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SUMMARY

Asrij/OCIAD1 is an endosomal protein expressed in
stem cells and cardiovascular lineages and aber-
rantly expressed in several cancers. We show that
dose-dependent modulation of cytokine-dependent
JAK/STAT signaling by Asrij regulates mouse embry-
onic stem cell pluripotency as well as Drosophila
hematopoietic stem cell maintenance. Furthermore,
mouse asrij can substitute for Drosophila asrij, indi-
cating that they are true homologs. We identify a
conserved region of Asrij that is necessary and suffi-
cient for vesicular localization and function. We also
show that Asrij and STAT3 colocalize in endosomes
and interact biochemically. We propose that Asrij
provides an endosomal scaffold for STAT3 interac-
tion and activation, and may similarly control other
circuits that maintain stemness. Thus, Asrij provides
a key point of control for spatial and kinetic regula-
tion of stem cell signals.

INTRODUCTION

The molecular complexity and spatiotemporal control required

tomaintain stem cells suggest that several components involved

in regulating key signaling pathways remain unidentified.

Although the focus has been on signaling molecules, receptors,

and target gene activation by transcription factors, transduction

of the signal through the cytosol is an important phase that pro-

vides an opportunity for signal amplification and regulation (Do-

browolski and De Robertis, 2012). Recent evidence suggests

that signal transduction is not limited to the soluble cytosol,

and that endosomes and endosome-associated proteins may

play a greater role in the process than was previously thought

(Sehgal, 2008). In addition to its canonical role in intracellular traf-

ficking, the ‘‘endocyticmatrix’’ is integrated into cellular signaling

circuits, allowing rapid spatial and temporal control of key cell

signaling and transport processes (Scita and Di Fiore, 2010;

Sorkin and Von Zastrow, 2002). Understanding how these

circuits function in stem cell biology is important for enabling
control of stem cell fate and cell reprogramming. Here, we

used two divergent model systems to study conserved regula-

tion of signals by the endosomal protein Asrij.

Asrij is a member of the ovarian carcinoma immunoreactive

antigen (OCIA) domain family of conserved endocytic proteins

of unknown function that are expressed in mouse embryonic

stem cells (mESCs) and cardiovascular lineages (Mukhopadhyay

et al., 2003). OCIAD1 (human Asrij) is important for integrin-medi-

ated cancer cell adhesion and secondary colony formation (Sen-

gupta et al., 2008; Wang et al., 2010). The high level of asrij

expression seen in mESCs is rapidly downregulated upon induc-

tion of differentiation, suggesting that Asrij may function in plurip-

otency. Asrij is also a hematopoietic stem cell (HSC)marker (Phil-

lips et al., 2000). In Drosophila, Asrij is a blood cell marker

(Inamdar, 2003) and maintains the HSC niche (Kulkarni et al.,

2011). The trafficking function of Asrij is required to regulate

hemocyte differentiation. However, the role of asrij in maintaining

stem cells is not known. We show that Asrij has a conserved role

in maintaining stemness and canmodulate signals by controlling

effector activation. We propose that in endosomes, Asrij pro-

motes the interaction of signaling components and aids in signal

transduction to the nucleus, thereby controlling circuits that

maintain stem cell potency.
RESULTS

Asrij Affects ESC Proliferation, Clonogenicity,
and Pluripotency
In mESC cultures that differentiated in the absence of Leukemia

Inhibitory Factor (LIF), we found that asrij messenger RNA

(mRNA) expression was rapidly downregulated as differentiation

proceeded (Figures S1A–S1C). This led us to investigate the role

of Asrij in ESCs. We used stable ESC lines to modulate Asrij

expression (Figure 1A) and analyzed the phenotype. When

cultured on mouse embryonic fibroblasts (mEFs), Asrij-depleted

(+/�) and -overexpressing (OV) ESCs showed a wild-type (+/+)

morphology (Figure S1D). However, in feeder-free culture with

LIF, +/� cells formed flat colonies, whereas OV formed refractile

compact colonies comparable to those of +/+ cells (Figure 1B).

In a growth-curve analysis, +/� cells showed less proliferation

and increased doubling time with a larger proportion of cells in
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Figure 1. Asrij Maintains mESC Self-Renewal and Pluripotency

Analysis of asrij-modulated ESC lines.

(A) Expression of mRNA (i) and protein (ii).

(B) Morphology.

(C) Quantitative analysis of proliferation over 48 hr (i), and population doubling time analysis (i and ii). Panel (ii) shows increased doubling time for +/� cells and

faster doubling for OV cells, and panel (iii) shows reduced and increased percentages of dividing cells for +/� and OV cells, respectively.

(D) Cell-cycle profiles analyzed by flow cytometry. Bars represent % distribution of cells in G1, S, and G2-M.

(E) Image (i) and graph (ii) showing AP+ colonies in a clonal assay.

(F) Quantitative RT-PCR (qRT-PCR) analysis for pluripotency markers.

