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Abstract Extreme precipitation events over India have resulted in loss of human lives and damaged
infrastructures, food crops, and lifelines. The inability of climate models to credibly project precipitation
extremes in India has not been helpful to longer-term hazards resilience policy. However, there have been
claims that finer-resolution and regional climate models may improve projections. The claims are examined
as hypotheses by comparing models with observations from 1951–2005. This paper evaluates the reliability
of the latest generation of general circulation models (GCMs), Coupled Model Intercomparison Project Phase
5 (CMIP5), specifically a subset of the better performing CMIP5 models (called “BEST-GCM”). The relative
value of finer-resolution regional climate models (RCMs) is examined by comparing Coordinated Regional
Climate Downscaling Experiment (CORDEX) South Asia RCMs (“CORDEX-RCMs”) versus the GCMs used by
those RCMs to provide boundary conditions, or the host GCMs (“HOST-GCMs”). Ensemblemean of BEST-GCMs
performed better for most of the extreme precipitation indices than the CORDEX-RCMs or their HOST-GCMs.
Weaker performance shown by ensemble mean of CORDEX-RCMs is largely associated with their high
intermodel variation. The CORDEX-RCMs occasionally exhibited slightly superior skills compared to BEST-GCMs;
on the whole RCMs failed to significantly outperform GCMs. Observed trends in the extremes were not
adequately captured by any of themodel ensembles, while neither the GCMs nor the RCMswere determined to
be adequate to inform hydrologic design.

1. Introduction

Observations [Sun et al., 2007; Mishra and Lettenmaier, 2011; Mishra et al., 2012a, 2012b; Min et al., 2011] and
climatemodels projections [ Kharin et al., 2007; Sillmann et al., 2013] suggest increases in precipitation extremes
under a warming climate. Increasing trends have been observed over the northern land regions, including
the U.S. [Groisman et al., 1999; Mishra and Lettenmaier, 2011] and Europe [Fowler and Ekström, 2009]. Coumou
and Rahmstorf [2012] argued that increases in extreme precipitation events under the anthropogenic warming
primarily results from the Clausius-Clapeyron relation [O’Gorman and Schneider, 2009; Sugiyama et al., 2010;
Mishra et al., 2012a, 2012b; Allan et al., 2014], which in turn implies that a warmer atmosphere can hold more
water vapor, resulting in heavier precipitation under suitable conditions.

Over the tropics, our understanding of precipitation extremes is less certain [Kao and Ganguly, 2011; Toreti et al.,
2013]. For instance, over India specifically, studies with observed precipitation extremes have led to disparate
conclusions [Goswami et al., 2006; Ghosh et al., 2012; Vittal et al., 2013]. Goswami et al. [2006] reported an
increasing trend in rainfall extremes over India with a link to climate warming, which was validated and/or
refuted in multiple ways by subsequent studies [Rajeevan et al., 2008; Ghosh et al., 2012; Krishnamurthy et al.,
2009;Mani et al., 2009; Kishtawal et al., 2010]. For instance, Ghosh et al. [2012] reported a lack of uniform trends
in extreme precipitation over India but found an increasing trend in the spatial variability of these
extremes. An analysis of Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations reported a
consistent positive trend in frequency of extreme precipitation days (e.g., > 40mm/day) for decades
beyond 2060 [Chaturvedi et al., 2012].

An increased frequency and intensity of extreme precipitation events may cause flooding and flash floods
[Christensen and Christensen, 2003; Fowler and Wilby, 2010; Rosenberg et al., 2010], which are among the most
frequent natural disasters in India [Mohapatra and Singh, 2003]. In India, floods affected about 33 million
people between 1953 and 2000. Moreover, flood risks in India have substantially increased during the last few
decades [Guhathakurta et al., 2011]. During recent years, extreme precipitation events resulted in several
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damaging floods (e.g., Mumbai in July 2005; Chennai in October and December 2005; Bangalore in October 2005)
including the most recent in Uttarakhand in June 2013 which has resulted in a loss of about 6000 human lives
(according to the government of Uttarakhand).

Considering the implications of precipitation extremes, several studies focused on understanding the nature and
magnitude of extreme precipitation events in the general circulation models (GCMs) [Kharin and Zwiers, 2000;
Kharin et al., 2007; Min et al., 2011]. However, the ability of the GCMs to adequately reproduce the intensity,
duration, and frequency of observed precipitation extremes is a major challenge, and the simulated estimates of
extreme precipitation have large uncertainties particularly in the subtropics and tropics [Toreti et al., 2013].
Deficiency in extreme precipitation simulationmay be partly due to the coarse resolution in GCMs [Salathe et al.,
2010;Wehner et al., 2010]. On the other hand, it is believed that estimates of extreme precipitation events from
regional climate models (RCMs) may be more reliable due to better representation of smaller-scale topographic
features and physical processes [Gutowski et al., 2010; Leung et al., 2004]. However, Rummukainen et al. [2001] and
Déqué et al. [2007] argued that using RCM data may lead to increased uncertainty due to spatial resolution,
numerical scheme, boundary condition, and physical parameterization.Gutowski et al. [2003] reported that a high
resolution is required to improve intensity of precipitation at shorter durations. However, Kawazoe and Gutowski
[2013] argued that among the CMIP5 GCMs, the coarsest models generally produce similar precipitation
extremes to those of the finest resolution models, which indicates that high resolution may not necessarily
improve precipitation extremes. Furthermore, they found that extreme precipitation events in RCMs are more
representative than those in GCMs. Fowler et al. [2007a, 2007b] found that spatial resolution and number of GCMs
used for boundary conditions in RCMs should be considered for designing future ensemble experiments.

It is not yet clear if dynamically downscaled precipitation obtained from the regional climatemodels provides
better skills than GCMs in simulating extreme precipitation events [Racherla et al., 2012; Laprise, 2014]. In
particular, a rigorous assessment of GCMs and RCMs in simulating the observed characteristics of daily
precipitation extremes over the Indian region has been lacking. Here we evaluate the performance of the
CMIP5 GCMs and RCMs from the Coordinated Regional Climate Downscaling Experiment (CORDEX) South
Asia and their host GCMs against observed precipitation extremes in India. The overarching science question
we intend to address is to what extent can regional climate models provide better information for precipitation
extremes as compared to CMIP5 GCMs? We evaluate GCMs and RCMs for the multiple extreme precipitation
indices as well as their large-scale and convective characteristics for the historic period (1951–2005).

2. Methods

Observed daily precipitation data were obtained from the Asian Precipitation-Highly Resolved Observational
Data Integration Towards Evaluation (APHRODITE) of water Resource [Yatagai et al., 2012] over 1951–2005 at
0.5° spatial resolution. The data set was generated using the 2500 observation stations located across India.
The APHRODITE data set is quality controlled well and thoroughly checked for errors and inconsistencies.
Heavy rainfall in the Western Ghats and Himalayan regions is well captured in the APHRODITE data [Yatagai
et al., 2012], and the data set better resolves orographic precipitation in theWestern Ghats and foothills of the
Himalaya. Daily precipitation from the historical runs for the period of 1951–2005 was obtained from 32 CMIP5
[Taylor et al., 2012] models at available spatial resolutions (Table 1). We obtained daily precipitation data at 0.5°
spatial resolution for the period of 1951–2005 from the four RCMs that participated in the Coordinated Regional
Climate Downscaling Experiment (CORDEX) South Asia: COSMO-CLM, RegCM4-GFDL, RegCM4-LMDZ, and
SMHI-RCA4. The CORDEX South Asia data set can be obtained from the Center for Climate Change Research
website http://cccr.tropmet.res.in/cordex/files/downloads.jsp. Daily precipitation data for the same period were
also obtained from the host GCMs (MPI-ESM-LR, GFDL-ESM2M, IPSL-CM5A-LR, and EC-EARTH, Table 1) that were
used in the CORDEX downscaling experiment.

Out of the 32 CMIP5 GCMs, we selected the four GCMs (CMCC-CMS, CNRM-CM5, GFDL-CM3, and MPI-ESM-MR,
Table 3) that showed a better performance for precipitation extremes during the historic period (1961–1990)
over India. To select the BEST-GCMs, we first interpolated daily precipitation from all the selected models at the
spatial resolution (0.5°) of the CORDEX-RCMs. Based on all-India median bias in annual maximum precipitation
(AMP) during the period of 1961–1990, the four best models were selected. However, interpolation of daily
precipitation to higher than the inherent resolution of themodelsmay lead to changes in precipitation intensity
and therefore can affect model performance assessed at different spatial resolution [Chen and Knutson, 2008;
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Harding et al., 2013]. To test the influence of interpolation on bias in AMP, we interpolated daily precipitation
from the CMIP5 models at 0.5 and 1.0° spatial resolutions (Table 3 and Figure 1). We found that the spatial
structure of bias in AMP remains almost the same over India for the two resolutions (Figures 1a and 1c);
however, all-India median bias for the individual models varies with the resolution (Figures 1b and 1d). For
instance, at 0.5° spatial resolution the four best models were CMCC-CMS, CNRM-CM5, GFDL-CM3, and
MPI-ESM-MR, while at 1° spatial resolution the four best models were CCSM4, CNRM-CM5, CMCC-CM,
and MIROC5 (Table 1 and Figure 1). These differences in bias at the two spatial resolutions can be attributed to
the changes in precipitation intensity at 0.5 and 1.0°. Since precipitation from the CORDEX-RCMs is at 0.5°
resolution, we selected the four CMIP5 models that performed better at 0.5°. We interpolated CMIP5 models to
check how they perform against the CORDEX-RCMs rather than evaluate them against observations as reported
in Racherla et al. [2012]. Moreover, one may notice that the “BEST-GCMs” are different than the “HOST-GCMs” as
they were solely selected based on their performance to simulate extreme precipitation over India. On the
other hand, the selection of the HOST-GCMs for boundary conditions of the CORDEX-RCMs could be associated
with their overall ability to simulate the Indian Monsoon and the large-scale atmospheric variables. In selecting
the HOST-GCMs, it was ensured that the large-scale features of the South Asian monsoon are well captured;
however, they were not specifically evaluated for their performance in simulating extreme precipitation events

