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The Hindu Kush-
Himalayan (HKH) region is
characterized by a variety
of climatic conditions from
tropical to alpine. It has
been documented that the
rates of warming in the
HKH region are significantly
higher than the global
average and that the
warming is occurring at much higher rates in the high-altitude
regions than in the low-altitude regions. Mountainous
environments are considered sensitive indicators of climate
change. Hence this study examined the potential impact of global
warming on the HKH region by applying Hadley Centre’s high-
resolution regional climate model PRECIS (Providing Regional
Climates for Impact Studies) to 3 subregions: the western,
central, and eastern Himalaya. The physical mechanisms that
drive warming are different for the 3 regions, and the western
Himalaya has 2 major rainy seasons, whereas the central and
eastern Himalaya have only one. This study therefore focused on
the common rainy season (June-September), during which all 3
regions receive the highest proportion of their annual rainfall. The
3 PRECIS simulations that correspond to the Intergovernmental

Introduction

The Hindu Kush-Himalayan (HKH) region is believed to
be a hotspot of climate change IPCC 2007), but not much
is known in detail about the region. Rising temperatures
are expected to have a greater impact here than elsewhere
in the world because they can disturb the fine equilibrium
that governs how the vast reserves of snow, ice, and
water in the high mountains provide water to rivers
downstream. Changes in temperature are also likely to
affect the hydrological cycle and have global implications
(IPCC 2007). Bolch et al (2012) have shown that most
Himalayan glaciers are losing mass at a rate similar to
glaciers elsewhere; however, there are indications that
mass gain in the Karakoram region may remain stable.
Dramatic changes in total runoff are unlikely.

The rates of warming in the HKH region are
significantly higher than the global average of 0.74°C over
the past 100 years (Du et al 2004; IPCC 2007). The rates in
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Panel on Climate Change’s A1B emissions scenario were carried
out for a continuous period from 1961 to 2098. They were
validated with high-resolution (0.25° latitude X 0.25° longitude)
data provided by the Asian Precipitation—Highly Resolved
Observational Data Integration Towards Evaluation of the Water
Resources (APHRODITE) project and by the US National Centers
for Environmental Prediction and National Center for Atmospheric
Research (NCEP/NCAR) reanalysis data. The model was
reasonably effective in simulating the monsoon climate over the
HKH region. The climate projections were examined over the
short (2011-2040), medium (2041-2070), and long term
(2071-2098). The model projections indicate that significant
warming will occur throughout the HKH region toward the end of
the 21st century. Summer monsoon precipitation is expected to
be 20-40% higher in 2071-2098 than it was in the baseline
period (1961-1990). The 3 Quantifying Uncertainty in Model
Predictions simulations show large differences in projections in
the western Himalaya.

Keywords: Climate change; monsoon; regional climate
model simulated projections; Hindu Kush-Himalayas.
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the western Himalaya (WH), eastern Himalaya (EH), and
the plains of the Ganges basin over the past 25 years have
been lower (0.01-0.03°C per year), and those for the
central Himalaya (CH), especially Nepal, and the Tibetan
Plateau appear, based on limited station data, to have been
considerably higher (0.04-0.09°C per year for Nepal and
0.03-0.07°C per year for Tibet). Measurements in Nepal
and Tibet also indicate that warming is occurring at much
higher rates in high-altitude regions than at low altitudes
(Shrestha et al 1999). This rapid warming has had a
profound effect on the Himalayan environment, perhaps
most visibly in the rapid retreat of Himalayan glaciers and
diminishing snow fields (Dyurgerov and Meier 2005).

The rise in temperature shows strong seasonality (time
when the peak values occur). The winter mean and
maximum temperatures show significant increases,
whereas mean and minimum summer temperatures show
consistent decline in the Karakoram and HKH mountains
of the upper Indus basin (Fowler and Archer 2006;
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Forsythe et al 2012). This cooling is likely a key factor in
the positive glacial mass balance in the WH found by
several recent studies (eg Jacob et al 2012; Yao et al 2012).
However, average annual temperatures show a consistent
warming across the HKH region; hence, this study
considered the projected changes in annual average
temperatures.

