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1. Introduction

Cell fate specifi cation during development is a result of 

cell–cell communication and depends on both intrinsic 

and environmental cues. The specifi c mechanisms that 

operate in each of a variety of tissues and organs have been 

widely studied. The remarkable conservation of signalling 

pathways across species, ranging from invertebrates to 

more evolved vertebrates, is striking (Artavanis-Tsakonas 

et al 1999; Cadigan and Nusse 1997; Dierick and Bejsovec 

1999; Goodrich et al 1996; Selkoe 2000). Developmentally 

important signalling pathways such as the Notch, Wnt and 

Hedgehog pathways are highly conserved across species 

and operate during the development of different organ 

systems. Hence, expression analysis of these pathway 

genes in various contexts is valuable in understanding their 

developmental role. We are interested in understanding 

the signalling pathways that operate in the development 
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of the vasculature. Hence, we analysed gene expression in 

differentiated endothelial cells (ECs) and an in vitro model 

of the developing vasculature.

Signals transmitted through the Notch receptor, 

in combination with other cellular factors, infl uence 

differentiation, proliferation and apoptotic events at all 

stages of development (Artavanis-Tsakonas et al 1999). 

As both Notch and its ligands are transmembrane proteins, 

they signal through direct cell contact. Mammals have four 

different Notch receptors, named Notch1 to Notch4. The 

Notch ligands are members of the Delta-Serrate-Lag-2 

(DSL) family of proteins. Loss-of-function, dominant-

negative and gain-of-function Notch mutants show severe 

developmental defects in various developmental models 

(Lai 2004). Notch signalling during embryonic develop-

ment in mouse regulates vascular morphogenesis and 

remodelling (Krebs et al 2000). Aberrant Notch signalling 

is also implicated in many cancers and diseases including 

T-cell acute lymphoblastic leukaemia (T-ALL), multiple 

sclerosis (MS), Alagille syndrome and Alzheimer’s disease 

(Kopan and Goate 2000; Gridley 2003; Harper et al 

2003). 

The Wnt gene family encodes proteins that play key 

roles in differentiation and development. Wnt proteins 

interact with transmembrane receptors of the Frizzled (Frz) 

family to stabilize cytoplasmic β-catenin and its interaction 

with transcription factors of the Lef/TCF family. β-catenin 

thus translocates to the nucleus to regulate gene expression. 

In vertebrates, several secreted proteins that can modulate 

Wnt signalling have been described (Kawano and Kypta 

2003). One of the target genes for Wnt signalling is 

Brachyury, a member of the T-box gene family of transcrip-

tion factors (Arnold et al 2000). During embryogenesis, 

the Wnt family of proteins mediates key cell signalling 

events essential for the generation of a normally patterned 

embryo. Wnt signalling is also required for the maintenance 

of adult tissue. Abnormal Wnt signalling has been 

implicated in disorders such as cancers and degenerative 

diseases (Karim et al 2004; Logan and Nusse 2004; Moon 

et al 2004). 

Members of the hedgehog pathway play an important 

role in mammalian embryonic development as well as in 

oncogenic transformation (Ingham and McMahon 2001; 

Mullor et al 2002; Ruiz i Altaba 1999; Villavicencio et al 

2000). The role of Shh during development of the neural 

tube and limb specifi cation in vertebrates has been well 

studied (Chiang et al 1996; Ekker et al 1995; Ericson 

et al 1995; Kraus et al 2001). Shh binds to the Patched-1 

(Ptch1) receptor on the target cell resulting in the activa-

tion of proteins that control the transcription of target 

genes. 

These signalling pathways are also critical for determining 

the properties of stem cells and their differentiation potential. 

Notch and its homologues regulate proliferation and 

maintenance of the undifferentiated state in stem cells (Bray 

1998; Morrison et al 1997). Wnt proteins can act as growth 

factors for stem cells (Willert et al 2003). Modulation of 

the Wnt pathway in mouse ES cells can interfere with their 

differentiation potential (Aubert et al 2002). The ability 

of ES cells to differentiate into the three germ layers is 

inhibited by increased doses of β-catenin (Kielman et al 

2002). Wnt signalling is required for maintaining long-term 

ES cell pluripotency (Miyabayashi et al 2007). Hedgehog 

proteins promote the proliferation of adult stem cells from 

various tissues (Detmer et al 2000).