Statistical significance is indicated by **p < 0.05, ***p < 0.001. Error bars show SD of the mean. Scale bar, 100 mM. See also Figure S1.
G1 phase, whereas OV cells had a significantly higher growth

rate, lower doubling time, and an increased S phase as

compared with +/+ ESCs (Figures 1C and 1D). These data indi-

cate that Asrij affects ESC proliferation, probably by affecting

the cell cycle. We next checked the influence of Asrij levels on

the ability of mESCs to remain pluripotent and self-renew. Clonal

analysis of Asrij-modulated ESC lines showed that the Asrij level

is proportional to the self-renewal capacity (Figure 1E). This was

reflected in the expression of the core pluripotency factors
650 Cell Reports 4, 649–658, August 29, 2013 ª2013 The Authors
oct3/4, sox2, nanog, and klf4, with a lower level of expression

in +/� ESCs and a higher level in OV compared with controls

(Figure 1F). c-myc expression was also changed in correlation

with the altered proliferation capacity. All three mESC lines could

generate teratomas in vivo with primary germ layer derivatives;

however, OV teratomas showed incomplete differentiation and

high total OCT4 expression (Figures S1E and S1F). Taken

together, these observations indicate that Asrij overexpression

more effectively maintains ESC self-renewal.



Figure 2. Asrij Reduces the LIF Dependence of ESCs and Promotes STAT3 Phosphorylation

mESC lines were cultured on 0.1% gelatin in media without LIF for 48 hr unless indicated otherwise. In all cases, values for +/� and OVwere compared with those

for +/+ cells.

(A–C) Graph representing (A) cell proliferation over 4 days, (B) clonogenicity, and (C) the effect of serial subculture at clonal density for three passages (p).

(D and E) qRT-PCR analysis of (D) pluripotency marker and (E) lineage differentiation marker gene expression.

(F–H)Western blot and graphical representation showing (F–H) pSTAT3 level in culture (F) with LIF or (G) after 4 days of LIF withdrawal or (H) upon treatment with a

JAK inhibitor.

(I) pERK level.

Statistical significance is indicated by **p < 0.01, ***p < 0.001. Error bars show SD of the mean. See also Figure S2.
Asrij OV mESCs Remain Pluripotent upon Withdrawal
of LIF
Because mESCs require LIF to maintain the undifferentiated

state, we analyzed the ability of +/� andOV cells to maintain plu-

ripotency in a LIF withdrawal assay (see Experimental Proce-

dures). OV cells retained the capacity for increased proliferation,

clonogenicity, and pluripotency gene expression compared with

controls, even after 4 days of LIF withdrawal (Figures 2A, 2B, and

2D) and over multiple passages of the cultures in the absence of

LIF, in contrast to +/+ and +/� cells, which differentiated rapidly.

Whereas OV cells showed a higher proportion of alkaline phos-

phatase (AP)-positive clones compared with controls, +/� cells

generated very few undifferentiated clones and could not be

cultured beyond three passages (Figure 2C). The ability of OV

cells to grow in the absence of LIF was also maintained in

serum-free culture (Figure S2A), ruling out the possible contribu-

tion of extraneous serum-derived factors. Whereas LIF with-

drawal induced the expression of differentiation markers in +/�
and +/+ cells within 4 days, OV cells expressed a significantly

higher level of pluripotency markers compared with +/+ cells

(Figures 2D and 2E). Thus, Asrij expression reduces the LIF

dependence of mESCs and hinders their differentiation.

Asrij Promotes STAT3 Phosphorylation and Checks ERK
Phosphorylation
LIF is an interleukin-6 (IL-6)-type cytokine that signals by binding

to its cognate receptors LIFr and gp130 (Ernst et al., 1996). In

mESCs, LIF binding results in the activation of JAK kinases, lead-

ing to phosphorylation of cytoplasmic STAT3 by JAKs (Narazaki

et al., 1994). STAT3 is the primary effector of the LIF-JAK-STAT

signaling axis. Phosphorylated STAT3 (pSTAT3) dimers translo-

cate to the nucleus (Watanabe et al., 2004) to bring about expres-

sion of core pluripotency markers, including oct3/4, sox2, and
nanog (van Oosten et al., 2012). Since OV cells do not require

external LIF, we sought to determine whether Asrij affects JAK-

STAT signaling. OV cells showed high levels of pSTAT3

compared with controls, whereas +/� cells had low levels of

pSTAT3 activation in both the presence and absence of LIF,

although the total STAT3 level was unaffected (Figures 2F and

2G). JAK1 is reported to phosphorylate STAT3 in a LIF-depen-

dent manner (Kunisada et al., 1996). Culturing OV cells with a

JAK1 inhibitor abrogated STAT3 phosphorylation (Figure 2H),

indicating that Asrij affects JAK1-mediated STAT3 phosphoryla-

tion. We also used a known STAT3 phosphorylation inhibitor,

JSI-124/cucurbitacin (Blaskovich et al., 2003), which showed a

dose-dependent decrease in STAT3 phosphorylation (Figures

S3A and S3B). When cultured in the presence of JSI-124, +/+

andOV cells showed a drastic reduction in the expression of plu-

ripotency markers as well as stem cell properties (Figures S3C–

S3G). This indicates that STAT3 phosphorylation is indeed

required for Asrij-mediated maintenance of ESC properties.