Total rainfall has not shown any distinct trends related
to climate change. Shrestha and Devkota (2010)
investigated the likely changes in mean seasonal and
annual temperatures as well as precipitation across the
EH under a warmer climate, by using the high-resolution
regional climate model Providing Regional Climates for
Impact Studies (PRECIS). Their analysis shows a likely
rise, under the Intergovernmental Panel on Climate
Change’s B2 (A2) emissions scenarios, of 2.9°C (4.3°C) in
mean annual temperature by the late 21st century. The
expected change in precipitation in the EH is +13%
(+34%) under the B2 (A2) scenario by the late 21st
century.

As Xu et al (2009) underlines, climate change is
affecting the temperatures and amount of snow and ice in
the Himalaya as well as rainfall patterns in the densely
populated downstream regions of Asia, which would have
enormous significance for the livelihoods and wellbeing
of the people of the region. Climate change will have
environmental and social impacts that will likely increase
uncertainty about water supplies and agricultural
production for people across Asia. The cascading effects
of rising temperatures and the loss of ice and snow in the
region are already affecting water availability (amount
and seasonality), biodiversity (survival of endemic species
and predator-prey relations), ecosystem boundaries (tree-
line movements and high-elevation ecosystem changes),
and global feedbacks (monsoonal shifts and loss of soil
carbon) (Xu et al 2009). Poor people in mountain regions
have made the least contribution to climate change in
terms of greenhouse gas emissions; however, they will
suffer disproportionately from the negative impact of
climate change.

This article attempts to reconcile existing reanalyzed
and satellite observations to glean new information on
climate change in the HKH region. Due to the lack of
long-term observed data at sufficient locations and the
lack of model outputs on finer spatial scales, not much
work has been done on climate change impact in this
region. The most important objective of this work is to
discuss climate change projections for the 3 HKH
subregions by using the outputs from the PRECIS model.
The downscaling strategy involves the introduction of
uncertainties associated with model physics (Stainforth et
al 2005). The model outputs have been validated with the
newly developed high-resolution observed data set
described below. We concentrated on projected changes
in seasonal (June-September) rainfall and annual average
temperature in the 3 subregions. The WH experiences 2
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rainy seasons, February-April and June-September.
Because the focus of this study is on the entire HKH
region, we considered the June-September rainy season,
which is common to all 3 subregions.

Material and methods

Data

The long-term pattern of precipitation in this region is
not well known due to a lack of long-term observations
even at spatial scales of a few tens of kilometers (Grabs
and Pokhrel 1992; Fujita et al 1997; Shrestha et al 1999).
Small-scale studies are necessary because the complex
terrain can introduce significant differences in climate,
even across short distances. Most existing rain-gauge
networks, especially in complex mountainous areas, are
not dense enough to fulfill this requirement. However,
the recently introduced Asian Precipitation — Highly
Resolved Observational Data Integration Towards the
Evaluation of Water Resources (APHRODITE) project
(Yatagai et al 2009, 2012) makes available a lengthy daily
gridded high-resolution data set that was prepared by
collecting rain-gauge observational data from thousands
of stations across Asia. This data set (APHRO_V1003R1) is
a long-term (1951-2007) continental-scale product that
contains a dense network of daily rain-gauge data for
Asia, including the Himalaya and mountainous areas in
the Middle East. APHRO_V1003R1 data sets for Monsoon
Asia, Russia, and the Middle East (on 0.5° X 0.5° and 0.25°
X 0.25° latitude/longitude grids) are available at http://
www.chikyu.ac.jp/precip/. For this analysis we used the
0.25° X 0.25° data. We validated these data for the Indian
region by comparing the seasonal monsoon rainfall with
data sets from the India Meteorological Department,
Global Precipitation Analysis, and the Climate Prediction
Center’s Merged Analysis of Precipitation (Patwardhan
2012). APHRODITE is also being increasingly used for
operational climate applications such as extreme drought
and flood forecasting in East Asia (Sohn et al 2011). This
data set bridges the gap in long-period observed station
data for the HKH region.