Table 1. Details of the CMIP5 Models That Were Used for the Analysis

Modeling Center (or Group) Model Name Grid Size

Commonwealth Scientific and Industrial Research Organization (CSIRO)
and Bureau of Meteorology (BOM), Australia

ACCESS1.0 192× 145

ACCESS1.3 192× 145
Beijing Climate Center, China Meteorological Administration BCC-CSM1.1 128× 64
College of Global Change and Earth System Science,
Beijing Normal University

BNU-ESM 128× 64

Canadian Centre for Climate Modelling and Analysis CanCM4 128× 64
CanESM2 128× 64

National Center for Atmospheric Research CCSM4 188× 192
Centro Euro-Mediterraneo per I Cambiamenti Climatici CMCC-CESM 96× 48

CMCC-CM 480× 240
CMCC-CMS 192× 96

Centre National de Recherches Météorologiques/Centre Européen de
Recherche et Formation Avancée en Calcul Scientifique

CNRM-CM5 256× 128

Commonwealth Scientific and Industrial Research Organization
in Collaboration with Queensland Climate Change Centre of Excellence

CSIRO-Mk3.6.0 192 × 96

EC-EARTH consortium EC-EARTH 320× 160
NOAA Geophysical Fluid Dynamics Laboratory GFDL-CM3 144× 90

GFDL-ESM2G 144× 90
GFDL-ESM2M 144× 90

Met Office Hadley Centre (additional HadGEM2-ES realizations
contributed by Instituto Nacional de Pesquisas Espaciais)

HadCM3 96× 73

HadGEM2-CC 192× 145
HadGEM2-ES 192× 145

Institute for Numerical Mathematics INM-CM4 180× 120
Institut Pierre-Simon Laplace IPSL-CM5A-LR 96× 96

IPSL-CM5A-MR 144× 143
IPSL-CM5B-LR 96× 96

Japan Agency for Marine-Earth Science and Technology, Atmosphere
and Ocean Research Institute (The University of Tokyo), and
National Institute for Environmental Studies

MIROC-ESM 128× 64

MIROC-ESM-CHEM 128× 64
Atmosphere and Ocean Research Institute (The University of Tokyo),
National Institute for Environmental Studies, and Japan
Agency for Marine-Earth Science and Technology

MIROC4h 640× 320

MIROC5 256× 128
Max-Planck-Institut für Meteorologie (Max Planck Institute for Meteorology) MPI-ESM-LR 192× 96

MPI-ESM-MR 192× 96
MPI-ESM-P 192× 96

Meteorological Research Institute MRI-CGCM3 320× 160
Norwegian Climate Centre NorESM1-M 144× 96
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in the Indian monsoon region. However, Menon et al. [2013] reported that IPSL-CM5A-LR, which is one of the
HOST-GCMs (Table 2), poorly simulates the Indian monsoon.

Daily precipitation data from the CMIP5 GCMs were interpolated to common grid mesh (0.5°) of the CORDEX-
RCMs and APHRODITE to evaluate skills of GCMs and RCMs in simulating extreme precipitation events over
India. A bilinear interpolation was performed using the Climate Data Operator (CDO). We tested various
methods available for interpolation in CDO and found minimal differences in interpolated daily precipitation
intensities. However, we did not use a more sophisticated method such as kriging, which may be considered in

future work. We obtained daily surface wind
data at 10m (horizontal component u and
vertical component v) from the National
Centers for Environmental Prediction/
National Center for Atmospheric Research
(NCEP-NCAR) reanalysis [Kalnay et al., 1996]
to evaluate wind fields from the RCMs and
GCMs during the extreme precipitation
events. At the selected locations in
India, composites of wind fields for the 20
largest extreme precipitation events during
1951–2005 were constructed using the data
from the RCMs/GCMs, which were compared
against the observed composites based on
the NCEP-NCAR reanalysis data sets. To do

Figure 1. (a) Multimodel ensemble mean bias in annual maximum precipitation at 0.5° spatial resolution, (b) all-India median
bias in annual maximum precipitation for the individual CMIP5 models, (c) same as Figure 1a but for the 1° spatial resolution,
and (d) same as Figure 1b but for 1° spatial resolution. Bias was estimated against APHRODITE data for the period of 1961–1990.

Table 2. Regional Climate Models That Participated in the CORDEX
South Asia and Their Host GCMs

CORDEX-RCM
(Spatial Resolution 0.5°) HOST-GCM

Spatial Resolution
(HOST-GCMs)

COSMO-CLMa MPI-ESM-LR 1.875× 1.865°
RegCM4-GFDLb GFDL-ESM2M 2.5 × 2.0°
RegCM4-LMDZc IPSL-CM5A-LR 1.875 × 3.75°
SMHI-RCA4d EC-EARTH 1.125× 1.125°

aConsortium for Small-scale Modeling - Climate Limited-area
Modeling community.

bRegional Climate Model- Geophysical Fluid Dynamics Laboratory.
cRegional Climate Model- Laboratoire de Météorologie

Dynamique Zoom.
dSwedish Meteorological and Hydrological Institute - Rossby

Centre regional Atmospheric model, v4.
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Figure 2. (a) Observed mean annual maximum precipitation (AMP) for the period of 1951–2005; (b–d) ensemble mean bias (%) in AMP in the BEST-GCMs (CMCC-CMS,
CNRM-CM5, GFDL-CM3, and MPI-ESM-MR), HOST-GCMs (MPI-ESM-LR, GFDL-ESM2M, IPSL-CM5A-LR, and EC-EARTH), and CORDEX-RCMs (COSMO-CLM, RegCM4-GFDL,
RegCM4-LMDZ, and SMHI-RCA4); and (e–p) bias for the individual models in the BEST-GCMs, HOST-GCMs, and CORDEX-RCMs. Bias (%) for the BEST-GCMs, HOST-GCMs,
and CORDEX-RCMs was estimated for the period of 1951–2005. Stippling shows grid cells where mean is significantly different than observed mean as estimated by
the rank sum test. Stippling in Figures 2b–2d shows grid cells where mean is significantly different than observed mean in all the models in the BEST-GCMs, HOST-GCM,
and CORDEX-RCMs.
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this, we first selected the top 20 extreme precipitation events based on their magnitude over the three selected
locations: Mumbai, Delhi, and Dehradun. For each of the selected extreme precipitation events, we obtained
daily wind data. Finally, for all the 20 events, we constructed composites (by taking mean of the selected
events) for wind fields.

Annual maximum precipitation, average number of rainy days (precipitation> 1mm/d), frequency of precipitation
extremes (P-FREQ), mean precipitation intensity of the top five events (PI-5), and heavy-to-nonheavy precipitation
ratio (H-NH) based on the 99th percentile of rainy days were calculated. Annual maximum precipitation and PI-5
were estimated for each year by obtaining the single largest precipitation event andmean intensity of the top five
precipitation events, respectively, during the period of 1951–2005 from the observed and the model-simulated
data sets. On the other hand, P-FREQ and H-NH were estimated based on the 99th percentile value of rainy days
during the reference period (1961–1990). For each year, P-FREQ was estimated as the number of precipitation
events exceeding the 99th percentile of precipitation during the period of 1961–1990. We estimated H-NH by
obtaining total precipitation caused by extreme precipitation events (P> 99th percentile of rainy days in
1961–1990) in each year and then dividing by total precipitation due to nonheavy precipitation events. The
number of rainy days was estimated to understand relationship between frequency and magnitude of
precipitation in the observed and model-simulated data sets. Annual precipitation maxima at the selected
durations (1–10 day) and return periods (25–100 years) were estimated using the generalized extreme value
(GEV) distribution. The GEV distribution is a three-parameter distribution which represents location, shape, and
scale of extremes in the data set. The GEV distribution has been widely used to analyze climate extremes [Fowler
et al., 2007a, 2007b; Kao and Ganguly, 2011;Mishra et al., 2012a, 2012b]. We estimated the parameters of the GEV
distributions for each grid cell over India using the method based on L moments [Hosking and Wallis, 2005;
Rosenberg et al., 2010; Mishra et al., 2012a, 2012b]. The approach based on L moments is less biased toward
outliers present in the data set.

We estimated changes in annual maximum precipitation using the nonparametric Mann-Kendall [Mann,
1945] test and Sen’s slope method [Sen, 1968]. The influence of spatial and temporal correlations on trends in
precipitation extremes was taken care of using the method described in Yue and Wang [2002]. The Mann-
Kendall trend test has been widely used to estimate trends in hydrologic and climatic time series [Mishra
et al., 2010; Mishra and Lettenmaier, 2011]. To test if precipitation extremes in the models are significantly
different than that in observations, the two-sided rank sum test was used to test the statistical significance.
For each grid cell, the two-sided rank sum test was applied at 5% level to identify the geographical locations
with disagreements between the observed and the model-simulated extreme precipitation characteristics.
Bias in extreme precipitation indices was estimated using annual mean observed andmodel-simulated index
for the period of 1951–2005. To estimate ensemble mean bias, we first estimated bias in extreme
precipitation indices from the individual models and then mean bias for all the four models was taken.

