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ABSTRACT: We investigate the scalar potential of gauged N = 4 supergravity with mat-
ter. The extremum in the SU(1,1)/U(1) scalars is obtained for an arbitrary number of
matter multiplets. The constraints on the matter scalars are solved in terms of an explicit
parametrisation of an SO(6,6+n) element. For the case of six matter multiplets we discuss
both compact and noncompact gauge groups. In an example involving noncompact groups
and four scalars we find a potential with an absolute minimum and a positive cosmological
constant.
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1. Introduction

The evidence for a positive cosmological constant has led to a renewed interest in gauged
supergravity theories. The presence of a scalar potential in these theories opens the possi-
bility of obtaining, at the extremum of the potential, Vj, a nonzero cosmological constant.
In the past the interest in this field was concentrated on zero or negative values of Vj,
in view of preserving some of the supersymmetries for phenomenological applications.!
For positive values of Vp, or de Sitter solutions, supersymmetry is necessarily completely
broken.

In this paper we will investigate properties of gauged N = 4 supergravity in four
dimensions with positive V. Gauged supergravity itself contains two physical scalars,
which take values in the coset SU(1,1)/U(1). The potential due to these scalars has been
investigated in great detail in the past [fJ-[}]. Here we want to extend this work to the
case where an arbitrary number of matter multiplets is included.

There are a number of obstructions to the existence of solutions in four-dimensional
supergravities with a positive cosmological constant [, Ld, . These obstructions show up
in particular in theories obtained by dimensional reduction from eleven or ten dimensions.
However, in four dimensions much more is possible. In N = 4 supergravity one can for
instance add additional matter beyond what would be expected from string theory, one
can gauge some of the global symmetries of the supergravity theory, and one can introduce
additional parameters [[f], called SU(1,1) angles, which give the matter multiplets different
SU(1,1) orientations. Although gauged supergravities may be related to Scherk-Schwarz
reductions of higher dimensional theories, it is then still not clear how to introduce the

1For recent work in this direction see, e.g., [El, E]



SU(1,1) angles. For N = 2 theories a recent investigation [[[2] revealed that it is possible to
obtain stable de Sitter vacua. The analogue of the N =4 SU(1,1) angles played a crucial
role in [[J].

An interesting investigation of scalar potentials in extended supergravity theories was
performed in [[]. These authors also consider N = 4, but without additional matter.
They remark that in all cases considered there is a simple relation between the value of
the potential at its extremum and the masses of the scalar excitations at the extremum:

%

Vo~ —=1 .
ox? |,

(1.1)
This relation makes these examples less suitable for application in the context of inflationary
models, although in some scenarios they do not seem to be excluded (see [[[3] for a discussion
on this matter). In section P| we will make this relationship more precise for the SU(1,1)
scalars.

In this paper we further develop the formalism of gauged N = 4 supergravity with
matter, and give examples with positive extrema of the potential. In the remainder of
this Introduction we will present some basics of gauged N = 4 supergravity. The analysis
of the dependence on the SU(1,1) scalars is done in section fJ The matter scalars are
considered in section . We solve the constraint for these scalars, and discuss properties
of the potential for general matter fields. In sections fl we work out a number of explicit
examples for gauge groups SO(3)%, SO(3)2 x SO(2,1)?, and SO(2,1)*. In section [ we will
discuss some additional issues and further work.

We consider gauged N = 4 supergravity coupled to n vector multiplets. The bosonic

part of the lagrangian density reads [ff: 2

~ 11, . N 1
e”IL = —5R+ 5(a,@ o + 9 0upad’ O dg) — 577R58MZGR6“ZQS -
1 > >
_gnRSUTUZaR O Zy° Z "M 2,V — V (¢, Z) +
1 1
__F+RF;LV+S_ 1 2 o
+77RS< 4 ® ) (¢(R) ¢(R)>
1

1 ‘1)*3)
- ptRpmw+S 2B gt Rpw+S o) 1.2
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The scalars ¢, (¢! = (61)*, 9> = —(¢h2)*) transform under global SU(1,1) and local U(1),
the Z, transform under local SO(6) x SO(n), and under global SO(6,n). The scalars
satisfy the constraints