Stations in the WH are quite sparse compared with the
CH and EH (Yatagai et al 2012); hence, if the spatial
interpolation applied by the APHRODITE algorithm does
not compensate by reproducing orographic precipitation
enhancement then precipitation estimates in this
subregion will be differentially biased compared with the
other 2 regions.

This study used the following data:

1. APHRODITE rainfall data at 0.25° X 0.25° resolution
for 1951-2007.

2. Gridded monthly surface air temperature data for
1948-2010 at 2.5° X 2.5° resolution from the US
National Centers for Environmental Prediction and
National Center for Atmospheric Research (NCEP/
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FIGURE 1 The Hindu Kush-Himalayan region considered in this analysis. The region was divided into
3 subregions: WH, 62-75.5°E, 32.5-38.5°N; CH, 75.5-84.5°E, 25.5-34°N; and EH, 84.5-97°E,

22-30°N. (Map by authors)
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FIGURE 2 (A) Interannual variability of standardized June through September (JJAS) rainfall and (B) anomalies of annual average temperature (°C),

1951-2007, in the WH, CH, and EH.
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FIGURE 3 (A) Seasonal (June-September) rainfall (mm) based on APHRODITE
data; (B) annual average temperature (°C) based on NCEP/NCAR reanalysis
data for 1961-1990.
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NCAR) reanalysis (for details refer to Kalnay et al
1996).

3. PRECIS data for 3 perturbed physics ensembles from
the Quantifying Uncertainty in Model Predictions
(QUMP) project.

PRECIS is an atmospheric and land surface model of
limited area and high resolution that is locatable over any
part of the globe. Dynamic flow, the atmospheric sulfur
cycle, clouds and precipitation, radiative processes, the
land surface, and the deep soil are all described, and
boundary conditions are required at the limits of the
model’s domain. The basic aspects explicitly handled by
the model are described in Jones et al (2004). The lateral
boundary conditions required to drive the regional
climate model are taken from the perturbed physics
ensembles simulations of HadCM3, the global climate
model of the Met Office Hadley Centre in the United
Kingdom.

Perturbed physics ensembles

Simulations from a 17-member perturbed physics
ensemble produced by using HadCM3 under the QUMP
project of the Hadley Centre have been used as lateral
boundary conditions for 138-year simulations of the
PRECIS regional climate model. The perturbed physics
approach was developed in response to the call for better
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quantification of uncertainties in climate projections (see
chapter 14 of the Third Assessment report of IPCC 2001).
A significant amount of perturbed physics
experimentation has been done with HadCM3 and
variants, starting with the work of Murphy et al (2004)
and Stainforth et al (2005).

The QUMP simulations comprise 17 versions of the
fully coupled version of HadCM3, 1 with the standard
parameter setting and 16 in which 29 of the atmosphere
component parameters are simultaneously perturbed
(Collins et al 2006). The lateral boundary conditions for 3
QUMP simulations (Q0, Q1, and Q14) for the
Intergovernmental Panel on Climate Change’s A1B
emissions scenario JIPCC 2001) were made available by
the Hadley Centre. These 3 QUMP runs were carried out
at Indian Institute of Tropical Meteorology in Pune,
India, for the period 1961-2098 for the area that stretches
from longitude 56.77°-103°E and latitude 1.5°-38°N, and
were used to generate an ensemble of future climate
change scenarios for the HKH region. These simulations
were made at 50 X 50 km horizontal resolution. The daily
precipitation and surface air temperature from the
QUMP simulations were analyzed to develop high-
resolution regional climate change scenarios to study the
impact of global warming on the HKH region climate.
The impacts were studied for 3 time periods: 2011-2040,
2041-2070, and 2071-2098. The likely changes in
precipitation and temperature were tested for their
significance by applying the standard Student’s ¢-test.
The statistical significance of the trend in area-averaged
time series was tested by using the nonparametric
Mann-Kendall test (Mann 1945).