3. Results and Discussion
3.1. Bias in Extreme Precipitation Characteristics

Figure 2 shows observed annual maximum precipitation (AMP) and bias (%) in the BEST-GCMs, HOST-GCMs,
CORDEX-RCMs, and their ensemblemean (ENS) for the period of 1951–2005. Observed AMP varied between 20
and 200mm with higher values in the Western Ghats and Northeast India and with lower amounts in the
semiarid region of western India (Figure 2a). A majority of the CMIP5 models among the BEST-GCMs
underestimated observed AMP in central and western India (Figures 2e–2h). On the other hand, most of the
BEST-GCMs and their ensemble mean showed a positive bias in peninsular India, Jammu and Kashmir, and
northeastern India (Figures 2b and 2e–2h), while bias was negative in theWestern Ghats region (Figure 2b). On the
other hand, a majority of the HOST-GCMs (Figures 2i–2l) and their ensemble mean (Figure 2c) underestimated
mean AMPacross India except the northern and northeastern parts. Similarly, most of the CORDEX-RCMs and their
ensemblemean overestimatedmean AMP in the northern and northeastern region (Figures 2d and 2m–2p), while
their ensemble mean underestimated mean AMP in the central parts of India (Figure 2p). All-India median
percentage bias in mean AMP varied between �16 and 9, �53 and �14, and �4 and 54% in the BEST-GCMs,
HOST-GCMs, and CORDEX-RCMs, respectively (Table 4). Furthermore, ensemble mean bias in AMP in the
BEST-GCMs, HOST-GCMs, and CORDEX-RCMs was �6.5, �27, and 21%, respectively (Table 4). The BEST-GCMs
showed better performance than that of the CORDEX-RCMs and their HOST-GCMs (Table 4).
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Figure 3. (a) Observed mean frequency of extreme precipitation events (P-FREQ) for the period of 1951–2005; (b–d) ensemble mean bias (events/year) in P-FREQ in
the BEST-GCMs (CMCC-CMS, CNRM-CM5, GFDL-CM3, and MPI-ESM-MR), HOST-GCMs (MPI-ESM-LR, GFDL-ESM2M, IPSL-CM5A-LR, and EC-EARTH), and CORDEX-RCMs
(COSMO-CLM, RegCM4-GFDL, RegCM4-LMDZ, and SMHI-RCA4); and (e–p) bias for the individual models in the BEST-GCMs, HOST-GCMs, and CORDEX-RCMs. Bias
for the BEST-GCMs, HOST-GCMs, and CORDEX-RCMs was estimated for the period of 1951–2005. Stippling shows grid cells where mean is significantly different than
observed mean as estimated by the rank sum test. Stippling in Figures 3b–3d shows grid cells where mean is significantly different than observed mean in all
the models in the BEST-GCMs, HOST-GCM, and CORDEX-RCMs.
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Figure 4. (a) Observed mean intensity (mm) of the top five extreme precipitation events in each year (PI-5) for the period of 1951–2005; (b–d) ensemble mean bias
(%) in PI-5 in the BEST-GCMs (CMCC-CMS, CNRM-CM5, GFDL-CM3, and MPI-ESM-MR), HOST-GCMs (MPI-ESM-LR, GFDL-ESM2M, IPSL-CM5A-LR, and EC-EARTH), and
CORDEX-RCMs (COSMO-CLM, RegCM4-GFDL, RegCM4-LMDZ, and SMHI-RCA4); and (e–p) bias for the individual models in the BEST-GCMs, HOST-GCMs, and CORDEX-RCMs.
Bias for the BEST-GCMs, HOST-GCMs, and CORDEX-RCMs was estimated for the period of 1951–2005. Stippling shows grid cells where mean is significantly different than
observedmean as estimated by the rank sum test. Stippling in Figures 4b–4d shows grid cells wheremean is significantly different than observedmean in all themodels in
the BEST-GCMs, HOST-GCM, and CORDEX-RCMs.
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Figure 5. (a) Observed (%) mean heavy-to-nonheavy ratio (H-NH) for each year for the period of 1951–2005; (b–d) ensemble mean bias (%) in H-NH in the BEST-GCMs
(CMCC-CMS, CNRM-CM5, GFDL-CM3, and MPI-ESM-MR), HOST-GCMs (MPI-ESM-LR, GFDL-ESM2M, IPSL-CM5A-LR, and EC-EARTH), and CORDEX-RCMs (COSMO-CLM,
RegCM4-GFDL, RegCM4-LMDZ, and SMHI-RCA4); and (e–p) bias for the individual models in the BEST-GCMs, HOST-GCMs, and CORDEX-RCMs. Bias for the BEST-GCMs,
HOST-GCMs, and CORDEX-RCMs was estimated for the period of 1951–2005. Stippling shows grid cells where mean is significantly different than observed mean
as estimated by the rank sum test. Stippling in Figures 5b–5d shows grid cells where mean is significantly different than observed mean in all the models in the
BEST-GCMs, HOST-GCM, and CORDEX-RCMs.
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Observed mean frequency of extreme precipitation events (P-FREQ) and bias in the BEST-GCMs, HOST-GCMs,
and CORDEX-RCMs are shown in Figure 3. Observedmean P-FREQ varied between 0.5 and 2.5 events per year
during the period of 1951–2005 with higher frequency in the Western Ghats and Northeast India and lesser
events in the semiarid Western India (Figure 3a). Similar to mean AMP, P-FREQ was overestimated in the
northern, peninsular, and northeastern India by a majority of the models in the BEST-GCMs, HOST-GCMs,
and CORDEX-RCMs. On the other hand, a majority of the CORDEX-RCMs and their HOST-GCMs underestimated
P-FREQ in central India (Figure 3). All-India median bias in P-FREQ varied between �0.04 and 0.30, �0.27 and
�0.82, and �0.29 and 0.82 events per year in the BEST-GCMs, HOST-GCMs, and CORDEX-RCMs, respectively
(Table 4). Ensemble mean biases in P-FREQ for the BEST-GCMs, HOST-GCMs, and CORDEX-RCMs were 0.16,
�0.49, and 0.49 events per year, respectively (Table 4), which highlight that the BEST-GCMs perform better than
the CORDEX-RCMs to simulate frequency of extreme precipitation events in India.

Figure 4 shows observed mean precipitation intensity for the top five events in each year (PI-5) during the period
of 1951–2005 and percentage bias in the BEST-GCMs, HOST-GCMs, and CORDEX-RCMs. Observedmean PI-5 varied
between 5 and 100mmwith lower values in the semiarid western India and larger PI-5 in the Western Ghats and
Northeast India (Figure 4a). Similar to AMPand P-FREQ, amajority of the RCMs andGCMs overestimated PI-5 in the
northern, peninsular, and Northeast India (Figure 4). On the other hand, most of the models and their ensemble
mean underestimated PI-5 in central India (Figures 4e–4p). The negative bias present in the HOST-GCMs was
somewhat improved in the CORDEX-RCMs; however, the CORDEX-RCMs showed a higher positive bias in many
regions (Figures 4m–4o). All-India median bias in PI-5 varied between�9 and 14.5,�13 and 50, and�5 to 24% in
the BEST-GCMs, HOST-GCMs, and CORDEX-RCMs, respectively (Table 4). Ensemble mean bias in PI-5 was �10.6,
�24, and 11% in the BEST-GCMs, HOST-GCMs, and CORDEX-RCMs, respectively (Table 4).

We estimated the ratio of heavy-to-nonheavy precipitation totals (H-NH) for each year and bias in the GCMs and
RCMs for the period of 1951–2005 (Figure 5). Heavy-to-nonheavy ratio varied between 0.5 and 8% with higher
values in the Western Ghats, east central region, and northeastern India, while similar to the other indices, lower
values were centered in the semiarid western India (Figure 5a). Most of the models overestimated H-NH in the
northern, northeastern, and peninsular India and underestimated H-NH in the central India and Western Ghats
(Figure 5). Among the BEST-GCMs, GFDL-CM3 and CNRM-CM5 underestimated H-NH in central India
(Figures 5f and 5g), while CMCC-CMS and MPI-ESM-MR overestimated H-NH in peninsular India (Figures 5e
and 5h). Most of the CORDEX-RCMs and their ensemble mean underestimated H-NH in central India but
with a lower bias than that of the HOST-GCMs (Figures 5m–55p). All-India median bias varied between
�0.05 and �1.2, �0.4 and �2, and �0.16 and �0.95% among the BEST-GCMs, HOST-GCMs, and
CORDEX-RCMs, respectively (Table 4). Moreover, ensemblemean bias showed that the BEST-GCMs outperformed
the HOST-GCMs and CORDEX-RCMs with �0.53, �1.3, and 0.97% bias, respectively (Table 4).

