monitor and/or control the shape,
response and health of these structures, which has
found application in many engineering systems such
as aircrafts, submarines, automobiles and sport
products. These laminated structures, however, often
suffer from imperfections in bonding between layers
that are developed during the manufacturing process
and/or service, causing delamination/debonding in the
extreme case. The reduction in bonding strength may
be due to the degradation or debonding of thin
adhesive layer between the adjacent plies. The
situation aggravates in the piezoelectric laminates due

to high interfacial stresses at the elastic-piezoelectric
interfaces. Whereas in elastic laminates the weak
bonding affects the structural integrity and response,
it significantly alters the required actuation voltages
and measured sensory signals in smart piezolaminated
(hybrid) structures. This effect, therefore, must be
understood and estimated accurately for reliable
design of laminated structures as well as of the active
control and health monitoring systems. This paper
deals with the dynamic response of hybrid
piezoelectric angle-ply cylindrical shells with weak
interfaces in electrothermomechanical environment.

In case of a non-rigid interface, displacements
are not continuous across the interface, while the
tractions must be continuous from equilibrium
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considerations [1]. The transverse displacement
discontinuity is likely to cause discontinuity also in
the thermal and potential fields across the weak
interfaces. The simplest way of modelling the weak
interface is to consider that the jumps in the
displacements are proportional to the respective
tractions, giving rise to the linear shear slip [2-4] and
spring layer models [1, 5, 6], which have been
frequently employed to model weak bonding in elastic
laminates. The effect of bonding imperfections on
the response of hybrid piezoelectric beams and plates
has been studied using two dimensional (2D) laminate
theories [4, 7]. However, analytical solutions based
on coupled three dimensional (3D) piezoelasticity are
important because these do not make any a priori
assumptions on the variations of the field variables
across the thickness, and thereby, provide important
benchmark to assess the accuracy of simplified 2D
theories wherein assumptions are made on the
through-thickness distributions of the field variables.
Chen and his coworkers presented 3D piezoelasticity
solutions for static response of simply supported
piezoelectric laminated rectangular plates [8] and
cylindrical shells [9] under electromechanical
loading, incorporating bonding imperfections using
the spring layer model. Their solutions, however,
consider that the electric potential can be prescribed
only at the surfaces and not at the layer interfaces.
The latter case is extremely important in practice
though. For example, the interface between the
piezoelectric layer and the elastic substrate should
be grounded for achieving effective actuation and
sensing. Governing differential equations of
piezoelasticity for cylindrical shells involve variable
coefficients as a function of the radial coordinate.
The solution presented in [9] approximates these
coefficients to be constant within sublayers. Also, for
the cylindrical shell, they considered poling of the
piezoelectric layers along the axial direction, whereas
effective sensing and actuation in shell structures call
for polarization in the radial direction (i.e., the
thickness direction). Dumir ef al. [11] and Kapuria
et al. [12] presented analytical 3D
piezothermoelasticity solutions respectively, for static
and dynamic response of perfectly bonded hybrid
angle-ply cylindrical shell panels with radially

polarized piezoelectric layers, without making the
approximation of the coefficients of the differential
equations being constant in sublayers. A 3D analytical
solution for the static response of hybrid cylindrical
shell panels with weak interfaces has been presented
[15] using the spring layer model, and the effect of
weak bonding on the actuation and sensing authority
of piezoelectric layers has been investigated.

This paper presents an analytical solution based
on the 3D piezoelasticity for dynamic response of
angle-ply hybrid laminated cylindrical shells in
cylindrical bending with weak interfacial bonding.
The piezoelectric layers are radially polarized. The
spring layer model is used for the imperfection, by
considering the jump in displacements, electric
potential and temperature across the non-rigid
interface to be proportional to the associated
tractions, transverse electric displacement and heat
flux, respectively. The solution includes the case
when, besides at inner and outer surfaces, electric
potentials are prescribed at layer interfaces also for
effective actuation and sensing of piezoelectric layers.
The modified Frobenius method [11] is used to solve
the system of differential equations with variable
coefficients. The effect of imperfect bonding on the
static, free vibration and forced vibration response
of smart composite shells is illustrated.

2. Governing Equations

Consider an angle-ply laminated circular cylindrical
panel (Fig. 1), which is infinitely long and simply-
supported at two edges parallel to the axial direction
z. The laminate has L layers which can be orthotropic
elastic or piezoelectric with orthorhombic class mm?2
symmetry with poling along the radial direction. The
piezoelectric layers act as distributed actuators and
sensors which are surface-bonded or embedded. The
span angle, mean radius and total thickness of the
shell are denoted by ¥, r, and h, respectively. The
simple supports at 8 =0,y are such that only the
radial displacement u is constrained and the tractions
along directions @ and z are zero. These ends are
electrically grounded and maintained at stress free
reference temperature. The thickness and the inner
radius of the kth layer numbered from inside are
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Fig. 1: Geometry and co-ordinates of laminated hybrid cylindrical panel

t® and 5. The fibre orientation with respect to

0 -axis is B . The interface between the kth and

(k + 1)th layers is named as the kth interface with
r=r*" . Henceforth the layer superscript is omitted

unless needed for clarity.