Results and discussion

Current climate variability

Observed rainfall and temperature variability: The HKH
region’s division into 3 subregions (WH, 62-75.5°E and
32.5-38.5°N; CH, 75.5-84.5°E and 25.5-34°N; EH, 84.5-
97°E and 22-30°N; see Figure 1) is primarily based on
climate and topography. The observed mean rainfall for
June through September for 1961-1990 was 86, 546, and
1042 mm, and the coefficient of variations (defined as
[standard deviation / mean] X 100) is 18, 16, and 9% for
the WH, CH, and EH, respectively; and mean annual
temperatures were 9.9, 8.9, and 13.6°C, respectively. To
examine the interannual variability of seasonal (June-
September) rainfall, a long time series (1951-2007) of
seasonal rainfall was prepared for these 3 regions by using
APHRODITE data. The total June-September rainfall
over grids that lie in these 3 regions was averaged for
every year. The mean rainfall was subtracted from each
value and divided by the standard deviation to compute
standardized time series for 1951-2007. The standardized
rainfall series over the WH, CH, and EH are depicted in
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FIGURE 4 Annual cycles of surface air temperature and rainfall in the WH, CH, and EH simulated by 3 QUMP experiments, QO (red), Q1 (green), and Q14
(blue), their multimodel ensemble (MME; dashed magenta line), and the APHRODITE rainfall values and NCEP reanalysis temperature values (black,

observed) for 1961-1990.
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Figure 2A. All 3 time series are highly random and do not
show any significant trend. However, it is well observed
that the seasonal rainfall in the CH and EH declined
substantially after 2000.

The anomaly time series of annual average surface air
temperature over the 3 regions are shown in Figure 2B.
These time series were prepared by using monthly surface
air temperature data from the NCEP/NCAR reanalysis
data set for 1948-2010. Temperatures were quite cool
from 1970-1990 in all 3 regions; after the 1990s, they
increased, although not to a statistically significant
degree. Warming has been more rapid in the CH than in
the EH and WH.

The spatial patterns of observed APHRODITE
seasonal rainfall data and NCEP/NCAR reanalysis annual
average temperature data are shown in Figure 3A and B,
respectively. These composites were prepared based on
data for 1961-1990 for validation of model simulations. In
the WH, rainfall ranged from 50-500 mm. The levels were
lowest in the northwestern parts of the WH and increased
from northwest to southeast. In the CH, rainfall ranged
between 500 and 1000 mm, and in some parts exceeded

in R h and D 146

1000 mm, whereas, in the EH, it was more than 1000 mm.
In northern parts of Bangladesh and far northeastern
parts of India, rainfall exceeded 3000 mm. Annual average
temperatures (Figure 3B) decreased from south to north
over the HKH region. The QUMP simulations were
validated with these patterns, as shown below, to examine
their ability to reproduce the current climate.

Model-simulated rainfall and temperature variability: The
high-resolution regional simulations generated by using
PRECIS, with lateral boundary conditions from QUMP
simulations, were studied in detail to evaluate the model’s
effectiveness in representing the regional climatological
features in terms of both annual cycles and spatial
patterns. This was the first time that QUMP simulations
were used for the HKH region.