We notice that the performance to simulate extreme precipitation was slightly improved in the CORDEX-RCMs in
comparison to their HOST-GCMs. However, the BEST-GCMs outperformed both the CORDEX-RCMs as well as their
HOST-GCMs formost of the selected extremeprecipitation indices. Intermodel variations in the CORDEX-RCMswas
higher than that of the BEST-GCMs, whereas for most of the extreme precipitation indices COSMO-CLM and
RegCM4-LMDZ showed high positive and negative biases, respectively. These differences in intermodal variations
may be related to the numerical scheme, physical parameterization, and boundary conditions used in the
regional climatemodels [Rummukainen et al., 2001]. A high intermodel variation in the CORDEX-RCMsmay lead
to a high uncertainty in extreme precipitation projections. We further notice that the improvement in the
CORDEX-RCMs is not substantial to simulate AMP and PI-5 (see ensemble mean bias for comparison). For
instance, overestimations (underestimations) in the northern (central) regions remained somewhat unchanged
in the CORDEX-RCMs. However, in the Western Ghat region, the CORDEX-RCMs showed a better performance
than the CMIP5 models, which could be attributed to their ability to resolve topography and orographic
precipitation. While most of the CMIP5 models in Table 3 displayed dry bias, which is consistent with the
findings of Kawazoe and Gutowski [2013] and, the BEST-GCMs (CMCC-CMS, CNRM-CM5, GFDL-CM3, and
MPI-ESM-MR) showed a better performance to simulate extreme precipitation over India (Table 3). Moreover,
we do not notice any direct relationship between the CMIP5 model resolution (Table 1) and the bias in
simulating extreme precipitation. However, an improved parameterization related to convection and aerosol
schemes in the GCMs plays a major role in better simulation of orographic precipitation and precipitation
extremes (see Watanabe et al. [2010] for details).
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3.2. Bias in Number of Rainy Days

We evaluated bias in number of rainy days in the
selected models to understand if there is any
relationship between models’ ability to simulate
number of rainy days and extreme precipitation
indices. Figure 6 shows observed mean annual
number of rainy days (precipitation> 1mm) and
bias in the BEST-GCMs, HOST-GCMs, and
CORDEX-RCMs for the period of 1951–2005.
Observed mean annual number of rainy days
varied between 20 and 200 days with higher
values in the Northeast India and Western Ghats
(Figure 6a). Among the BEST-GCMs, CMCC-CMS
and MPI-ESM-MR underestimated number of
rainy days, while CNRM-CM5 and GFDL-CM3
overestimated the number of rainy days in the
majority of India (Figures 6e–6h). Among the
HOST-GCMs, IPSL-CM5A-LR and MPI-ESM-LR
underestimated the number of rainy days, while
among the CORDEX-RCMs, COSMO-CLM model
showed an underestimation in the majority of
India except the northern and northeast parts of
India (Figures 6i–6p), which can be attributed to a
dry bias present in its host GCM (i.e., MPI-ESM-LR).
While we do not notice any relationship between
the models’ ability to simulate the number of
rainy days and the extreme precipitation indices,
results indicate a similar bias in the number
of rainy days in the CORDEX-RCMs and their
HOST-GCMs. All-India bias in the number of rainy
days varied between �24 and 43, �22 and 62,

and �39 and 31days in the BEST-GCMs, HOST-GCMs, and CORDEX-RCMs, respectively. Moreover, ensemble
mean bias in the number of rainy days was 4.4, 7.4, and 5.0 days in the BEST-GCMs, HOST-GCMs, and CORDEX-
RCMs, respectively. These results show that bias in the number of rainy days was improved (7.4 and 5.0 days) in
the CORDEX-RCMs against their HOST-GCMs. Once again, we notice that intermodel variations in the bias in the
number of rainy days in the CORDEX-RCMs is similar to that found in the BEST-GCMs and HOST-GCMs. Bias in
the number of rainy daysmay be associated with the timing of themonsoonwithdrawal as discussed in Sperber
et al. [2012] as well as with temporal and spatial scales of precipitation as reported by Gutowski et al. [2003].

3.3. Trends in Annual Maximum Precipitation

We estimated changes in the observed and the model-simulated AMP during the period of 1951–2005
(Figure 7) using the nonparametric Mann-Kendall test. Observed trends in AMP showed a significant decline
(30–40%) between 1951 and 2005 especially in northern India and in parts of the Gangetic Plain (Figure 7a).
On the other hand, increasing trends in AMP were noticed in Jammu and Kashmir and parts of west central
India. Overall there is a mixed nature of changes with a high spatial variability in AMP during the period
of 1951–2005 as reported by Ghosh et al. [2012]. Most of the models, regardless of GCMs or RCMs, failed
to capture the observed trends and associated spatial variability in AMP during the period of 1951–2005.
GFDL-CM3, CNRM-CM5, and MPI-ESM-MR somewhat captured declining trends in AMP in the Gangetic Plain
region; however, most of them failed to reproduce trends in northwestern India (Figures 7e–7h). On the
other hand, the HOST-GCMs and CORDEX-RCMs (Table 2) largely failed to reproduce trends in AMP in the
majority of India (Figures 7i–7p). All-India median trend in AMP varied between 0.83 and 6.2, 3.3 and 9.8, and
0.68 and 4.8% against the observed �6.0% in the BEST-GCMs, HOST-GCMs, and CORDEX-RCMs, respectively
(Table 4). Ensemble mean trends in AMP in the BEST-GCMs, HOST-GCMs, and CORDEX-RCMs were 4.7, 7.5,

Table 3. All-India Median Bias (%) in Annual Maximum
Precipitation (AMP) at 0.5 and 1.0° Spatial Resolutions

CMIP5 Model Bias AMP (0.5°, %) Bias AMP ( 1°, %)

ACCESS1-0 �19.88 �37.8
ACCESS1-3 �41.89 �53.36
BNU-ESM �41.36 �53.91
CCSM4 36.38 7.49
CMCC-CESM �16.79 �33.36
CMCC-CM 19.61 �5.53
CMCC-CMS �13.43 �30.75
CNRM-CM5 14.25 �6.52
CSIRO-Mk3-6-0 �57.54 �65.71
CanCM4 �15.29 �30.48
CanESM2 �20.3 �35
EC-EARTH �32.8 �47.38
GFDL-CM3 �14.63 �32.21
GFDL-ESM2G �18.56 �35.38
GFDL-ESM2M �16.6 �32.75
HadCM3 �51.95 �61.44
HadGEM2-CC �36.4 �49.38
HadGEM2-ES �38.59 �50.73
IPSL-CM5A-LR �54.08 �62.88
IPSL-CM5A-MR �38.21 �49.93
IPSL-CM5B-LR �46.38 �57.18
MIROC-ESM �28.86 �44.63
MIROC-ESM-CHEM �28.15 �42.8
MIROC4h 54.06 11.55
MIROC5 29.5 2.7
MPI-ESM-LR �15.65 �31.88
MPI-ESM-MR �12.76 �29.94
MPI-ESM-P �18.16 �34.21
MRI-CGCM3 �37.97 �52.86
NorESM1-M �20.12 �36.68
bcc-csm1-1 �16.78 �33.67
inmcm4 �50.17 �60.03
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Figure 6. (a) Observed mean annual number of rainy days for the period of 1951–2005; (b–d) ensemble mean bias (days) in number of rainy days in the BEST-GCMs
(CMCC-CMS, CNRM-CM5, GFDL-CM3, and MPI-ESM-MR), HOST-GCMs (MPI-ESM-LR, GFDL-ESM2M, IPSL-CM5A-LR, and EC-EARTH), and CORDEX-RCMs (COSMO-CLM,
RegCM4-GFDL, RegCM4-LMDZ, and SMHI-RCA4); and (e–p) bias for the individual models in the BEST-GCMs, HOST-GCMs, and CORDEX-RCMs. Bias for the BEST-GCMs,
HOST-GCMs, and CORDEX-RCMs was estimated for the period of 1951–2005. Stippling shows grid cells where mean is significantly different than observed mean as
estimated by the rank sum test. Stippling in Figures 6b–6d shows grid cells wheremean is significantly different than observedmean in all themodels in the BEST-GCMs,
HOST-GCM, and CORDEX-RCMs.
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Figure 7. (a) Observed trend (%) in annual maximum precipitation (AMP) during the period of 1951–2005; (b–d) ensemble mean trend (%) in AMP in the BEST-GCMs,
HOST-GCMs, and CORDEX-RCMs; and (e–p) trend (%) in AMP in the individual models. Trends for the BEST-GCMs, HOST-GCMs, and CORDEX-RCMs were estimated for
the period of 1951–2005.
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and 2.8%, respectively. These results highlight deficiencies in the models to capture observed trends in AMP
during the period of 1951–2005. Observed trends in extreme precipitation over India remain unclear as
disparate findings were reported. For instance, Goswami et al. [2006] reported increasing trends in extreme
precipitation during the monsoon season over central India using a coarse resolution rainfall data set.
However, Ghosh et al. [2012] and Vittal et al. [2013] found more spatial variability but no significant increases
in extreme precipitation in the monsoon season in India. We notice the clear declining trends in AMP during
the period of 1951–2005 in northwestern India and Gangetic Plain. Bollasina et al. [2011] argued that
anthropogenic aerosol emissions resulted in declines in the Indian summer monsoon rainfall, while Goswami
et al. [2006] reported a linkage between sea surface temperature in the Indian Ocean and extreme precipitation
in India. Therefore, a representation of aerosols in the models [Laprise, 2014] as well as trends in SST over
the Indian Ocean can be associated with the deficiencies in simulation of the observed trends in the models.
Furthermore, models often show a little skill for trends in precipitation as reported by Kiktev et al. [2003].