The displacements along r,6 and z directions
are denoted by u, v and w, respectively. The panel is
subjected to electrothermomechanical load that does
not vary along longitudinal coordinate z. Thus, all
response entities, namely, displacements v, w, u;

electric displacements D,,D,,D, ; electric potential
¢ ;electric field E,, E_, E, ; temperature rise 7; strains
E,,€,,E s V., V.e'Ve, s and stresses 0,,0,,0,,

7,,T.9,Ty,,» are independent of z. The strain-

displacement relations and the electric field-potential
relations for this generalized plane strain condition

are given by,

E=u+v,0)/r, y,=w, E,=-¢,/r
€, =0, Vo=@Wwy—v)r+tv, E =0
& =U,,, 79Z=W,g/r, Er=_¢,r,

. (D

A subscript comma denotes differentiation with
respect to a spatial coordinate. For the cylindrical

coordinate system (r,6,z) with the material axes x,

and x, at an angle £ to the inplane axes @ and z,
and x, along transverse direction r, the 3D constitutive
equations of a piezoelectric material with class mm?2
symmetry are given by:

€ Sio S S 000 S o
E | |52 Sn S 0 0 50,
£, S5 Sy sy 000 5| 0,
2 ) 0 0 0 5, 55 0]o0o,
v.| [0 0 0 5 5 0o,
Vo:] [Sis S S 0 0 g ] 0. |
0 0 d, [, |
0 0 d, E 2,
0 0 s E. |+ %,
dy O E 0
ds dys O ' 0
00 d_se_ | % |
(2)
o]
p,JJo o o d d o]
D |=|0 0 0 d, d, 0 j
D, ‘731 ‘732 ‘733 0 0 ‘736 :
Tro
| Zo:
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& & O|E | |0
+l&, &, O | E |+|0]|T, 3)
O 0 6_‘33 Er q}
where E,j,g,»jflj,O_li and ¢; are the elastic

compliances, piezoelectric strain coefficients,
dielectric constants, coefficients of thermal expansion
and pyroelectric constant, transformed into the
structural coordinate system @, z,r . The equations
of momentum, charge and thermal equilibrium
without body force, charge source and heat source
are

T, t04,/T+2T,,/r=pv .. (4
T,,+t0, ,/r+2tz /r=pw ..
O, +T, ,/r+(0,—0,)r=pi ... (6)
D..+D,/r+D,,/r=0 )]
K (T, +T, /r)+k,T,/r* =0 (8

where k's (i=6,r) are the coefficients of thermal

conductivity and an overdot (-) denotes
differentiation with respect to time.

3. Boundary Conditions

Dimensionless circumferential coordinate £ and

thickness coordinate g“‘) for the kth layer are

introduced as

E=0/y.0" =(r—n"")/1" with

k-1
n=r —hi2+ Y 1 . (9)

i=1

such that & and £&“ vary from 0 to 1. Let the

prescribed harmonic pressure, ambient temperature
and the electric potential or the electric displacement
at the inner (i =1) and outer (i = 2) surfaces of the

shell be pi(f,l), 7:(5,1') > ¢i(§’t) or Di(g’t) >

respectively. The panel is subjected to a viscous
resistance at the outer surface, proportional to the
radial velocity with viscous damping coefficient c,.
Such a damping can model the viscous resistance
force of the surrounding medium of the panel. Thus
the boundary conditions are:

at&=0,1: u=0, 0,=0,

7,,=0, ¢=0, T=0 .. (10)
at r=r: 0, =—p —cu(,r,,tb),
7,=0, 7,=0, ¢=¢, or D,=D, ... (11)

at r=r, .0, =—-p,
7,=0,7,=0, §=¢, or D, =D, ... (12)
at r=r:—kT, +hT=nhT (1),

at r=r,:—kT,+hT=hT, (&1 . (13)

where h, and h, are the surface heat transfer
coefficients at the inner and the outer surfaces of the
panel. The special case i, = h, = oo corresponds to
the temperature of the surfaces being prescribed as
T, and T,. The case of known prescribed electric
potential ¢ = ¢, at a surface corresponds to the closed
circuit electric boundary condition and the case of
known electric charge density, D = D, corresponds
to the open circuit condition.