Mouse embryonic stem (ES) cells provide a good in vitro 

model system for analysing gene expression and regulation 

during development of specifi c lineages. Hence, they are 

increasingly being used for developmental studies. The 

various ES cell lines that are used include CCE (Robertson 

et al 1986), D3 (Gossler et al 1986), E14 (Hooper et al 

1987), R1 (Nagy et al 1993), AB1 (McMahon and Bradley 

1990) and MBL-5 (Pease et al 1990). Recent reports show 

that though undifferentiated ES cells of all available ES cell 

lines exhibit similar characteristic properties, they differ 

in their differentiation effi ciencies in vitro. This has been 

demonstrated well for the differentiation of cardiomyocytes, 

chondrocytes and skeletal muscles (Kramer et al 2005; 

Wobus et al 1997). The expression of several genes has been 

analysed in ES cells and adult stem cells (Ramalho-Santos 

et al 2002) but a systematic analysis of their expression in 

differentiating ES cells is lacking. Expression of selected 

genes at some stages of differentiation has been reported. 

Upon withdrawal of leukaemia inhibitory factor (LIF) from 

the culture medium, ES cells spontaneously differentiate 

into embryoid bodies (EBs) that contain derivatives of all 

germ layers (Risau et al 1988). They can also be driven to 

differentiate predominantly into a given lineage by addition 

of specifi c growth factors (Turksen 2002). We chose to 

use spontaneously differentiating EBs as these better 

represent the scenario in the developing epiblast in vivo. 

We chose early days of differentiation for our analysis 

as these comprise mostly developing vascular structures. 

To compare the expression pattern seen in early vascular 

derivatives of ES cells with differentiated ECs, we also 

analysed expression in Py-4-1, an endothelial cell line 

derived from transgenic mouse haemangiomas (Dubois 

et al 1991).

We have used R1 ES cells and Py-4-1 endothelial cells 

to carry out the mRNA expression analysis of key pathway 

genes Notch-1, β-catenin, brachyury and patched, shown to 

be expressed in undifferentiated stem cells (Ramalho-Santos 

et al 2002). Activation of the Notch, Wnt and Shh pathways 

can be analysed by assessing gene expression of Notch-1, 

brachyury and patched, respectively. Hence we chose to 

analyse the expression of these indicator genes in R1 ES cells 



Gene expression in differentiating embryonic stem cells and endothelial cells 1293

J. Biosci. 32(7), December 2007

and EBs. As EBs contain a mixed population of different 

cell types, we also compared expression in a tumour-derived 

endothelial cell line, Py-4-1. Our data suggest that there may 

be signifi cant differences in early signalling events between 

R1 and some other reported mouse ES cell lines. Further, the 

expression pattern of the analysed genes in differentiating 

ES cells resembles that of ECs.

2. Materials and methods

2.1 Cell culture and differentiation

Py-4-1 cells (kind gift from Victoria L Bautch, UNC-

CH, North Carolina, USA) were maintained in DMEM 

containing 5% serum at 37oC and 10% CO
2
.
 
Wild-type ES 

cells (R1) (Nagy et al 1993) (kind gift from W Stanford, 

Toronto, Canada) were grown and differentiated as 

described earlier (Mukhopadhyay et al 2003). Briefl y, cells 

were kept undifferentiated in the presence of a source of 

LIF. Differentiation was initiated by replacing medium 

containing LIF with regular growth medium and passaging 

the cells in small clumps in suspension to generate EBs. 

Cultures were attached at day 3 (D3) of differentiation. The 

medium was replaced with fresh medium every alternate 

day. 

2.2 RNA extraction and RT-PCR

RNA was isolated from confl uent cultures of Py-4-1 ECs 

or from ES cells at D0, D4, D6, D8, D10 and D12 of 

differentiation as described earlier (Mukhopadhyay et al 

2003). Of the total RNA, 2 µg was reverse transcribed using 

Superscript II (GIBCO) and random primers, according to 

the manufacturer’s instructions. cDNAs were amplifi ed 

using specifi c primers (table 1). 