3.4. Bias in 1Day Precipitation Maxima at 25–100 Year Return Period

Similar to 1 day precipitation maxima for 25 and 50 year return intervals (Figures S1 and S2 in the supporting
information), we estimated 1 day 100 year precipitation maxima from the observed and the model-simulated
precipitation. Observed 1day 100 year precipitation maxima varied between 40 and 350mm with similar
spatial features as found for 1 day 25 and 50year precipitation maxima (Figure 8). A majority of the CMIP5
models (except CNRM-CM5) in the BEST-GCMs underestimated 1day 100 year precipitation maxima in the
majority of India. Wet and dry biases were prominent in northern and central India, respectively (Figures 8e–8h).
Most of the HOST-GCMs showed dry bias in 1 day 100 year precipitation maxima, which was dominant in the
majority of India except in the parts of Jammu and Kashmir and peninsular India. The dry bias in IPSL-CM5A-LR
was prominent in central India (Figure 8k). Consistent to 1 day 25 and 50 year precipitation maxima,

Table 4. All-India Median Bias in AMP, P-FREQ, PI-5, H-NH, 1Day 25–100 Year Return Period, and Change in AMP (%)
During 1951–2005 in the BEST-GCMs, HOST-GCMs, and CORDEX-RCMs

Index

BEST-GCMs

CMCC-CMS CNRM-CM5 GFDL-CM3 MPI-ESM-MR Ensemble

AMP (%) �12.2 9.0 �16.1 �11.0 �6.56
P-FREQ (events/year) �0.27 �0.04 �0.30 �0.23 �0.16
PI-5 (%) �12.30 �13.00 �14.50 �9.00 �10.60
H-NH (%) �0.07 �1.18 �1.08 �0.05 �0.53
1 day 25 year (%) �16.60 22.32 �13.40 �20.00 �5.53
1 day 50 year (%) �19.30 22.50 �15.10 �22.50 �7.00
1 day 100 year (%) �22.20 23.50 �15.14 �26.00 �8.25
Trends in AMP (%) 6.28 2.97 5.78 0.83 4.79

HOST-GCMs
EC-EARTH GFDL-ESM2M IPSL-CM5A-LR MIP-ESM-LR Ensemble

AMP (%) �33.77 �14.07 �53.10 �16.85 �27.66
P-FREQ (events/year) �0.71 �0.27 �0.82 �0.38 �0.49
PI-5 (%) �26.16 �13.48 �50.26 �13.40 �24.58
H-NH (%) �1.66 �1.60 �2.29 �0.39 �1.30
1 day 25 year (%) �36.57 �3.52 �50.46 �26.00 �26.79
1 day 50 year (%) �35.71 1.93 �48.41 �29.05 �26.42
1 day 100 year (%) �34.52 7.30 �47.19 �32.39 �24.94
Trends in AMP (%) 4.99 9.88 3.30 4.46 7.05

CORDEX-RCMs
COSMO-CLM RegCM4-GFDL RegCM4-LMDZ SMHI-RCA4 Ensemble

AMP (%) 54.89 19.87 �9.49 �3.82 21.31
P-FREQ (events/year) 0.82 0.55 �0.29 �0.29 0.49
PI-5 (%) 24.16 15.37 �11.93 �4.97 10.64
H-NH (%) �0.16 �0.49 �0.95 �0.62 �0.06
1 day 25 year (%) 89.54 21.95 �8.62 0.87 30.79
1 day 50 year (%) 99.26 22.35 �7.57 3.93 34.31
1 day 100 year (%) 108.97 22.06 �6.18 7.24 38.28
Trends in AMP (%) 4.06 4.80 2.88 0.68 2.83
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Figure 8. (a) Observed 1 day 100 year precipitation maxima for the period of 1951–2005; (b–d) ensemble mean bias (%) in 1 day 100 year precipitation maxima in
the BEST-GCMs, HOST-GCMs, and CORDEX-RCMs; and (e–p) bias (%) in 1 day 100 year precipitation maxima in the individual models. Bias (%) for the BEST-GCMs,
HOST-GCMs, and CORDEX-RCMs were estimated for the period of 1951–2005.
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the CORDEX-RCMs showed both dry and wet bias that varied spatially and among models. For instance, the
areas with dry bias were largely located in central India, while wet bias was more prominent in peninsular India
(Figures 8m–8p). Among the CORDEX-RCMs, COSMO-CLM showed significant wet bias (more than 100%) across
India (Figure 8m), while its HOST-GCM (MPI-ESM-LR) underestimated 1day 100 year precipitation maxima. On
the other hand, the bias in RegCM4-GFDL and its HOST-GCM (GFDL-ESM2M) was somewhat similar. These
results highlight that the bias in the CORDEX-RCMs is not consistent with their HOST-GCMs. All-India ensemble
mean median bias in the BEST-GCMs, HOST-GCMs, and CORDEX-RCMs was �8, �25, and 38%, respectively
(Table 4). The two regional climate models that showed better performance to simulate 1 day 100 year
precipitation maxima were RegCM4-LMDZ and SMHI-RCA4, while the other two (COSMO-CLM and RegCM4-
GFDL) showed poorer performance than their HOST-GCMs (Table 4). We further notice that RegCM4-LMDZ and
SMHI-RCA4 exhibited lower bias than any of the CMPI5 models in the BEST-GCMs. However, due to a large
intermodal variability in bias in the CORDEX-RCMs, their ensemble mean performance was weaker than both
the HOST-GCMs and the BEST-GCMs (Table 4). Changes in the nature of bias in the CORDEX-RCMs from their
HOST-GCMs may be attributed to differences in parameterization, spatial resolution, and numerical schemes
[Rummukainen et al., 2001; Fowler et al., 2007a, 2007b; Tripathi and Dominguez, 2013]. Increased resolution in the
RCMs from the CMIP5 models might have led to a better representation of extreme precipitation intensities in
RegCM4-LMDZ and SMHI-RCA4 as reported in Gutowski et al. [2003]; however, this was not consistent in all the

Figure 9. (a–c) Grid cells (in red) where models show appropriate bias (±10%) for hydrologic design purpose for 1 day precipitation maxima at 25 year return period
and (d) models and the area (%) where bias is appropriate for design purpose for 1 day 25 year precipitation maxima. (e–g and i–k) Same as Figures 9a–9c but for
1 day precipitation maxima at 50 and 100 years. (h and l) Same as Figure 9d but for 50 and 100 years, respectively.
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CORDEX-RCMs. Tripathi and Dominguez
[2013] found that a fine-grid resolution
resulted in overestimations in summer
precipitation in Arizona, while 10 km
resolution resulted in better simulations
of precipitation extremes than that of
50 km. Similar findings were reported in
Rajendran et al. [2013], who found that a
20 km resolution better captured the
characteristics of the Indian summer
monsoon and resolved fine-scale
processes that contribute toward
extreme precipitation.

Dry and wet biases as exhibited by the
BEST-GCMs, HOST-GCMs, and CORDEX-
RCMs can influence hydrologic and
hydraulic designs. Underestimations in
precipitation maxima by the models may
increase risks of failures of hydrologic
structures, while overestimations may lead
to an increased cost of infrastructures. We
considered ±10% bias in precipitation
maxima appropriate for hydrologic and
hydraulic designs as described in Mishra
et al. [2012a, 2012b] and estimated the
number of grid cells ( or area in
percentage) where the models show a
reasonable performance (bias less
than± 10%) to simulate 1 day precipitation
maxima at 25–100 year return intervals
(Figure 9). Moreover, we estimated the
combined area (in %) where any one of the
selected models (among the BEST-GCMs,
HOST-GCMs, and CORDEX-RCMs) can
provide useful estimates of precipitation
maxima for the design purposes. For 1 day
25 year precipitation maxima, the

performance of the BEST-GCMs, HOST-GCMs, and CORDEX-RCMs was appropriate for the design purposes at
50.5, 40.5, and 47.5% grid cells in India, respectively (Figures 9a–9c). Other than GFDL-CM3 and RegCM4-
GFDL, all the other models showed a reasonable performance in less than 20% of the area (Figure 9d). For
1 day 50 year precipitation maxima, the BEST-GCMs, HOST-GCMs, and CORDEX-RCMs showed an appropriate
performance at 48.6, 42.5, and 46.4% of grid cells across India (Figures 9e–9g). Furthermore, only GFDL-
ESM2Mmodel exhibited a reasonable performance for the design purpose at more than 20% of the grid cells
in India (Figure 9h). GFDL-ESM2M also showed the best performance for 1 day 100 year return intervals,
while the bias was appropriate at 47.7, 42.2, and 44.7% grid cells from the BEST-GCMs, HOST-GCMs, and
CORDEX-RCMs, respectively (Figures 9i–9l). We noticed that the BEST-GCMs showed a lower bias in the
majority of central India, with a higher bias in western India. On the other hand, in the CORDEX-RCMs and
their HOST-GCMs, a lower bias was more evenly distributed across India except the parts of Jammu and
Kashmir. Moreover, we found a negligible area where all the models among the BEST-GCMs, HOST-GCMs, and
CORDEX-RCMs consistently showed lower dry/wet biases which can be considered appropriate for the design
purpose. These results highlight that despite the dynamical downscaling; the CORDEX-RCMs fail to cover
more than 50% area where values can be used for the hydrologic and hydraulic designs. Moreover, the BEST-
GCMs showed a better performance than the CORDEX-RCMs or their HOST-GCMs. We argue that despite the

Figure 10. Observed (black) and model-simulated (blue) intensity-
duration-frequency (IDF) curves for all-India averaged annual
maximum precipitation for the period of 1951–2005. Error bars
represent intermodel variation in (a) BEST-GCMs, (b) HOST-GCMs,
and (c) CORDEX-RCMs. (Return period = 100 years.)
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dynamical downscaling, the bias in the CORDEX-RCMs is similar to those found in their HOST-GCMs, which
once again underscores the need for further improvements in the RCMs. A disagreement among the RCMs to
simulate precipitation maxima in India remains high (at least similar to the CMIP5 GCMs) which may lead to a
significant uncertainty in the projections of design maxima.