4. Modelling Weak Interfaces

For the imperfect interfaces, the displacements, the
electric potential as well as the temperature field at
the interfaces are discontinuous while the tractions
at the interfaces, the radial electric displacement D,
and the heat flux along radial direction are always
continuous. The continuity conditions can be
expressed as

k k+1
[(Trg’T,-zaO-r9Dr)|§=|]( ! :[(T,-gaz-zr70-r’Dr)|§=()]( +)

[k, Ty 101 =[k,T oo 111*7, k=1,..,L-1
.. (14)
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except for D for the interfaces at k = n,= L..,L,
where the electric potential is prescribed. For
actuation of embedded or surface bonded
piezoelectric layers, electric potential is prescribed

at L interfaces. Let the prescribed potential at such

aninterface n be @ (&) cos wt . For suchinterfaces,

the continuity condition for D in Eq. (14) is to be
replaced by the condition

... (15)

[¢ oy ]W =P (&), gq=1...L

a

The spring layer model adopted by Chang et
al. [1] for the displacement field jumps at the
imperfect interfaces and by Chen et al. [9] for electric
potential discontinuity is considered herein also for
the thermal field discontinuity. According to this
model, the jumps in the displacements (, v and w),
¢ and T at the weak interfaces are proportional to
their respective traction components, D and radial
heat flow rate, the proportionality constants being
spring constant type interface parameters. These
continuity conditions can be described as

[(O-r) |§:1 ]m _ _[(O-r) |;:o ](M)J _ ka)[u(kn) _ u(k)]’

* T (k+1) +
[(Tgr)|§=1] = [(Tr€)|§=()} :|=Kék)[v(k Dy,

(k)

[(Tzr) |§=1:| -

[(TN) Ig:o ](k+l) } _ K;k)[w(lml) —w],
... (16)

[(D,-) |;=1 ](k) _ [[(D}_) |;=0 ](k+l>}: Ke(k)[¢(k+l) _ ¢(k)]’

(k+1)

(k10 01]" =[k T, 1, /1]
— ka) [T”‘*” —T“‘)]

where, K* (i=r,0,2),K" and K" are the non-
negative imperfect interface coefficients for the kth
interface for mechanical, electrical and thermal fields,
respectively. The dimensionless generalized

compliance coefficients, R{", are defined as

R =l 1K h1(i = 1,0, 2),

RY =& K" hland R = k" I[K}"h]
- (17)

R =0 corresponds to perfect bonding and

Rg() = oo indicates complete debonding. A non-zero

radial compliance coefficient, R, characterizes the
radial opening delamination, whereas the shear slip
delamination is characterized by non-zero tangential

compliance coefficients, R, and R_. For radial

opening delamination mode, the radial stress at the
interface should not be negative to allow no
penetration. The electric and thermal imperfections
(i.e. non-zero values of R, and R, ) are applicable only
when radial opening delamination is present.

5. General Solution of Governing Equations

The solution of the governing field equations for the
kth layer, satisfying the simply supported boundary
conditions (10), is taken in the following Fourier
series form:

(u,0,,04,0,,7,,,0,D,,T)

= 291 (u,0,,0,,0.,7,.9,D,.T), " sinnné

n=1

(wu,w,7,,7,5,D,)

= 29‘ [(vow,T,,,T,,D,), " 1cosnaé ... (18)
n=1

where, 9(.--) denotes the real part of the complex

number (---) . For static loading, @ =0. To satisfy

the termwise conditions (11)-(16), the loading
functions are similarly expanded as

(p[’¢[’D[’T;’¢i)

- Zl% [(p.¢,.D,.T,,®,), e Isinnaé ... (19)

Substituting expansion of 7" from Eq. (18) into
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the heat conduction equation (8) yields

T +T [r—uwT /1’ =0,

n,rr n,r non

u, =nk, k)" n=nxly. .. (20)

On substitution of the expansions (18), the
governing partial differential equations given by Egs.
(1)-(7) reduce to eight first-order ordinary differential
equations (ODEs) in terms of 8 independent variables
inX :

n

X,=lv, w,u, 0,7, 7, ¢ DT. (@2
which appear in the boundary and interface conditions
given by Eqgs. (10)-(16) and five algebraic equations
for the remaining variables 0, ,0., 7, ,D,,D, .
The algebraic expressions are

0y =p, (v, —u,)/r+np,w,/r

+pu0, +pD, +1T,
o, =py (v, —u,)r+npyw,/r

+Pu0, +pyD, +1,T,

To, = P (v, —u,) r+npg,w,/r

0 0 0 0 3,

0 0 0 0 3

0 0 0  p+5, 0
|=p0* 0 0 0
A = —-pw* 0 0

0 pj + 673’3

0
0 0
0 0 —pw’ 0 0
0 0
0 0

S45

S O O O O

O O O O O O o O

>

12

S2

>
N

S62

29} >

where n =nz/y and

A

N

> O,

16
Sa6

Se6

_ A=t A =1, A =
1, =—(8,00 + 8,0, + 5,50)