¢a¢a =1, (1.3)
R~ S
77RSZa Zb = _5ab . (14)
2The indices a, 3, ... take on values 1 and 2, indices R, S ... the values 1,...,6 + n, and the indices

a,b, ... thevalues 1,...,6. The metric nrs can be chosen as diag(—1,—-1,—-1,—1,—1,—1,41,...,+1), with
n positive entries. In comparison to [ﬂ] we have replaced the complex scalars qﬁin by real scalars Z,%:
¢ = %ZQR(G“)U, where the G* are six matrices which ensure that Z, transforms as a vector under
SO(6). This redefinition is given (in a slightly different normalisation) in [E}



Due to these constraints and the local symmetry the scalars are restricted to cosets
SU(1,1)/U(1) (two physical scalars) and SO(6,n)/SO(6) x SO(n) (6n physical scalars).

There is a certain freedom in coupling the vector multiplets: for each multiplet we can
introduce an SU(1,1) element, of which only a single angle @ turns out to be important.
These angles ar appear in the kinetic terms of the vectors in the form

Olpy = €MD, dlpy =TT, D) = MRP! 4eTRG (1.5)

The gauge group has to be a subgroup of SO(6,n). For a semi-simple gauge group the
ap have to be the same for all R belonging to the same factor of the gauge group. The
gauging breaks the global SO(6,n) symmetry of the ungauged theory.

In (I.2) we have made explicit the dependent gauge fields of the local U(1) and SO(6)
symmetries. The kinetic terms for the vectors still contain the auxiliary field TWU , which
must be eliminated by solving its equation of motion. Here it is again useful to go to a
real basis and to define T, = %TwijGaij- In this form we have KWR = TW‘LZGR. The
equation of motion for T is

1
Ty Qap + WRScI)—F,j—VRZbS =0, (1.6)
(R)
with
(EFR) R S
Qap :nRS(I)—Za Zy” . (1.7)
(R)

The vector kinetic terms can then be written as:

1 1
Luector = ——nrsFHEFM 5 ——(ln — ¢fp)) +
vecto 4 uv q)(R) (R) (R)
1 1 1
+onrsnru——F" TR Z,5(Q 2T —F 1Y + hec.. (1.8)
2 ®(p) Oy *

This simplifies in two special cases: firstly, if all SU(1,1) angles are equal (® ) = @)
we have Qup = —04®*/®, secondly, with six vector multiplets ([L.4) can be solved by
ZaR = 5aR, and Qqp = _6ab(I)>(ka)/(I)(a)-
The scalar potential reads
1 2 '
Vi, 2) = (ZZRUZSV (nTW + §ZTW> - %ZRSTUVW> ) frsT®(0) fovw ,  (1.9)
where ZBS = 7, Bz S and ZBSTUVW — e“deefZaRZbSZcTZdUZeVZfW. The structure

constants frsr = f RSV??VT are totally antisymmetric.

2. The scalar potential: the SU(1,1)/ U(1) scalars

In this section we will discuss properties of the scalar potential that are independent of
the specific matter content and choice of gauge group. The potential can be written in the
form:

V= Z <R(ij) Vi + 109 Wij) . (2.1)
0,



The indices i, 7, ... label the different factors in the gauge group G, which we will take to
be semi-simple. R and I contain the SU(1, 1) scalars and depend on the gauge coupling
constants and the SU(1,1) angles, V and W contain the structure constants, depend on
the matter fields, and are symmetric resp. anti-symmetric in the indices i, 7. We have:

RO = 995 (010, + 030,)

2
1+ r2 2r
= i9; <cos(ai —aj) 2 12 cos(a; + aj + <p)> , (2.2)
169 = 99 410, @30
= —g;gjsin(a; — a;) . (2.3)

The fields r and ¢ represent the scalars of the SU(1,1)/U(1) coset, we have solved the
constraint ([.3) in a suitable U(1) gauge as