Regarding annual cycles, the monthly mean
temperature and rainfall simulated by the 3 scenarios
based for 1961-1990 for the 3 regions as well as the
observed rainfall (from APHRODITE) and temperature
(from the NCEP reanalysis) are depicted in Figure 4. In all
3 regions, all 3 QUMP runs simulated the shape of the
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FIGURE 5 (A) Composite seasonal (June-September) monsoon rainfall (mm/d) simulated by 3 QUMP runs compared with
the observed APHRODITE values for 1961-1990; (B) composite annual average surface air temperature (°C) simulated by
3 QUMP runs compared with the observed NCEP reanalysis values for 1961-1990.
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annual cycle of surface air temperature reasonably well; The shape of the annual rainfall cycle was well
however, they exhibited a cold bias in winter. The captured by all the simulations for the WH and CH;
temperatures for the monsoon season were well however, for the EH, the maximum rainfall was simulated

simulated. The mean temperatures were not corrected for 2 months ahead, in May and June. For all 3 regions, a wet
the lapse rate effect of the differences in mean elevations  bias was exhibited. For the WH, a large wet bias of
in the various data sets used in the analysis. 20 mm was exhibited for the dry monsoon season
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FIGURE 6
(B) change in average annual surface air temperature in 3 QUMP experiments

MountainResearch

(A) Percentage change (compared with a 1961-1990 baseline) in monsoon precipitation;

in 3 time periods.
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(November-March). During the monsoon season (June-
September), the rainfall was simulated reasonably well.
For the CH, Q1 tallied very well during the monsoon but
exhibited a wet bias of 10-20 mm/mo in the remaining
months. For the EH, a wet bias of 30-50 mm/mo was
exhibited for the premonsoon months. Hence, there was a
large uncertainty in the 3 simulations. However, in
general, the model did reproduce the shape of the annual
cycle of rainfall and surface air temperature reasonably
well. The mode of precipitation seasonality in the WH is

h and D

during the winter months, and the primary hydrological
impacts there from precipitation change will most likely
be due to changes in winter rather than summer and
monsoon precipitation.

The spatial patterns of seasonal rainfall as simulated
by the 3 QUMP runs for the baseline period 1961-1990
were compared with the observed APHRODITE
precipitation patterns, as shown in Figure 5A. PRECIS
seems to provide an adequate representation of present-
day conditions. The seasonal (June-September) rainfall
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FIGURE 7 (A) Percentage changes in standard deviation of monsoon precipitation in 3 QUMP experiments for 3 time periods
with respect to 1961-1990; (B) ensemble average of percentage change in seasonal rainfall; (C) ensemble average of
change in annual average surface air temperature (°C) for 3 time periods with respect to 1961-1990.
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TABLE 1 Ensemble mean summer monsoon rainfall (mm) and mean annual surface air temperature (°C) for 1961-1990, 2011-2040, 2041-2070, and 2071-
2098 compared with observed values in the WH, CH, and EH. (Table extended on next page.)

Summer monsoon rainfall (mm)

1961-1990 2011-2040 2041-2070 2071-2098
86 97 114 106 105

546 692 717 785 855

1042 1130 1140 1204 1270
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pattern was well simulated for the HKH region, as seen in
Figure 5A. All the 3 QUMP runs exhibited a wet bias in
the northern parts of the CH. Q0 and Q14 captured the
seasonal rainfall amount and patterns quite reasonably,
but Q1 exhibited a dry bias for the WH and some parts of
the CH, which has also been seen for the Indian landmass
(Krishna Kumar et al 2011).

The composite spatial patterns of annual average
temperatures for 1961-1990 are given in Figure 5B. The
cooler temperatures in the northern parts and warmer
temperatures in southern parts of the HKH region were
well simulated by all 3 experiments. All three exhibited a
warm bias of 1-2°C in the EH. Cooler temperatures were
simulated in the far northern tip of the WH.