S o O

S O O o O

P60, + PesD, +1T,
D,, = dl4z-zr,, + dlSTrH,l —ne g, lr

D, =d,t, +dyt,, —1E,0, /1 .. (22)

A _(_3 72 A 77 A 77
Pin = =S8i65 Dig = (=8,d3, + 5,55, + 5;6d5)

.. (23)

~r 71

Si6
A7
S26

~s
Se6

The eight first-order ODEs with variable
coefficients can be expressed in matrix form as:

X, =(A+Ar+A )X, +(Q,+0Q, /T,

.. (24)

where, matrices A, A, A,, Q,, Q, are given by
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0o 0o -7 0 0 0 -ndy, 0 | [0 ]
0 0 0 0 0 0 -nd, O 0
np, np, -p/ 0 0 0 0 0 0
0 0 0 p,-1 O n 0 p t
AI = li _18 ’ Q] = _1
0 0 0 npe, —1 0 0 NPes —ntg
0 0 0 -mp, O -2 0 -—7p, —t, - (25)
np!  mpl -p! 0 0 0 0 0 t,
| 0 0 0 0 nd,, nd; 0 -1 | L 0 |
10 -7 0 0 0 -ad, 0 |
0 0 0 0 0 0 -nd, O
np, np, -p; 0 0 0 0 0
A = 0 0 0 p,-1 0 n 0 Dis
0 0 0 -, -1 0 0 -7l
0 0 0 np, O -2 0 np,g
ap!  mpl -p! 0 0 0 0 0
0 0 0 0 nd, nd, O -1 |
with - ;
T()=e”YT,¢ - 27)
P; =S50y + 553Dy + 556 P, =0
5 =531+ S5t + St + O T from Eq. (27) is substituted in Eq. (20) and the
-, -, -, coefficient of each power of { is equated to zero. In
Pid =d;\py; +dy, Py +dy Dy,
the coefficient of {°, setting T =T =0 gives the
L =dt +dt, +digte + 3,1 & .. (20) quadratic characteristic equation for 0 with real roots

5.1 Solution for the Thermal Problem

Equation (20) represents an Euler-Cauchy type
differential equation, whose solution can be obtained
in closed form in powers of r. But, to obtain the
particular solution of Eq. (24) in simple form, the
modified Frobenius method [11] is used wherein the
solution is expanded in terms of the product of an
exponential function and a power series in the

dimensionless thickness coordinate {: (0<  <1)

:01’:021

spP+p—u1s=0, s=rlt,

popy=| 12 {142} 125 . (28)

Equating the coefficient of ¢ to zero for i > 0,

following recursive relation is obtained for Tn’ (j=
1, 2).
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T) =—liQ2p;s+2i- DT/
{5020, (4i =3+ (i~ — @2}/ 5)T)
2 : j
+{20] +p;2i-3)/5}T]

+H(o: /)T 1/ sii+D], 22 .. (29)

with 7/ =T/ =T/ =0. The general solution in

terms of arbitrary constants A} is

... (30)

T, (§)=§2:e’)’§(iT,¢f§’)Af

5.2 Solution for the Coupled Electrothermo-
mechanical Problem

The complementary and particular solutions X ¢ and

X7 of the system of ODEs with variable coefficients

given by Eq. (24) are constructed in the same
functional form using the modified Frobenius method.
Thus, the complementary solution is

X =4S 7

i=0

.. (3D

= X, =e*Y[AZ +(+DZ, )"/t (32)
i=0

This method differs from the conventional
Frobenius method [10] in which the solution is
assumed as a product of .+ and a power series in . It
can be readily seen that in the modified method, one
term solution in the power series ensures the exact
solution of Eq. (24) for the case of constant

coefficients with values corresponding to =0 (i.e.
r= R™). Consequently, this method yields much
faster convergence compared to the conventional

Frobenius and power series methods.

We substitute Eq. (31) these into the
homogeneous part of Eq. (24) and equate the

coefficient of each power of ¢ to zero. Choosing Z,

= 0 in the coefficient of ° and equating the

coefficient to zero yields:

AZ,=AZ, with [An+A+AIR]s
... (33)