We constructed intensity-duration-frequency (IDF) curves using AMP for 1–10 day durations for the period of
1951–2005 (Figure 10). Precipitation maxima at 1–10 day durations and 100 year return period were
estimated using the GEV distribution fitted through the L moment based approach. We estimated all-India
median precipitationmaxima at the selected durations from the individual models, and then ensemblemean
was taken, which was compared with the observed precipitation maxima obtained from the APHRODITE
data. We notice that the ensemble mean precipitation maxima from the BEST-GCMs underestimated the
observed precipitation maxima at 1–10 day durations and at 100 year return period (Figure 10a).
Underestimations in multiday precipitation maxima in the HOST-GCMs were higher than that obtained from

Figure 11. (a–c) Observed and ensemble mean precipitation for the top 20 extreme precipitation events during the period of 1951–2005 from the APHRODITE,
BEST-GCMs, HOST-GCMs, and CORDEX-RCMs; (d–g) composite wind patterns for precipitation extremes in Mumbai from the NCEP-NCAR, BEST-GCMs, HOST-GCMs,
and CORDEX-RCMs; (h–k) same as Figures 11d–11g but for Delhi; and (l–o) same as Figures 11d–11g but for Dehradun. Red dots represent location of the selected cities.
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the BEST-GCMs (Figure 10b). The CORDEX-RCMs overestimated multiday precipitation maxima at 100 year
return period for 1–7 day durations (Figure 10c). However, intermodel variations in multiday precipitation
maxima in the CORDEX-RCMs were significantly higher than that found in the BEST-GCMs and HOST-GCMs
(Figures 10a–10c). The high intermodel variations in the CORDEX-RCMs can be attributed to the presence of
both dry and wet biases in AMP as shown in the results.

3.5. Precipitation Extremes and Large-Scale Wind Patterns

We estimated mean precipitation intensity for the top 20 events during the monsoon season (1951–2005)
and their composite wind patterns for the three urban areas (Mumbai, Delhi, and Dehradun). We were
interested to understand the association between extreme precipitation events and the large-scale wind

Figure 12. Climatological wind for the monsoon season (June to September) from (a) NCEP-NCAR for the period of 1951–2005; (b–d) ensemble mean climatological
wind for BEST-GCMs, HOST-GCMs, and CORDEX-RCMs; and (e–m) climatological wind for the monsoon season from the individual models.
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patterns (Figure 11). Observed mean precipitation intensity for the top 20 events was 260mm, which was
underestimated by the BEST-GCMs, HOST-GCMs, and CORDEX-RCMs. The CORDEX-RCMs performed better
than the BEST-GCMs as well as HOST-GCMs; however, those showed larger uncertainty (as shown by
intermodel variations; Figure 11a). Among the CORDEX-RCMs, most of the models showed an improved
performance for orographic precipitation in the Western Ghats except SMHI-RCA4, which showed a high dry
bias in the region. Here one should note the larger uncertainty in the CORDEX-RCMs to simulate extreme
precipitation over Mumbai despite a better performance than the GCMs which can be attributed to the
presence of dry and wet biases in AMP. Mean extreme precipitation intensity over Delhi was better simulated
by the BEST-GCMs with relatively lower intermodel variations (Figure 11b). The CORDEX-RCMs showed a large
dry bias in precipitation extremes over Delhi; however, the bias was improved in comparison to their HOST-
GCMs. Similar to Delhi, the BEST-GCMs exhibited a better performance to reproduce extreme precipitation
intensity over Dehradun. Interestingly, the CORDEX-RCMs displayed an improved extreme precipitation
intensity than that of their HOST-GCMs, which highlights an improvement in the ensemble mean
performance (Figures 11a–11c).

We evaluated composite surface wind patterns from the RCMs and GCMs against the NCEP-NCAR reanalysis
for all three selected cities (i.e., Mumbai, Delhi, and Dehradun). Ensemble mean composite wind patterns
were constructed using the mean wind fields for the top 20 extreme precipitation events from the individual
models. Composite wind patterns from the NCEP-NCAR reanalysis associated with extreme precipitation over
Mumbai showed a strong westerly flow of high wind velocities in the Arabian Sea, which crossed the
southern peninsula and moved into the Bay of Bengal (Figure 11d). This observed feature was well
reproduced by the ensemble mean patterns from the BEST-GCMs, HOST-GCMs, and CORDEX-RCMs
(Figures 11e–11g) but with disparities in wind velocities. We notice that despite weaker wind composites in
the Arabian Sea and West Bengal (Figure 11g), the CORDEX-RCMs better simulated extreme precipitation
intensity over Mumbai (Figure 11a), which can be attributed to large intermodel variations ( two out of three
models performed much better than SMHI-RCA4). Similar patterns for the surface winds were observed for
extreme precipitation intensity over Delhi and Dehradun (Figures 11h and 11l) with stronger winds in
northwestern India (toward Delhi and Dehradun). While the BEST-GCMs and HOST-GCMs captured large-scale
patterns in a reasonable manner, the differences in surface wind velocity can be noticed in northwestern
India. Moreover, we notice weaker winds in the CORDEX-RCMs associated with extreme precipitation events
over Delhi and Dehradun (Figures 11k and 11o).

Figure 12 shows climatological wind field for the monsoon season (June-July-August-September (JJAS)) from
the NCEP-NCAR and global and regional climate models. For GCMs and RCMs, we constructed ensemble
mean climatological wind fields for the monsoon season during the period of 1951–2005, which were
compared with wind fields from the NCEP-NCAR reanalysis data. Since most rainfall occurs during the
monsoon season in India, differences in climatological wind fields in GCMs/RCMs from the reanalysis data can
provide insights about their ability to simulate extreme precipitation. Ensemble mean climatological wind
fields for the monsoon season from BEST-GCMs and HOST-GCMs resemble well the wind fields from the
reanalysis data (Figures 12a–12c); however, disparities can be seen in ensemble mean wind field from the
CORDEX-RCMs (Figure 12d). Climatological wind fields from the individual models reveal weaker monsoonal
wind flow in IPSL-CM5A-LR model which could be associated with large dry bias for mean monsoon season
precipitation as well as extremes [Menon et al., 2013]. On the other hand, weaker wind fields in the Bay of
Bengal in RegCM4-GFDL and RegCM4-LMDZ may be associated with their HOST-GCMs (Figure 12).

4. Conclusions

Our results, consistent with the findings of Racherla et al. [2012], showed that dynamical downscaling does
not necessarily improve simulation of extreme precipitation events over India. Out of four RCMs in the
CORDEX South Asia program, only two simulated the extreme precipitation indices better than their HOST-
GCMs. In the other two models (COSMO-CLM and RegCM4-GFDL), the bias in extreme precipitation events
was higher than that of their HOST-GCMs (Table 4). Furthermore, we notice that a negative bias present in the
EC-EARTH and GFDL-ESM2M turned to a large positive bias after dynamical downscaling in COSMO-CLM and
RegCM4-GFDLmodels. We find a significant improvement in bias after the dynamical downscaling in the two
models (RegCM4-LMDZ and SMHI-RCA4). Therefore, model skills may not be directly linked solely with the
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resolution; rather it could be associated with location, parameterization, and boundary conditions [Maurer
and Hidalgo, 2008]. In particular, a major challenge for many GCMs is to capture the observed distribution of
mean summer monsoon precipitation over South Asia and its variability, which are closely tied to the large-
scale monsoon dynamics and organization of convective systems [Choudhury and Krishnan, 2011; Sabin et al.,
2013]. This implies that the realism of dynamical downscaling of precipitation over the South Asian region is
critically dependent on the physical parameterization schemes used in the model. The influence of model
resolution on skills in precipitation simulations has been discussed in many studies [Rojas, 2006; Tripathi and
Dominguez, 2013;Walther et al., 2013]. However, spatial resolution is not the only factor that controls skills of
extreme precipitation simulations; additional efforts are required to understand the potential role of spatial
resolution on extreme precipitation over India.

We notice that for most of the selected extreme precipitation indices (Table 4), the BEST-GCMs showed better
skills than the CORDEX-RCMs and their HOST-GCMs based on ensemble mean. For instance, the ensemble
mean bias in annual maximum precipitation in the BEST-GCMs, HOST-GCMs, and CORDEX-RCMs was �6.5,
27.66, and 21.31%, respectively. Here, one may notice that the BEST-GCMs were selected after a careful
evaluation of the 32 CMIP5 models against the observed precipitation extremes in India (Figure 1 and
Table 3), while the sample size of the CORDEX-RCMs is far lower. We found that spatial interpolation of daily
precipitation at a higher resolution may itself cause an uncertainty and differences in the skills as reported by
Chen and Knutson [2008]. The major problem associated with the poor performance of the CORDEX-RCMs in
comparison to the BEST-GCMs can be attributed to intermodel variations. Giorgi and Francisco [2000]
reported that the largest source of uncertainty in regional climate models is associated with intermodel
variability. High intermodel variations in the CORDEX-RCMs leads to a large bias in their ensemble mean; on
the other hand, relatively low intermodel variations in the BEST-GCMs results in a better performance. The
large intermodel variations present in the CORDEX-RCMs highlight the need of more regional climate models
with a large number of boundary conditions as suggested by Fowler and Ekström [2009]. Moreover, future
work may be dedicated to select boundary conditions which have a lower bias (possibly the BEST-GCMs) for
downscaling experiments. Simulation of the atmospheric variables by GCMs not just at the surface level but
also in the upper troposphere will make the model evaluation process more effective.