Projected changes in rainfall and temperature

Projected percentage changes in seasonal rainfall in 3
QUMP simulations from the baseline (1961-1990) to the
near future (2011-2040), the middle of the century (2041-
2070), and the end of the century (2071-2098) are
depicted in Figure 6A. Key projections were that the
monsoon rainfall may decrease over the CH during 2011-
2040, whereas there may be a 5-10% increase in rainfall
in the WH and EH. In 2041-2070, rainfall may accelerate,
but the northern parts of the CH may be deprived of
rainfall. In 2071-2098, all 3 experiments project a 20-40%
increase in seasonal rainfall for the entire HKH region.
Because precipitation seasonality in the WH is during the
winter months, the primary hydrological impacts there
from precipitation change will most likely be due to
changes in winter rather than summer and monsoon
precipitation. There was a large discrepancy in the 3
projections of summer monsoon rainfall in the WH.

The projected changes in the surface air temperature
for the same time frames and the QUMP runs are shown
in Figure 6B. As time passes, the temperature is projected
to rise by 0.5°C to more than 5°C. The maximum warming
is projected for the WH. Q14 projects maximum warming
for the HKH region. For 2011-2040, the warming is
projected to be 0.5-1°C; for 2041-2070, 1-3°C; and for
2071-2098, 4-5°C, which would be quite threatening to
the snow and glaciers throughout the region.

The possible percentage changes in standard deviation
of summer monsoon rainfall under the 3 QUMP

TABLE 1 Extended. (First page of Table 1 on previous page.)

9.9 7.9
8.9 9.2
13.6 15.1
in R h and D 150
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simulations for the 3 time periods are shown in Figure 7A.
Monsoon rainfall was projected by all 3 QUMP simulations
to be much more variable (a 20-40% rise in standard
deviation) in the CH and EH toward the end of the century
than it was in 1961-1990; a smaller change in variability
(not more than 10%) was projected for the WH.

There is a large uncertainty in simulation by the 3
QUMP runs, and the best solution is to consider an
ensemble average of the 3 runs (ie the average of projected
changes given by the 3 QUMP simulations at every grid
point). The ensemble projected changes in seasonal rainfall
and annual average temperatures for the 3 time periods
are also shown in Figure 7B and C, respectively. For 2011-
2040, rainfall was projected to decrease over the CH and
EH; during 2041-2070 there may be a 5-20% change,
whereas, at the end of the century, there may be an increase
of 20-40% in the CH and EH over 1961-1990 rainfall
levels. Similarly, the annual average temperature is
projected to rise in 2011-2040 by 1-2°C, in 2041-2070 by
1-3°C, and in 2071-2098 by 3-5°C for the HKH region. The
rise in mean annual temperature may be greater in WH
than in CH and EH, as seen in Figure 7. This may be a
serious threat to the glaciers and snow cover in the HKH
region. The ensemble mean values of the 3 QUMP runs are
given in Table 1. All runs exhibited a wet bias for all 3
regions, but the mean annual temperatures were
reasonably well simulated by the ensemble mean.

Conclusions

This study examined the variability and change in
seasonal precipitation and annual average temperature in
the HKH region as revealed by high-resolution gridded
observed data as well as simulations under the PRECIS
regional climate model. The main findings were as
follows:

¢ All 3 QUMP simulations captured the annual cycle of
surface air temperature in the HKH region reasonably
well; however, they exhibited a warm bias of 3-4°C in
the WH during the monsoon season.

® Although the shape of the annual cycle of precipitation
in all 3 regions was well simulated, a wet bias was
exhibited for the WH for the dry monsoon season
(February-April) and for the CH for the monsoon

9.6 11.2 12.5
10.8 12.4 SRS
16.5 18.0 19.2
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season. The rainfall maximum was simulated two
months early (in May and June) for the EH.

® The spatial climatology of annual average temperature
and monsoon rainfall were well simulated by all three
QUMP runs.

® At the end of the century, the annual average
temperature is projected to increase by 4-5°C, whereas
rainfall may increase by 20-40% in the HKH region.

® Rainfall may be 40-50% more variable in the CH and
EH at the end of the century.

® The ensemble mean of the 3 QUMP runs exhibited a
wet bias over the WH and CH, and a dry bias over the
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