Equation (33) represents an eigenvalue problem
of 8 x 8 real matrix A, whose solution yields eight

pairs of eigenvalue A, and eigenvector 7] .Equating
the coefficient of (’ to zero for i > 0 yields the
following recursive relation for Z/ corresponding

to each eigen-pair (4,2/),j=1, ..., 8
Z, =ldy(A;,0Z] +d,(A,,)Z],

+d,(A)ZL, G +1),  ix1 .. (34)

with d (A,i)) = A= (A+2i)/s)], d,(A,i) = [2rA4,
+ A —QAs+i-DIl/s", dy(A) =tV A -AD/s
and Z/ =0, Z’, =0. The eigenvalues of A are either
real or occur in complex conjugate pairs. The solution
for the complex conjugate pair, however, can be
expressed in terms of two real constants [11]. Thus

the complete complementary solution X ¢ ({) can be
expressed in terms of eight real constants C as

X ()= iFj" @)c: .. (35)

where, the functional form of F;'({) will depend on
the nature of A, . The particular solution X7 () can
be constructed in the same form as:

X1(O= Y (i v )A_;’

Jj=1

2 oo
=Y GIOA  with Gr=e* ( Y’ ")
j=1 i=0

i

... (36)

where, Yl’ is obtained from the recursive relation:
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Yiil =[RO, + Ql)s_]Tn{

+(2RQ, +Q))s’T/

iy

=2 j
+1Q,s Tn,-,z

+dy (0, DY +d, (0, DY/, +dy (P )Y, 1/ +1)
.. (37)

with ¥/ =0 and Y’ =Y, =T] =T/ = 0.Thus the
general solution of the Eq. (24) is

X, ()=X(O)+X] ()

8 2
=2 F T+ Y, Gr(E)A .. (38)
j=1 p=1
The infinite power series in F}({) and G/ ({)
are truncated to finite number of terms such that the
contribution of the first neglected term is less than a
stipulated small number 7 (= 10-'%). The 2L constants
(A;.’)(k)’s for L layers are determined from the 2L
thermal boundary and interface conditions (13), (14),
and (16),. The 8L constants (C 7 ) are obtained from

the 8L boundary and interface conditions (11), (12),
(14), (15) and (16). T, and X, are then completely
determined from Eq. (30) and Eq. (38). Substitution

of these entities in Eq. (22) yields D, , D, , 7,, ,
0, , o0, .Thevalues of various entities are computed

at any point using expressions (18) by taking finite
number of terms in the fourier series.

For free vibration problem, the system of 8L

linear algebraic equations for coefficients (C7)" is

homogeneous. For its nontrivial solution the
determinant of the coefficient matrix K of the system

of equations is equalled to zero. The roots @, of the

resulting equation give the undamped natural
frequencies. These roots can be obtained numerically
using the method of bisection. But, sometimes, it
leads to roots which do not satisfy the conditions of
zero transverse stresses at inner and outer surfaces.
This problem was successfully overcome by using
the golden section search method to determine @
for which | det(K) | becomes zero.

6. Numerical Results and Discussions
6.1 Validation

The present formulation and the computer program
developed are validated by comparing the results
for natural frequencies of an elastic cylindrical panel
with imperfect interfaces with the 3D elasticity
solution presented by Cai et al. [6]. A five layered
cylindrical panel of layup [15°/—60°/90°/-75°/45°]
(stacking sequence mentioned from bottom to top),
with equal thickness for all plies is considered for
the purpose. The material properties are considered

as: Y /Y. =25 G, /Y;=05G/Y;=02, ;i =
Uz =0.25. where, Y, and Gl.j denote Young's modulus

and shear modulus, and v; denotes the Poisson's ratio

that corresponds to a contraction in direction j when
an extension is applied in direction i. Subscripts L

Table 1: Natural frequencies ( w") of five layered [15°/-60°/90°/-75°/45°] composite cylindrical panel in cylindrical bending

noS R R=02 R=04
Present Cai et al. [6] Present Cai et al. [6] Present Cai et al. [6]
1 4 0.8009137 0.800913 0.7451011 0.745101 0.7015897 0.701589
8 0.6039626 0.603963 0.5785204 0.578520 0.5564013 0.556401
10 0.5229336 0.522934 0.5061991 0.506199 0.4911400 0.491140
20 0.2972891 0.297289 0.2941579 0.294158 0.2911329 0.291133
2 8 1.9200775 1.920080 1.7876751 1.787670 1.6841265 1.684130
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and T indicate, respectively, directions parallel and
perpendicular to the fibres. The span angle of the
panel is taken to be y = /3. The panel has isotropic
tangential  interfacial
RY =Y, /hK = Y /hKY, equal at all the

interfaces. The dimensionless frequencies

imperfection i.e.

(a)* =wr.plY, ) for two lower modes n = 1 and 2

for different values of the thickness parameter S = R/
h are compared in Table 1. It is observed that the
present results match exactly with those of [6].