Climate projections for hydrologic application are required at a high resolution with a lower uncertainty
[Wood et al., 2004; Fowler et al., 2007a, 2007b]. Our results showed that ensemble mean of the BEST-GCMs
outperformed the CORDEX-RCMs to simulate precipitation maxima at 1–10 day durations (Table 4). For
instance, ensemble mean bias in the CORDEX-RCMs was significantly higher than that of the BEST-GCMs.
While the CORDEX-RCMs can better resolve orographic precipitation in complex topographic regions (e.g.,
Western Ghats and foothills of the Himalaya), a large bias in simulation of precipitation maxima limits their
usefulness for the hydrologic and hydraulic designs. The large intermodel variations present in the CORDEX-
RCMs may also play a major role in their use for hydrologic applications. From the results, it appears that the
BEST-GCMs may be better suitable for a decision making related to hydrology because of the lower bias and
uncertainty. Regional climate models may be valuable; however, significant improvements in the model
parameterization, spatial resolution, and boundary conditions are required to reduce bias and uncertainty
(intermodel variability). Outputs from regional climate models may be bias corrected further to use them for
the hydrologic impact studies [Wood et al., 2004; Christensen et al., 2008; Piani et al., 2010; Teutschbein and
Seibert, 2012].

References
Allan, R. P., C. Liu, M. Zahn, D. A. Lavers, E. Koukouvagias, and A. Bodas-Salcedo (2014), Physically consistent responses of the global atmospheric

hydrological cycle in models and observations, Surv. Geophys., 35(3), 533–552, doi:10.1007/s10712-012-9213-z.
Bollasina, M. A., Y. Ming, and V. Ramaswamy (2011), Anthropogenic aerosols and the weakening of the South Asian summer monsoon, Science,

334(6055), 502–505.
Chaturvedi, R. K., J. Joshi, M. Jayaraman, G. Bala, and N. H. Ravindranath (2012), Multi-model climate change projections for India under

representative concentration pathways, Curr. Sci., 103(7), 791–802.
Chen, C.-T., and T. Knutson (2008), On the verification and comparison of extreme rainfall indices from climate models, J. Clim., 21(7),

1605–1621.
Choudhury, A. D., and R. Krishnan (2011), Dynamical response of the South Asian monsoon trough to latent heating from stratiform and

convective precipitation, J. Atmos. Sci., 68, 1347–1363.
Christensen, J. H., and O. B. Christensen (2003), Climate modelling: Severe summertime flooding in Europe, Nature, 421(6925), 805–806.
Christensen, J. H., F. Boberg, O. B. Christensen, and P. Lucas-Picher (2008), On the need for bias correction of regional climate change

projections of temperature and precipitation, Geophys. Res. Lett., 35, L20709, doi:10.1029/2008GL035694.

Acknowledgments
The first author acknowledges funding
from the Varahamihir Ministry of Earth
Science Fellowship of India. The
research was partially funded by the
United States National Science
Foundation (NSF) Expeditions in
Computing grant 1029711. Data used in
this study can be obtained from
APHRODITE (http://www.chikyu.ac.jp/
precip/) and CORDEX South Asia (http://
cccr.tropmet.res.in/cordex/files/down-
loads.jsp). The CMIP5 models data can
be obtained from the Program for
Climate Model Diagnosis and
Intercomparison (PCMDI) archive of the
U.S. Department of Energy at Lawrence
Livermore National Laboratory (LLNL).
We acknowledge Bodo Ahrens and
Shakeel Asharaf from Goethe-Universitaet
Frankfurt for providing outputs of
COSMO-CLM and Nikulin Grigory and
Colin Jones, Rossby Centre, Sweden, for
providing outputs of SMHI-RCA4.

Journal of Geophysical Research: Atmospheres 10.1002/2014JD021636

MISHRA ET AL. ©2014. American Geophysical Union. All Rights Reserved. 9321

http://dx.doi.org/10.1007/s10712-012-9213-z
http://dx.doi.org/10.1029/2008GL035694
http://www.chikyu.ac.jp/precip/
http://www.chikyu.ac.jp/precip/
http://cccr.tropmet.res.in/cordex/files/downloads.jsp
http://cccr.tropmet.res.in/cordex/files/downloads.jsp
http://cccr.tropmet.res.in/cordex/files/downloads.jsp


Coumou, D., and S. Rahmstorf (2012), A decade of weather extremes, Nat. Clim. Change, 2(7), 491–496.
Déqué, M., D. P. Rowell, D. Lüthi, F. Giorgi, J. H. Christensen, B. Rockel, D. Jacob, E. Kjellström, M. De Castro, and B. van den Hurk (2007), An

intercomparison of regional climate simulations for Europe: Assessing uncertainties in model projections, Clim. Change, 81(1), 53–70.
Fowler, H. J., and M. Ekström (2009), Multi-model ensemble estimates of climate change impacts on UK seasonal precipitation extremes,

Int. J. Climatol., 29(3), 385–416.
Fowler, H. J., and R. L. Wilby (2010), Detecting changes in seasonal precipitation extremes using regional climate model projections:

Implications for managing fluvial flood risk, Water Resour. Res., 46, W03525, doi:10.1029/2008WR007636.
Fowler, H. J., M. Ekström, S. Blenkinsop, and A. P. Smith (2007a), Estimating change in extreme European precipitation using a multimodel

ensemble, J. Geophys. Res., 112, D18104, doi:10.1029/2007JD008619.
Fowler, H. J., S. Blenkinsop, and C. Tebaldi (2007b), Linking climate change modelling to impacts studies: Recent advances in downscaling

techniques for hydrological modelling, Int. J. Climatol., 27(12), 1547–1578, doi:10.1002/joc.1556.
Ghosh, S., D. Das, S.-C. Kao, and A. R. Ganguly (2012), Lack of uniform trends but increasing spatial variability in observed Indian rainfall

extremes, Nat. Clim. Change, 2(2), 86–91.
Giorgi, F., and R. Francisco (2000), Evaluating uncertainties in the prediction of regional climate change, Geophys. Res. Lett., 27(9), 1295–1298,

doi:10.1029/1999GL011016.
Goswami, B. N., V. Venugopal, D. Sengupta, M. S. Madhusoodanan, and P. K. Xavier (2006), Increasing trend of extreme rain events over India

in a warming environment, Science, 314(5804), 1442–1445.
Groisman, P. Y., T. R. Karl, D. R. Easterling, R. W. Knight, P. F. Jamason, K. J. Hennessy, R. Suppiah, C. M. Page, J. Wibig, and K. Fortuniak (1999),

Changes in the probability of heavy precipitation: Important indicators of climatic change, Clim. Change, 42(1), 243–283.
Guhathakurta, P., O. P. Sreejith, and P. A. Menon (2011), Impact of climate change on extreme rainfall events and flood risk in India, J. Earth

Syst. Sci., 120(3), 359–373.
Gutowski, W. J., Jr., S. G. Decker, R. A. Donavon, Z. Pan, R. W. Arritt, and E. S. Takle (2003), Temporal-spatial scales of observed and simulated

precipitation in central US climate, J. Clim., 16(22), 3841–3847.
Gutowski, W. J., Jr., R. W. Arritt, S. Kawazoe, D. M. Flory, E. S. Takle, S. Biner, D. Caya, R. G. Jones, R. Laprise, and L. R. Leung (2010), Regional

extreme monthly precipitation simulated by NARCCAP RCMs, J. Hydrometeorol., 11(6), 1373–1379.
Harding, K. J., P. K. Snyder, and S. Liess (2013), Use of dynamical downscaling to improve the simulation of Central U.S. warm season precipitation

in CMIP5 models, J. Geophys. Res. Atmos., 118, 12,522–12,536, doi:10.1002/2013JD019994.
Hosking, J. R. M., and J. R. Wallis (2005), Regional Frequency Analysis: An Approach Based on L-Moments, Cambridge Univ. Press, Cambridge.
Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, and J. Woollen (1996), The NCEP/NCAR

40-year reanalysis project, Bull. Am. Meteorol. Soc., 77(3), 437–471.
Kao, S.-C., and A. R. Ganguly (2011), Intensity, duration, and frequency of precipitation extremes under 21st-century warming scenarios,

J. Geophys. Res., 116, D16119, doi:10.1029/2010JD015529.
Kawazoe, S., and W. Gutowski (2013), Regional, very heavy daily precipitation in CMIP5 simulations, J. Hydrometeorol., 14, 1228–1242,

doi:10.1175/JHM-D-12-0112.1.
Kharin, V. V., and F. W. Zwiers (2000), Changes in the extremes in an ensemble of transient climate simulations with a coupled atmosphere–

ocean GCM, J. Clim., 13(21), 3760–3788.
Kharin, V. V., F. W. Zwiers, X. Zhang, and G. C. Hegerl (2007), Changes in temperature and precipitation extremes in the IPCC ensemble of

global coupled model simulations, J. Clim., 20(8), 1419–1444.
Kiktev, D., D. M. Sexton, L. Alexander, and C. K. Folland (2003), Comparison of modeled and observed trends in indices of daily climate

extremes, J. Clim., 16(22), 3560–3571.
Kishtawal, C. M., D. Niyogi, M. Tewari, R. A. Pielke, and J. M. Shepherd (2010), Urbanization signature in the observed heavy rainfall climatology

over India, Int. J. Clim., 30(13), 1908–1916.
Krishnamurthy, C. K. B., U. Lall, and H.-H. Kwon (2009), Changing frequency and intensity of rainfall extremes over India from 1951 to 2003,

J. Clim., 22(18), 4737–4746.
Laprise, R. (2014), Comment on “The added value to global model projections of climate change by dynamical downscaling: A case

study over the continental U.S. using the GISS-ModelE2 and WRF models” by Racherla et al., J. Geophys. Res. Atmos., 119, 3877–3881,
doi:10.1002/2013JD019945.

Leung, L. R., S. Zhong, Y. Qian, and Y. Liu (2004), Evaluation of regional climate simulations of the 1998 and 1999 East Asian Summer
Monsoon using the GAME/HUBEX observational data, J. Meteorol. Soc. Jpn., 82(6), 1695–1713.