1 o = ret®
V=72’ 2 V1—r2

In this section we will discuss the extremum of this potential for r and ¢. We introduce

1 = (2.4)

the quantities

Cy = Zgigj cos(a; = a)Vij Si = Zgigj sin(o; + a;)Vij , (2.5)
ij ij

T = Zgigj sin(ai — Ozj)Wij s (2.6)
ij

and write the potential as

1+ r2 or
T 1=—7r2 1-—192

V=C (Cycosp— Sysing) —T- . (2.7)

One finds that the extremum in ¢ is obtained for

C S

COSpy = —m | singg = ———t | (s = +1). (2.8)
\/C3 + 5% \/C3 + 5%
The equation for the extremum in r becomes, for ¢ = @y,
2rC_
P P — (2.9)
\/C% + 5%
which, for

A=C? -0 -5% >0, (2.10)

is solved by (so = +1, a priori independent of s1):

s (e
rg = ——— | 51C_ + 59 02—02—52>. (2.11)
2+ 82 T



Now consider the signs s; and so. The condition rg < 1 leads to

s159C_ +4/C% —C2 — §% <0, (2.12)

which implies s159 = —sgnC_. To have rg > 0 we need s; = sgnC_, so that sy = —1.
After substitution of rg and ¢g in V', we obtain

Vo =sgnC_/C2 —C2 — 52 —T_. (2.13)

In the case that all SU(1,1) angles «; vanish, Sy = T_ =0 and C_ = Cy, and (P.9)
leads to rg = 1, which is a singular point of the parametrisation: there is no extremum.
This is the generalisation of the Freedman-Schwarz potential [[f] to the case of general
matter coupling. The sign of the potential is the sign of C_. We will not discuss this
situation any further.

If A > 0, which requires some of the SU(1, 1) angles to be different, the extremum (.13])
exists and can be further simplified by looking in more detail at C'y, S;. We find

c? — C?r — Si = Z Zgigjgkgl Vij Vii(cos(a; — o) cos(ay, — oy)

17kl
—cos(ay + a ) cos(ay, + ap) — sin(a; + o) sin(ay + o))
=2 Z Zgigjgkgl Wijl sin(ai — Ozk) sin(aj — al) . (2.14)
ij Kl

We see that the potential at the extremum in 7, depends only on the combinations
gig; sin(a; — o). This was known for gauged supergravity without additional matter, and
now turns out to be a general property.

If the condition (R.10) holds we find an extremum for the SU(1, 1) scalars. To see what
happens at the extremum it is useful to work out the second derivatives of the potential.
We will do this with respect to the variables

T =TCcosy, y=rsingp. (2.15)

One easily finds that in the extremum

9*V o*v 4 \/ﬁ o*V
= _(1_r2)28g1’10_ Ci_C+_S+7 m

ox? |,  Oy? 2

0. (2.16)

0 0

If sgnC_ > 0(< 0) the potential has a minimum (maximum) for the scalars z,y. We see
that, up to a scale factor, the second derivatives are equal to the first term in the potential
at the extremum (R.1J). The scale factor can be understood by considering the kinetic
term for the scalars. It can be read off from ([.J), and, after expressing the action in terms

of the variables x,y we find:

2
Ekin,qb = —m <8ﬂxa“£ﬂ + 8ﬂy6“y> . (2'17)
To have a proper normalisation for these fields requires a rescaling:
x—lﬂu—rf — Ly 2.18
=3 07 y=gyL—mr). (2.18)



The contribution to the action of the new scalars z’, %/, including the potential, then looks

as follows:

1/1-r2\°
to=-5(1=03) Qu'0ns +0/0) ~smC. \JO2 = 5T+ T

1
—5senCy/C2 - C} - 5% (@2 +y?) + ... (2.19)

We find that in these variables the equality Vi = m? is exact, except for the term T_ (R.4).
The reason is of course that 7_ only depends on the matter scalars and therefore does
not contribute to the second derivatives. The presence of T therefore violates the equal-
ity (L.1).