6.2 Static Response

Results for the static response under
electrothermomechanical loading are presented for
two simply supported hybrid cylindrical panels (a)
and (b) (Fig. 2), each with span angle ¥ = 60°. The
elastic substrate of panel (a) is a four-layer cross-ply
[0°/90°/90°/0°] graphite-epoxy (Gr/Ep) composite
while the substrate of panel (b) is made of five-layer
[0°/90°/0°/90°/0°] sandwich laminate with composite
faces and a soft core. A PZT-5A layer of thickness
0.1/ with poling in radial direction is bonded to the
outer surface of each panel. The interface between
the substrate and the piezoelectric layer is grounded.
The material properties are selected as [12].

(Y}, ¥y, Y3, Gy, G, Gy (2,05, 055) 5 (Kys Ky,
k), vi,v,,v;1=(Gr/Ep): [(181,10.3,10.3,7.17,2.87,
7.17) GPa, (0.02,22.5,22.5) x 10°K~!, (1.5,0.5,0.5)
W/mK, 0.28,0.28,0.33]

Face: [(131.1,6.9,6.9,3.588,2.3322,3.588) GPa,

(0.0225,22.5,22.5) x 10°K!, (1.5,0.5,0.5)W/
mK, 0.32,0.32,0.49]

Core: [(0.2208,0.2001,2760,16.56,455.4,545.1)
MPa, (30.6,30.6,30.6) x 10°K~!, (3.0,3.0,3.0)W/mK,
0.99,3x 1075, 3 x 107]

PZT-5A: [(61.0,61.0,53.2,22.6,21.1,21.1) GPa,
(1.5,1.5,2) x 10K, (1.8,1.8,1.8)W/mK,
0.35,0.38,0.38] and [(dy;, dyy, dyss dys dyy),
(T ThoasT13) 1 = [(<171,-171,374,584,584) x 10-12 m/
V, (1.53,1.53,1,5) x 10 F/m]

where, 7], denotes the electric permittivities. The
following load cases are considered

L. Pressure p, = —p sin( 776/ y ), applied on the
outer surface,

2. Actuation potential ¢=¢, sin(z6/y )

applied at the outer surface,

3. Temperature, T(h/2) = -T(-h/2) = T,,
sin( 76/ y ).

Outer surfaces of panels are in OC condition

(Dr I,:,,":O) for load cases 1 and 3 and in CC

condition for load case 2. The results for the above
load cases are non-dimensionalised as

Load case 1 : (iZ,v) =10(u,v)Y, / hS* p,,
6,.7.,)=(0,,57,,))/5p,

Load case 2 : (,v) =10(u,v)S’d,@,,

(__PZrsA 0° \ TCoin 0.1h _pzisa_o 7L o
) GiEp 0° / 0.225h ol r Gr/Ep g l 0.225h
’h
o 0.225h \ GrEp  -° / 0.225h
T Gt %0 A 0.70h .
( Gi/Ep 90° ( 0.225h L GvEp  -f° » 0.225h
-t
GiEp 0° 0.05h } GrEp B ( 0935
> i ) &R 0.05h
Panel (a) Panel (b) Panel (c)

Fig. 2: Layups of hybrid cylindrical panels (a), (b) and (c)
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(G,.T.5)=(0,,57,,)h/10Y,d,@,
Load case 3 : (i,V) = 10(u,v)ha,ST,,
(04,7,4)=10(0,,57,,)/ & Y T,

where, S =r /h, dy=374x 1072, CN"". Y, and o,
take values of ¥, and «, of Gr/Ep for panel (a) and

of the face for panel (b). The compliance coefficients
at an imperfect interface are takenas R, =R _=R.In

order to avoid possible material penetration
phenomenon at the imperfect interface, R, and hence
R, and R, are taken as zero i.e. only shear slip
imperfection is considered.

The through-thickness distributions of various
entities for the hybrid cross-ply composite and
sandwich panels are shown in Figs. 3, 4 and 5 for the
pressure, potential and thermal loads (load cases 1, 2
and 3), respectively. For pressure and thermal loads,
all the interfaces are considered to have shear slip
imperfection with the same value of R. For potential
load, only the elastic-piezoelectric interface is
considered weak with shear slip imperfection. It may
be noted that the discontinuity in the in-plane
displacement at the interfaces characterizes slip
imperfection behaviour. Plots for the pressure load
case show that the presence of imperfection causes
an increase in the in-plane displacement v, deflection

w and inplane stress &, in all layers. But, the

transverse shear stress 7, is reduced in middle layers,

while increasing in the outer layers. The nature of its
variation across the layers changes with the interface
compliance. In the hybrid sandwich shell, the

imperfection may cause very large increase in 7, in

the piezoelectric layers, which is not so in hybrid
composite shell. In the case of actuation of the
piezoelectric layers (load case 2), the imperfect
bonding at piezoelectric-elastic interface prevents the
expansion of the piezoelectric layer from being
transferred to the elastic substrate through
interlaminar shear. As a result, the deflection as well
as the inplane normal and shear stresses reduce with
imperfection at this interface. Under thermal loading,

the presence of imperfect bonding at all interfaces
causes an increase in the displacements # and w,
and a decrease in the stresses 0, and 7,, as
expected. However, no qualitative change due to
imperfection is observed in the through-thickness

variations of various response entities in the potential
and thermal load cases.