Table 1. Primer sequences used for PCR amplifi cation

Gene name Primer Sequence Expected amplicon (bp)

Notch-1 Notch1F 5′ AACTGCTCCGAGGAGATCAA 3′ 850

Notch1R 5′ ACCTTATTGCCTGCATCCAC 3′ 

β-catenin β-cateninF 5′ CAAGATGATGGTGTGCCAAG 3′ 500

β-cateninR 5′ CTGCACAAACAATGGAATGG 3′

Brachyury BrachyuryF 5′ TCCCGAGACCCAGTTCATAG 3′ 750

BrachyuryR 5′ TCACATAGATGGGGGTGACA 3′

Patched PatchedF 5′ CATTTTGCCCGCTATCAGTT 3′ 550

PatchedR 5′ GGGAATGAGTCCCTCCTTGT 3′ 

β-actin β-actinF 5′ GGAGAAGATTTGGCACCACACTTT 3′ 400

β-actinR 5′ CTCTTTAATGTCACGCACGATTTC 3′.

 

Figure 1. Expression of PECAM in Py-4-1 endothelial cells. (A) 

Membrane-localized PECAM expression (red); (B) nuclei stained 

with DAPI (blue) and (C) merged images shown in (A) and (B).



3. Results and discussion

3.1 Notch-1 and β-catenin are expressed in a mouse 

endothelial cell line

We fi rst analysed the expression of various pathway genes in 

Py-4-1 ECs. Immunostaining with anti-platelet/endothelial 

cell adhesion molecule (PECAM) antibodies showed that 

the cells expressed PECAM as reported (fi gure 1). We then 

checked for transcripts of the various representative pathway 

genes in endothelial cells by RT-PCR (fi gure 4). We could 

detect amplifi ca-tion of Notch and β-catenin (fi gure 4 A, B) 

transcripts but not of Shh and Ptc (fi gure 4 C, D). These data 

suggest that in differentiated tumour-derived endothelium, 

while N and Wnt signalling is active, the Shh pathway is 

downregulated.

Notch signalling plays a crucial role in vascular 

development. In response to vascular endothelial growth 

factor (VEGF) and Shh signalling, the Notch pathway is 

activated and regulates arterial versus venous differentiation 

(Limbourg et al 2005). Wnt receptors and transcriptional 

effectors are expressed in primary human ECs and Wnt/β-

catenin signalling promotes angiogenesis (Masckauchan et 

al 2005). Our data that show expression of N and β-catenin 

in Py-4-1 ECs support these reports. Shh indirectly induces 

angiogenesis by upregulating expression of VEGF and 

Ang1 (Pola et al 2001). Though human umbilical vein 

endothelial cells (HUVECs) have been shown to express 

Ptch, we did not observe expression of Ptch mRNA 

in Py-4-1. This difference could be due to the fact that 

HUVECs represent a normal human primary cell culture 

while Py-4-1 is a tumour-derived transformed cell 

line. Further, it is known that regulatory proteins of 

the Hedgehog pathway are expressed in ECs but are 

downregulated in angiogenesis and tumours (Olsen et al 

2004). 
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Figure 2. Differentiation of R1 ES cells in vitro.  R1 ES cells were allowed to differentiate spontaneously for 4 (A, B), 8 (C) and 10 

(D) days into embryoid bodies. Cells of different morphologies can be seen by phase-contrast imaging. Arrows indicate blood islands.



3.2 Expression of conserved signalling pathway genes 

during spontaneous differentiation of R1 ES cells

Expression analysis in Py-4-1 ECs, a terminally differentiated 

population, shows that Notch and Wnt signalling are 

active. We wanted to test whether this holds true during the 

primary specifi cation of the primitive vasculature. Hence, 

we studied expression in spontaneously differentiating 

R1 ES cells. We chose to analyse key genes of all three 

signalling pathways in the same R1 ES cells and within 

the same experimental set. Such an analysis has not been 

reported before. 

We fi rst monitored the differentiating cultures for normal 

morphology and vascular development (fi gure 2). We 

tracked the differentiation to various vascular precursors by 

immunostaining for CD34, Flk-1 and PECAM expression 

(fi gure 3). Having established the uniformity of the 

cultures and the expected time-line of differentiation, we 
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Figure 3. Expression of vascular markers in R1 ES cells undergoing in vitro differentiation. Phase contrast (left) and fl uorescent (right) 

images of embryoid body cultures at day 4 (A, B) or day 6 (C) of differentiation immunostained for (A) CD34, (B) Flk-1 and (C) PECAM. 