In (R.19) we also see that the (mass)? is determined by the sign of C_. The sign of C_
also determines the sign of the first term in the extremum of the potential. If we go back
to the potential itself (R.7), we see that for 7 — 1 the potential behaves as

1

v
_>1—7“

(C- —Cycosp+ Sising) . (2.20)

Therefore along the unit circle the potential goes to infinity, and the sign in this limit,
assuming A > 0, is again the same as sgnC'_. In the origin » — 0 the potential and its
derivatives are well behaved.

We conclude that if (R.1() holds and if sgnC_ > 0, the potential as a function of the
SU(1,1) scalars has a minimum, and goes to +oo along the unit circle. The value of the
potential gets a contribution which has the same sign as C'_, but the value and sign of the
minimum depends also on T_. In the next sections we will try to find examples with this

behaviour.

3. The scalar potential: matter multiplets

The N = 4 vector multiplet contains one vector and six scalar fields, and, in the construc-
tion of N = 4 Poincaré supergravity with the superconformal method, six multiplets are
required to gaugefix the superconformal symmetries. Adding n + 6 vector multiplets to
conformal supergravity thus gives n matter multiplets, and 6n physical scalars. These are
however expressed in terms of 6n + 36 variables (the Z,%), of which 36 are eliminated by
gaugefixing the local SO(6) symmetry and by the constraint ([L.4). The constraint implies
that Z corresponds to the first six rows of an SO(6,n) element.

The constraint is a complication in the analysis of the scalar sector of the theory.
Fortunately, there is a nice way to parametrise the solution of the constraint, as was
remarked in @]3 The dimensional reduction of the D = 10, N = 1 supergravity theory,
coupled to m vector multiplets, gives after reduction 12 + m vectors in D = 4. The
scalars resulting from this reduction are the 21 scalars coming from the D = 10 metric,
the 15 scalars coming from the D = 10 two-form, and 6m scalars from the D = 10 vector

30ther parametrisations are discussed in [E]



multiplets, altogether 6m + 36. These scalars parametrise the coset SO(6,6 +m)/SO(6) x
SO(6 + m) [Ly]:

G! G Y(B+W) V2GU
N=|(-B+W)G' (G-B+W)GH(G+B+W)V2(G-B+W)G U |, (3.1)
V2UTG—1 V2UTG=HG 4+ B + W) 1, +207G'U

where G(B) are (anti)-symmetric 6 x 6 matrices, U is a 6 x m matrix, and W = UTU. The
matrix N satisfies

NyNT =, (3:2)
with
0 1g 0
y=|1g0 0 |. (3.3)
00 Ly

We now transform the metric v to the metric 7, and N to N’ by

n=MyM', N =MNMT, (3.4)
with
L [ 16 —16 0
M=—]-1g -1 0 |. (3.5)
V2 0 0 1p

From the matrix N’ we can read off what Z[? is: the first six rows N’. Thus we have an
explicit parametrisation of the Z, for n = 6 4+ m.

We emphasize however that this does not imply that the gauged D = 4 theory with
arbitrary SU(1,1) angles follows by reduction from D = 10. We only use the reduction
from D = 10 to solve the constraints.

In this paper we will limit ourselves to the case where m = 0, or U = 0 in (B.1).
This corresponds to six vector multiplets added to Poincaré supergravity. We split the
indices R,S,... of nrs in A,B,... = 1,...,6, (nap = —d6ap) and I,J,... = 7,...,12
(n1g = +617). The scalar constraint ([.4) then reads

XXT —yyT =15, (3.6)

where X,4 = ZaA, Y,! = 7,1, X and Y are both 6 x 6 matrices, which together form the
first six rows of the matrix N':
X=-(G+G'+BG'-G'B-BG'B), (3.7)

Y=-(G-G'-BG'-G'B-BG'B). (3.8)

N~ N

The scalar potential will depend on Z4B = (XTX)AB  ZAl — (XTY)Al and z17 =
(YTY)1/,



In the examples in section f] we will further simplify matters by choosing for G' and B:

alz 0 0 013
G = >0 B = 3.9
which gives
a’?+bv>+1 1 ((a®+b*—1)13 —2b14
X="—"-"——1 Y = — . 3.10
2a 6 2a 2b1 3 (a® +b% —1)13 (3.10)

The variables Z7 are then easily determined to be:

gap _ (@40 +1)?