6.3 Dynamic Response

For the dynamic response, a hybrid cylindrical panel
(c) [Fig. 2] made of a four-layer angle-ply composite
substrate and a PZT-5A layer of thickness 0.1/
bonded to its outer surface is considered. The
interface between the substrate and the piezoelectric
layer is grounded. To avoid the possible material
penetration phenomenon at the imperfect interface,
only slip imperfection is considered. The undamped

natural frequency @, is non-dimensionalized as

w,=w,r, S(p,!Y,)"* with Y;=10.3 GPaand p,
= 1578 kg/m?>.

The effect of magnitude and location of
imperfection on the undamped natural frequencies is
shown in Fig. 6 for the first three modes of vibration
of the shell panel with ply angle £ = 30°, span angle

¥ = 60° and mean radius to thickness ratio S = 10.
The outer surface of the panel is in closed circuit
condition ( ¢ Ir:,(' =0). The plots show that the natural
frequencies decrease with the increase in imperfection
compliance R, as expected, due to reduction in the
bending stiffness of the panel. The change is higher
for higher modes. Also, the imperfection at interfaces
farther from the surface, has larger effect on the
flexural frequencies. Fig. 7 depicts the variation of
w, with ply angle for the panel with the same
imperfection compliance at all interfaces. It is
revealed that the reduction in @, due to imperfect
bonding is higher at lower ply-angles. It is observed
from Fig. 8 that the fundamental frequency of
shallower shells is more affected by imperfection as
compared to deeper shells. The effect of thickness

parameter on @, of panel (¢) with imperfect
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interfaces is shown in Table 2. For the fundamental 2. Electric potential ¢, = ¢, applied at outer

frequency, the imperfection has larger effect in thicker
shells, but the trend changes in higher modes.

by applying a harmonically varying uniform offset
patch load in order to excite multiple modes.
Following load cases are considered:

surface between §=0.1y and 6 =0.4y .

An uniform imperfection is taken for the
pressure load case while only the elastic-piezoelectric
interface is considered weak in the potential load case.
The results are non-dimensionalized as in Sec. 6.2.

The steady state harmonic response is studied

The dimensionless damping parameter  is defined

1. Patch pressure p, = —p, applied at outer as ¢ = c¢S/2 pyt,w,. The deflection response is

surface between @ =0.1y and 6 =0.4y.

LI e o B R DU o e e e e B B B I F O o s e B S R AL B B
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6 [———- 3rd interface imperfect —
[ — — 4dth interface imperfect 7
[ 1%
4 N\ eI =
2 —
P SN I B ) IFETEENIN RFRRPENE EPEPRFI EFRPEPE (TS NI EPAPRFIT SR S
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(a) Load case 1

Fig. 6: Effect of magnitude and location of imperfection on natural frequencies 66” of panel (c)
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Fig. 7: Effect of ply angle on the imperfection sensitivity of natural frequencies 65” of panel (c)
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Table 2: Natural frequencies a_)” of hybrid angle-ply
composite panel (c) [ 5 =30°, = 60°]

n N R=0 R =50 R =100 R =200
1 5 4.27846 2.50029 2.09013 1.77939
10 5.26047 3.80321 3.20026 2.62535
20 5.64834 4.98556 4.52966 3.92999
2 5 13.1066 7.50369 6.72086 6.21860
10 19.4649 11.3933 9.51598 8.09023
20 23.9067 17.3148 14.5756 11.9583
3 5 22.2610 13.9274 13.0527 12.5314
10 36.3036 20.3722 17.6227 15.7376
20 49.8723 31.5221 26.1133 21.6402

computed at the center of the patch loading
(8 =0.25y ). Converged results for deflection for the

patch loading are obtained with number of Fourier
terms N = 30, in both load cases.