Mani, N. J., E. Suhas, and B. N. Goswami (2009), Can global warming make Indian monsoon weather less predictable?, Geophys. Res. Lett., 36,
L08811, doi:10.1029/2009GL037989.

Mann, H. B. (1945), Nonparametric tests against trend, Econometrica, 13, 245–259.
Maurer, E. P., and H. G. Hidalgo (2008), Utility of daily vs. monthly large-scale climate data: An intercomparison of two statistical downscaling

methods, Hydrol. Earth Syst. Sci., 12(2), 551–563.
Menon, A., A. Levermann, J. Schewe, J. Lehmann, and K. Frieler (2013), Consistent increase in Indian monsoon rainfall and its variability across

CMIP-5 models, Earth Syst. Dyn., 4(2), 1–24.
Min, S.-K., X. Zhang, F. W. Zwiers, and G. C. Hegerl (2011), Human contribution to more-intense precipitation extremes, Nature, 470(7334), 378–381.
Mishra, V., and D. P. Lettenmaier (2011), Climatic trends in major U.S. urban areas, 1950–2009, Geophys. Res. Lett., 38, L16401, doi:10.1029/

2011GL048255.
Mishra, V., K. A. Cherkauer, and S. Shukla (2010), Assessment of drought due to historic climate variability and projected future climate

change in the midwestern United States, J. Hydrometeorol., 11, 46–68, doi:10.1175/2009JHM1156.1.
Mishra, V., F. Dominguez, and D. P. Lettenmaier (2012a), Urban precipitation extremes: How reliable are regional climate models?, Geophys.

Res. Lett., 39, L03407, doi:10.1029/2011GL050658.
Mishra, V., J. M. Wallace, and D. P. Lettenmaier (2012b), Relationship between hourly extreme precipitation and local air temperature in the

United States, Geophys. Res. Lett., 39, L16403, doi:10.1029/2012GL052790.
Mohapatra, P. K., and R. D. Singh (2003), Flood management in India, Nat. Hazards, 28(1), 131–143.
O’Gorman, P. A., and T. Schneider (2009), The physical basis for increases in precipitation extremes in simulations of 21st-century climate

change, Proc. Natl. Acad. Sci. U.S.A., 106(35), 14,773–14,777.
Piani, C., J. O. Haerter, and E. Coppola (2010), Statistical bias correction for daily precipitation in regional climate models over Europe, Theor.

Appl. Climatol., 99(1–2), 187–192.
Racherla, P. N., D. T. Shindell, and G. S. Faluvegi (2012), The added value to global model projections of climate change by dynamical downscaling:

A case study over the continental U.S. using the GISS-ModelE2 and WRF models, J. Geophys. Res., 117, D20118, doi:10.1029/2012JD018091.

Journal of Geophysical Research: Atmospheres 10.1002/2014JD021636

MISHRA ET AL. ©2014. American Geophysical Union. All Rights Reserved. 9322

http://dx.doi.org/10.1029/2008WR007636
http://dx.doi.org/10.1029/2007JD008619
http://dx.doi.org/10.1002/joc.1556
http://dx.doi.org/10.1029/1999GL011016
http://dx.doi.org/10.1002/2013JD019994
http://dx.doi.org/10.1029/2010JD015529
http://dx.doi.org/10.1175/JHM-D-12-0112.1
http://dx.doi.org/10.1002/2013JD019945
http://dx.doi.org/10.1029/2009GL037989
http://dx.doi.org/10.1029/2011GL048255
http://dx.doi.org/10.1029/2011GL048255
http://dx.doi.org/10.1175/2009JHM1156.1
http://dx.doi.org/10.1029/2011GL050658
http://dx.doi.org/10.1029/2012GL052790
http://dx.doi.org/10.1029/2012JD018091


Rajeevan, M., J. Bhate, and A. K. Jaswal (2008), Analysis of variability and trends of extreme rainfall events over India using 104 years of
gridded daily rainfall data, Geophys. Res. Lett., 35, L18707, doi:10.1029/2008GL035143.

Rajendran, K., S. Sajani, C. B. Jayasankar, and A. Kitoh (2013), How dependent is climate change projection of Indian summermonsoon rainfall
and extreme events on model resolution?, Curr. Sci. (00113891), 104(10), 1409.

Rojas, M. (2006), Multiply nested regional climate simulation for southern South America: Sensitivity to model resolution,Mon. Weather Rev.,
134(8), 2208–2223.

Rosenberg, E. A., P. W. Keys, D. B. Booth, D. Hartley, J. Burkey, A. C. Steinemann, and D. P. Lettenmaier (2010), Precipitation extremes and the
impacts of climate change on stormwater infrastructure in Washington State, Clim. Change, 102(1–2), 319–349.

Rummukainen, M., J. Räisänen, B. Bringfelt, A. Ullerstig, A. Omstedt, U. Willén, U. Hansson, and C. Jones (2001), A regional climate model for
northern Europe: Model description and results from the downscaling of two GCM control simulations, Clim. Dyn., 17(5–6), 339–359.

Sabin, T. P., R. Krishnan, J. Ghattas, S. Denvil, J.-L. Dufresne, F. Hourdin, and T. Pascal (2013), High resolution simulation of the South Asian
monsoon using a variable resolution global climate model, Clim. Dyn., doi:10.1007/s00382-012-1658-8.

Salathe, E. P., Jr., L. R. Leung, Y. Qian, and Y. Zhang (2010), Regional climate model projections for the state of Washington, Clim. Change,
102(1–2), 51–75.

Sen, P. K. (1968), Estimates of the regression coefficient based on Kendall’s tau, J. Am. Stat. Assoc., 63(324), 1379–1389.
Sillmann, J., V. V. Kharin, F. W. Zwiers, X. Zhang, and D. Bronaugh (2013), Climate extremes indices in the CMIP5 multimodel ensemble: Part 2.

Future climate projections, J. Geophys. Res. Atmos., 118, 2473–2493, doi:10.1002/jgrd.50188.
Sperber, K. R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou (2012), The Asian summermonsoon: An intercomparison

of CMIP5 vs. CMIP3 simulations of the late 20th century, Clim. Dyn., 41(9–10), 2711–2744.
Sugiyama, M., H. Shiogama, and S. Emori (2010), Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC

climate models, Proc. Natl. Acad. Sci. U.S.A., 107(2), 571–575.
Sun, Y., S. Solomon, A. Dai, and R. W. Portmann (2007), How often will it rain?, J. Clim., 20(19), 4801–4818.
Taylor, K. E., R. J. Stouffer, and G. A. Meehl (2012), An overview of CMIP5 and the experiment design, Bull. Am. Meteorol. Soc., 93(4), 485–498.
Teutschbein, C., and J. Seibert (2012), Bias correction of regional climate model simulations for hydrological climate-change impact studies:

Review and evaluation of different methods, J. Hydrol., 456, 12–29.
Toreti, A., P. Naveau, M. Zampieri, A. Schindler, E. Scoccimarro, E. Xoplaki, H. A. Dijkstra, S. Gualdi, and J. Luterbacher (2013), Projections of

global changes in precipitation extremes from Coupled Model Intercomparison Project Phase 5 models, Geophys. Res. Lett., 40, 4887–4892,
doi:10.1002/grl.50940.

Tripathi, O. P., and F. Dominguez (2013), Effects of spatial resolution in the simulation of daily and subdaily precipitation in the southwestern
US, J. Geophys. Res. Atmos., 118, 7591–7605, doi:10.1002/jgrd.50590.

Vittal, H., S. Karmakar, and S. Ghosh (2013), Diametric changes in trends and patterns of extreme rainfall over India from pre-1950 to post-1950,
Geophys. Res. Lett., 40, 3253–3258, doi:10.1002/grl.50631.

Walther, A., J.-H. Jeong, G. Nikulin, C. Jones, and D. Chen (2013), Evaluation of the warm season diurnal cycle of precipitation over Sweden
simulated by the Rossby Centre regional climate model RCA3, Atmos. Res., 119, 131–139.

Watanabe, M., T. Suzuki, R. O’ishi, Y. Komuro, S. Watanabe, S. Emori, T. Takemura, M. Chikira, T. Ogura, and M. Sekiguchi (2010), Improved
climate simulation by MIROC5: Mean states, variability, and climate sensitivity, J. Clim., 23(23), 6312–6335.

Wehner, M. F., R. L. Smith, G. Bala, and P. Duffy (2010), The effect of horizontal resolution on simulation of very extreme US precipitation
events in a global atmosphere model, Clim. Dyn., 34(2–3), 241–247.

Wood, A.W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier (2004), Hydrologic implications of dynamical and statistical approaches to downscaling
climate model outputs, Clim. Change, 62(1–3), 189–216.

Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh (2012), APHRODITE: Constructing a long-term daily gridded
precipitation dataset for Asia based on a dense network of rain gauges, Bull. Am. Meteorol. Soc., 93(9), 1401–1415.

Yue, S., and C. Y. Wang (2002), Regional Streamflow trend detection with consideration of both temporal and spatial correlation, Int. J.
Climatol., 22, 933–946, doi:10.1002/joc.781.

Journal of Geophysical Research: Atmospheres 10.1002/2014JD021636

MISHRA ET AL. ©2014. American Geophysical Union. All Rights Reserved. 9323

http://dx.doi.org/10.1029/2008GL035143
http://dx.doi.org/10.1007/s00382-012-1658-8
http://dx.doi.org/10.1002/jgrd.50188
http://dx.doi.org/10.1002/grl.50940
http://dx.doi.org/10.1002/jgrd.50590
http://dx.doi.org/10.1002/grl.50631
http://dx.doi.org/10.1002/joc.781


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