=T a2 e
AT _ a2+ +1 ((a®>+b%—-1)13 —2b13
N 4a? 2b14 (@®>+0v*> -3/’
1
VAR i <(a2 + b2 +1)% - 4a2> 1s. (3.11)
a

4. Examples

With the ingredients of sections P and B we will now work out a number of examples.
We have seen that the analysis of the SU(1,1) scalars in section P depends crucially on
condition (R.1(), A > 0. We will only work out cases for which this condition is satisfied
for all values of the matter fields a and b in our parametrisation of G and B (B.9). This
excludes among others potentials of the Freedman-Schwarz type [[]. To evaluate (P.10]) we
will need the contributions V;; and W;; to the potential, see (B.1). These are given by

1 2 ) )

Vij = ZZRUZSV ™" + gZTW)f(Z)RSTf(J)UVW, (4.1)
1 ) .

Wij — %EadeefZaRZbSZCTZdUZeVZfW f(Z)RSTf(])UVW 7 (42)

where the f() are the structure constants for the different factors of the semi-simple gauge
group.

4.1 SO(3)*

First we will consider a product of compact groups: G = SO(3)%. For the group SO(3) the
structure constants are

frs? = —ensr, frst = frsUnuT . (4.3)

The sign of frgr, which is completely anti-symmetric, therefore depends on the sign of
the element npp. The four SO(3) groups are labelled i = 1,...,4, and associated with the
values R, .S, ... in the following way:

i=1 =2 =3 =4
RS, .=123 7456 789 101112 . (4.4)



We then obtain the contributions V;; and W;; to the potential:

Vit = Vor = =g (L a? +97)" (14 a® +82)° — 6a?)

644"
Vis = Via = zg (1402 +97)° —4a)” (140> 49277 + 202))
Vig = V34 =0,
Vig = Voy = —641a6 (@>+ 0> +1)° (> + 02 —1)°,
Vay = —Vig = = (@ +8* +1)° (2b)°,
Wio = @(1—1—@2—1—?)6,
Wiy = 64% <(1+a2+b2)2—4a2)3,
Wis = ~Was = 5 (* +0° + 1) (@02 —1)°,
Wis = Was = — g (a” 07 + 1)° (20)° . (4.5)

Using these, we will discuss the properties of the potential for some special cases:

e g3 =g4 =0. We assume a; # ap. Then C_ = ¢?Vi1 + g3Vas = Vi1(g93 + g3). Vi1 is
negative inside the circle

(a—%v@>%+§::%. (4.6)

We find
A = 4V2 glga sin®(ag — aw) (4.7)

which is never negative: the extremum for the SU(1,1) scalars discussed in section ]
exists for all values of a and b if A > 0, on the circle (l.6) Vi1 =Cy =S5, = A =0
and the potential (R.7) is independent of r and . The matter potential in the
extremum of the SU(1,1) scalars reads

V = V11|21 92 sin(a1 — az)| — 29192 sin(ag — ag)Wia . (4.8)
Consider the case g1g2sin(a; — ag) < 0. The matter potential then reads:

V = 2|g1g2sin(a; — az2)| (Vi1 + Wig)

= 2|g1 g2 sin(a — ag)| % ﬁ (1+ a’ + b2)4 ((a2 +b? + 1)2 — 3a2) , (4.9)
which is positive for all values of a and b. The extremum is reached for a =1, b =10
corresponding to V = |g1g2sin(a; — ag)|. This is obviously a minimum in the a,b
variables, but, since at this point C_ < 0, a maximum in the SU(1,1) scalars. Note
that the positivity of the extremum is due to 7. For values of a and b outside the
circle ([£.d) the SU(1, 1) scalars have a minimum. In the case g1g2sin(a; — as) > 0
the potential is negative everywhere.