Arrows indicate cells that express the respective vascular marker.
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then analysed gene expression in these differentiating

cultures by reverse transcription of RNA followed by 

polymerase chain reaction amplifi cation (RT-PCR)

(see Methods). Undifferentiated ES cells of various

origins show fairly consistent gene expression patterns.

The representative genes we chose are expressed in 

pluripotent ES cells (Ramalho-Santos et al 2002). Hence, 

this population served as a control for the presence of

gene expression during differentiation. We used amplifi -

cation of β-actin as a control for RNA quality and quantity 

(fi gure 4E). 

During differentiation of R1 ES cells, Notch-1 

is maintained at comparable levels to that in the 

undifferentiated ES cells till D6 and is downregulated during 

further differentiation. Expression is maintained till at least 

D12 of differentiation, the end-point of our analysis (fi gure 

4A). Downregulation of Notch-1 signalling is required to 

induce cardiogenesis (Nemir et al 2006). Earlier studies 

have shown that during spontaneous differentiation of E14 

ES cells Notch-1 is expressed at D6 of differentiation but is 

absent from differentiated beating EBs. However, our data 

show that Notch is maintained for a longer duration during 

differentiation of R1 ES cells. 

We detected expression of β-catenin uniformly in 

undifferentiated R1 ES cells and at all days of differentiation 

analysed, till D12 (fi gure 4B). However, the mesodermal 

specifi cation marker brachyury was expressed only from 

D0 to D6, during the early phase of differentiation, but 

was not easily detectable later (fi gure 4C). This suggests 

that the Wnt pathway is active during early differentiation 

when vascular precursors are specifi ed. Activation of 

the Wnt/β-catenin pathway in the early phase during EB 

formation in ht7 and hcgp7 ES cells enhances differentiation 

into cardiomyocytes and suppresses haematopoietic and 

vascular cell marker gene expression, while in the late 

phase it inhibits cardiomyocyte differentiation and enhances 

the expression of haematopoietic/vascular marker genes 

(Naito et al 2006). Further analysis by immunostaining with 

Figure 4. mRNA expression analysis during spontaneous differentiation of R1 ES cells. RT-PCR analysis of embryoid body RNA at 

days 0, 4, 6, 8, 10 and 12 as indicated using primers specifi c for (A) Notch-1, (B) β-catenin, (C) Brachyury, (D) Patched and (E) β-actin. 

Amplifi cation of β-actin was used as a control to normalize the amount of templates. 
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cardiac- and vascular-specifi c markers will be required to 

analyse whether this holds true for R1 ES cells.

Patched expression was detected only in undifferentiated 

ES cells and weakly at D4 of differentiation (fi gure 4D). 

Expression was detectable again on D12 suggesting a 

dynamic regulation of patched during the early phases 

of differentiation. Presence of patched expression is an 

indicator of a functional Hedgehog pathway. In vitro, the 

Hedgehog pathway appears to play a role in the specifi cation 

of mesodermal cells into the cardiac muscle lineage 

(Gianakopoulos and Skerjanc 2005). Our data suggest that 

Patched may be involved in the late phase of cardiogenesis 

in R1 ES cells. Additionally, Patched signalling is not active 

during early vascular specifi cation.

Spontaneous differentiation of ES cells results in 

specifi cation of the derivatives of all three germ layers. The 

expression of genes regulating important developmental 

signalling pathways during in vitro differentiation of ES cells 

suggests that the interplay of these pathways determines cell 

fate. An in-depth study of these pathways will better our 

understanding of what regulates the differentiation of ES 

cells into various lineages. While our study does not attempt 

a quantitative analysis of gene expression or address gene 

regulation, it is an important initial step in the simultaneous 

analysis of gene expression using the in vitro ES cell-derived 

model of vascular development. Our data also show that 

gene expression pattern during early specifi cation of the 

vasculature is refl ected in that of Py-4-1 ECs. Further, we 

also show that there are differences in expression patterns in 

vitro between ES cells of different origins. These could have 

important implications during analysis of gene expression 

using different ES cell lines.
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