The non-dimensionalized steady state amplitude
of deflection u, is plotted against the forcing
frequency ratio @ /w, in Fig. 9 for undamped (¢ =
0) and damped ( ¢ =0.1) vibration of the shell panel
under pressure excitation. The panel has ply angle
B =30° span angle ¥ = 60°and S = 10. Itis

observed that location as well as amplitude (for

Table 3: Deflection amplitude 17, . of hybrid panel (c) under patch pressure excitation ( @ / w, =0.7)

c=0 c=0.1
R o) S=5 S=10 S=20 S=5 S=10 S=20
0 30° 0.24496 0.15167 0.12627 0.24387 0.14911 0.11859
45° 0.36156 0.24107 0.20744 0.35995 0.23702 0.19485
60° 0.55591 0.41114 0.36966 0.55347 0.40431 0.34739
50  30° 0.71891 0.30189 0.16706 0.71570 0.29689 0.15700
45° 0.91596 0.40450 0.25089 0.91188 0.39781 0.23576
60° 1.18160 0.57971 0.41276 1.17640 0.57016 0.38797
100 30° 1.01000 0.42589 0.20533 1.00540 0.41887 0.19304
45° 1.31690 0.54758 0.29228 1.31100 0.53857 0.27474
60° 1.70280 0.73640 0.45473 1.69530 0.72434 0.42750
200 30° 1.36810 0.62552 0.27577 1.36190 0.61520 0.25937
45° 1.88880 0.79434 0.37023 1.88030 0.78130 0.34817
60° 2.55800 1.02490 0.53599 2.54670 1.00820 0.50407
Table 4: Deflection amplitude of hybrid panel (c) under patch potential excitation ( @ / w, =0.7)
c=0 c=0.1
R o) S=5 S=10 S=20 S=5 S=10 S=20
0 30° 2.72800 2.34900 2.20630 2.71670 2.31180 2.07870
45° 3.97050 3.58950 3.43490 3.95390 3.53240 3.23650
60° 5.57350 5.35750 5.26800 5.55030 5.27280 4.96540
50  30° 1.66290 1.96860 2.09470 1.65570 1.93670 1.97270
45° 2.64890 3.10790 3.29290 2.63750 3.05760 3.10160
60° 4.16730 4.85860 5.12390 4.14940 4.78090 4.82850
100 30° 1.21140 1.72080 1.99960 1.20610 1.69270 1.88250
45° 2.02250 2.77420 3.16850 2.01370 2.72900 2.98360
60° 3.38960 4.47900 4.99190 3.37490 4.40680 4.70310
200 30° 0.76480 1.39000 1.84340 0.76152 1.36710 1.73470
45° 1.36350 2.30900 2.95870 1.35760 2.27110 2.78500
60° 2.47990 3.90940 4.75890 2.46910 3.84590 4.48220
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Fig. 10: Deflection amplitude of hybrid shell panel (c) under harmonic patch potential load

damped case) of peaks of the frequency response
curves change significantly with increasing
imperfection, particularly for higher modes. Similar
curves for the potential load case are plotted in Fig.
10. Here, the shift of the peaks in higher modes is
not as significant.

The effect of weak bonding on the steady state
amplitude of vibration of the shell for harmonic
excitation of cases 1 and 2 is illustrated in Fig. 11.

Steady state deflection amplitudes i, of the weakly

bonded panel under harmonic excitations with forcing
frequency @ = 0.8 w,, normalized with respect to
those without imperfection, is plotted against R for
different values of 3, y and S. Unless otherwise
specified, g = 30° W = 60° and S = 10. The
deflection amplitude increases with imperfection for
the pressure load case and decreases for the potential
load case, the rate of change being higher for smaller

ply angles, smaller span angles and thicker shells,
for both the load cases.
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Fig. 11: Effect of weak bonding on steady state deflection amplitude of hybrid shell panel (c) under harmonic pressure and potential loads

The dimensionless amplitudes of deflection u,,
for the hybrid shell (c) with span angle 60°, with and
without damping, are presented in Tables 3 and 4,
respectively for load cases 1 and 2 of forcing

frequency ratio w/w, = 0.7, for different values of

R, [ and S. These tabulated results can be used as

benchmarks in assessing the accuracy of 2D theories
and other approximate 3D solutions.

7. Conclusions

A 3D piezothermoelasticity solution is presented for
free vibration and forced harmonic response of simply
supported hybrid piezoelectric cylindrical panels in
cylindrical bending with imperfect interfaces. The
weak interlaminar bonding is modelled by the
generalized spring layer model. The piezoelectric
layers are radially polarized unlike some existing
solutions, wherein axial polarization is assumed
which is ineffective for structural applications. The
results presented herein will provide important

benchmark for assessing the accuracy of simplified
2D theories for smart shells with weak interfaces.
The numerical results reveal that the change in the
fundamental frequency for a given imperfection
compliance is higher for lower ply-angles, shallower
and thicker shells. Consequently, the rate of change
in the steady state deflection amplitude with
imperfection compliance is higher for smaller ply
angles, smaller span angles and thicker shells, for
pressure and potential excitations with forcing
frequencies close to the fundamental frequency. But
the same trend may not hold well for higher modes.
The nature of variation of stresses across the elastic
and piezoelectric layers may change due to
imperfection, which should be accounted for in the
design of such smart structures.
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