e g1 = go = 0. In this case C_ = (g3 + g3)V33 and A are proportional to V33, which
vanishes for a = 1, b = 0, and is positive elsewhere. The analysis of section P is
therefore valid for all ¢ and b, and gives a minimum in the r, ¢ variables, except in
the point a = 1, b = 0, where the potential (R.7) and A vanish. This case corresponds
to two SO(3) Yang-Mills multiplets coupled to ungauged supergravity. The absolute
minimum at a = 1, b = 0 corresponds to vanishing cosmological constant. It is not
difficult to see that this is the only extremum of the potential for this particular
choice of the matter sector.

e go = g4 = 0 etc. In all cases where we take one SO(3) from the supergravity (R, S =
1,...,6) and one SO(3) from the matter sector there are regions in a and b with
A <0.

4.2 SO(3)% x SO(2,1)?

For the noncompact group SO(2,1) we need to assign three values of the indices R, S, ...
corresponding to different values of the diagonal metric . We choose the groups in the

following way:
i=1 =2 =3 1=4

— N
R,S...=127 456 389 101112 . (4.10)

The groups labelled 1 and 3 therefore correspond to SO(2,1). The SO(2,1) structure
constants are chosen as

frst = —epsun’™, frsT = —€RsT - (4.11)

It should be noted that the form of V;; and W;;, and therefore the resulting examples,

depends crucially on the way the groups are distributed over the 12 vector multiplets

in ([10). The analysis in this and the following subsection is therefore far from exhaustive.
The contributions V;; and W;; to the potential now take on the form:

2
Vip = 16a6 (a2 + 82 +1)7 (07 (a2 + 07 +1)" + 2% (o = 17) )
2
Voo = 64a6 (a? +b2+1) ((a2—|—b2+1) —6a2>,
Vi3 = (b2 a —|—b2+1) + 2a® (a2—b2) (a2+b2—|—1)2—8a6)
Vi = 641 - ((a +b2+1) 4a2>2 ((a® +b* + 1)* + 24?),
Vio = Vizg = Vo3 = V34 =V14 =0,
1 3 3
Vo = =51 (a®+b*+1)" (a®+b*—1),
Wig = Wiy = Wag = W34 =0,
1 3
WB:W@:—%@%¥+§+U. (4.12)

In the search for interesting examples with just two nonzero coupling constants g; and g;
we find that
. 2
A = (2g,9; sin(a; — a5))” (ViiVj5 — VZ?) . (4.13)

,10,



Except for the case ¢ = 2, j = 4, which concerns the two compact subgroups and was
already treated in section [L1], the off-diagonal entries in V' vanish, and the requirement
A > 0 implies that for both subgroups the corresponding V;; must be nonnegative. With
the present choice of subgroups this means that ¢ = 2 can be discarded. We find that
both V33 and V4 are positive, except in the point a = 1, b = 0, where they vanish. V73
is positive everywhere, with a minimum at a = 1, b = 0 with value % Since also W;;=0,
either everywhere or at the point a = 1, b = 0, the second term in the potential, T_,
vanishes and will not help in obtaining a positive cosmological constant.

The result with two groups will therefore always be such that the extremum of the
potential is at ¢ = 1, b = 0, and that the potential vanishes there.

4.3 SO(2,1)*

The structure constants are as in the section [.2} The groups are now assigned in the
following way:

i1 o i3 4
R,S,...=127 4510 389 61112 . (4.14)

The results for the potential do depend on how the groups are assigned, clearly different
choices are possible. The results with the choice above are:

1 2 2 2(12(.2 2 2 2.2 2
Vir = Voo = g (a2 + 07 + 1) (17 (a2 + 07 + 1) + 2% (a? = 7))
1
Vag = Viu = T6a® <62 (a2 +v%+ 1)4 + 2a? (a2 — b2) (a2 +v?+ 1)2 — 8a6) ,
a
Vij = 0fori#j,
Wia = W3y =0,
L3/ 2 2 3
Wig = W24:_ﬁb (a +b —|—1) ,
1
Wis = —Was = _Wb2 (a2 + 0% — 1) (a2 + b + 1)3. (4.15)
a
The interesting case here is
e g3 =g4 = 0. Now we have C_ = Vi1(¢? + ¢3), which is always positive, and

V = V11 2|glgg Sin(a1 - C)é2)| . (416)

The potential is everywhere positive, the condition A > 0 is trivially satisfied, and
C_ > 0. There is therefore an absolute minimum in all variables r, ¢, a and b. In
this case there is no contribution from 7", and therefore ([L.1) will be satisfied. We
will come back to further properties of this example in section [

5. Implications and discussion

We have analysed some special cases of gauged N = 4 supergravity with six additional
matter multiplets with the aim of finding solutions with positive cosmological constant.
Two situations arise in which this might happen: one is the example of SO(3)*, where a

— 11 —



saddle point is found for a positive value of the potential: the extremum is a minimum
in the two matter fields considered, but a maximum in the two SU(1,1) scalars from the
supergravity sector. This is an extension with matter multiplets of the potentials studied
by (.

Another case involves SO(2,1)2, where we find a positive minimum of the potential in
all variables. However, in this case the gauge group is noncompact, which might give rise
to wrong-sign kinetic terms. The kinetic term of the SU(1, 1) scalars was given in (P.19)
and does not have this problem. Also the kinetic term of the matter scalars is independent
of the gauging. For the fields a and b one finds
<4a2 (1+ b?) (9a)? + ((a2 + 0% + 1)2 - 4a2b2> (9b)?

Liin ab — — @

+dab (—a® +b* + 1) aaab> : (5.1)
After diagonalizing this to new fields a’ and b’ one obtains

Liinab = —7 7 <4a2(aa')2 +(1+a®+0?)° (ab’)2> : (5.2)
so these kinetic terms have indeed the standard sign for all a,b. In the extremum a =
1, b =0 one finds

Liinas — —3 ((0a)® + (9b)?). (5.3)

The potential and its second derivatives for this example are in the extremum
V(a,b) = |g1gasin(a; — )| (14 (a — 1) + 26> +...) . (5.4)

For these scalars the relation between the potential and its second derivatives is not sat-
isfied, since after a rescaling of @ and b to get the standard normalisation of the kinetic
terms the (mass)? of a and b still differ by a factor 2, and are not equal to Vj.

The vector kinetic terms do depend on the gauging, and this might cause a problem
for noncompact groups. The vector kinetic terms are for a =1, b =0,

1 1 2
+ R v+ S 1 2
—ZnRSFNV FH (@ ((b(R) - ¢(R)> - W) +h.c.. (55)

In the case the gauging is SO(3)?, as in the first example of section [L.1], this is the form of
the kinetic terms at the extremum of the matter fields. The sum over R, S then runs over
the indices 1,...,6, and the kinetic terms have the standard signs, as was shown in detail
in [[{]. In the example of section [L.J the form of the kinetic terms in the matter extremum
is again (b.5), but now the indices run over the values 1,2,7,4,5,10 and two of the kinetic
terms change sign. This is a problem for the solution of section .3,

In [[[3] it was found that potential and its second derivatives in extended supergravity
theories satisfies ([.1]). In section P we clarified this relation for the SU(1,1) scalars. We
have shown that ([L.I) is modified by the term 7_ in the scalar potential, but that for
T_ = 0 the relation is indeed valid. As we have seen in this section, the matter scalars
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may violate ([.1). The relation ([.1]) is reminiscent of supersymmetry Ward identities used
in the past to investigate cases with partially broken supersymmetry [[L6]. It would be
interesting to make ([[.1]) more precise in this way.

Much work remains to be done to give a more complete analysis of the matter sector
with six or more multiplets, and of the examples that we have presented in this paper. Also
their possible application in cosmological models remains to be studied. This is not only
true for the example with an absolute minimum, but equally so for cases with tachyonic
modes.
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