ERK phosphorylation is a mark of mESC differentiation, and

suppression of ERK signaling promotes ground-state pluripo-

tency (Nichols et al., 2009). The +/� mESCs showed increased

pERK, which correlates with their reduced proliferation and pro-

pensity to differentiate (Figure 2I; for further analysis, see

Extended Results and Discussion; Figures S2A–S2L). Taken

together, these results indicate that Asrij promotes a pluripotent

state in ESCs by increasing STAT3 phosphorylation and control-

ling ERK phosphorylation.

Drosophila Asrij Regulates STAT Activation for HSC
Maintenance
JAK-STAT signaling controls a wide range of cellular functions,

including stem cell potency and hematopoiesis. Vertebrates

have several IL-6-type cytokines and multiple JAK and STAT
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family members that often show functional complementation

(Liongue et al., 2012; Rawlings et al., 2004). On the other hand,

Drosophila has only one LIF receptor (domeless) that binds to

the lymph-gland-specific ligand Unpaired3 (upd3), one JAK

(hopscotch), one STAT (STAT92e), and one OCIAD1 family

member (Asrij). Hence, Drosophila hematopoiesis provides an

excellent model to elucidate the relation between Asrij and the

JAK-STAT pathway. The main site of Drosophila hematopoiesis

is the primary lymph gland lobe, which consists of three develop-

mental zones (Figure 3A). We depleted or overexpressed asrij in

the larval lymph gland and assayed for the effect on hematopoi-

esis and JAK-STAT signaling. The HSC niche (posterior signaling

center [PSC]) secretes Upd3, which binds and activates Dome-

less inmultipotent HSCs that reside in the lymph glandmedullary

zone (MZ) (Jung et al., 2005; Krzemie�n et al., 2007). Using a Do-

melessGal4-driven reporter GFP, we found that asrij depletion

abolishes Dome expression (Figure 3B), thereby prohibiting

JAK-STAT signaling. This is reflected in the inability to maintain

stem cells and increased differentiation as reported earlier (Kul-

karni et al., 2011). STAT activation is a key outcome of JAK-STAT

signaling and is essential for maintenance of hemocyte precur-

sors. Using a 10xStatGFP reporter for STAT activation, we found

that Asrij depletion caused a severe reduction in STAT activity,

whereas overexpression increased STAT activity compared

with controls (Figure 3C). Stat knockdown resulted in reduced

STAT activation and hence increased differentiation (Figure 3D).

Asrij overexpression in Stat92e knockdown also showed simi-

larly increased differentiation. This indicates that the phenotype

resulting from Asrij overexpression is suppressed, supporting

the observation that Asrij functions through STAT.

The early B cell factor (EBF) ortholog Collier is expressed in the

PSC and activates JAK-STAT signaling to maintain prohemo-

cytes. col mutants (amorphs) have no prohemocytes (Krzemie�n

et al., 2007). Asrij overexpression in the colmutant lymph glands

could rescue the col phenotype (Figure 3E), suggesting that Asrij

can maintain niche function in the absence of Col. JAK-STAT

pathway mutants, such as hypomorphs of the ligand unpaired

(updYC43) and the receptor Domeless (dome217), show prema-
Figure 3. Conserved Role for Asrij in Regulating JAK/STAT Activity an

(A) Schematic representation of the Drosophila primary lymph gland lobe.

(B–M) The primary lobes of control and mutant/modulated larval lymph glands w

(B) Domeless expression marked by DomelessGFP is lost in the asrij null mutant

(C) A JAK/STAT pathway activation reporter assay shows highly increased stat-G

asrij null mutant. The graph shows the average statGFP intensity values for each

(D) Increased hemocyte differentiation is seen upon stat92e knockdown in Asrij

(E) Asrij overexpression in the collier mutant larval lymph gland can rescue pr

Antennapedia+ niche.

(F and G) Primary lymph gland lobes of unpaired and domeless hypomorphs

Antennapedia+ niche cells as indicated in the graph (G).

(H) Precocious differentiation seen in the asrij null mutant is repressed upon expr

(I) Schematic representation of Asrij full-length protein showing the N-terminal frag

lacking the domain (ArjC, black bar). Putative hydrophobic stretches are indicate

(J) HEK293 cells bearing FLAG-tagged Asrij fragments and immunostained to vis

(K) Lymph gland lobes of wild-type larvae additionally expressing ArjN or ArjC an

glands.

(L) Premature differentiation in the asrij null mutant can be rescued by forced exp

(M) Reduced dominant-negative effect of ArjC in Asrij overexpressing lobes.

Statistical significance is indicated by ***p < 0.001. Nuclei were viewed with DAPI

Scale bars, 50 mm (B–H and K–M) and 12.5 mm (J).
ture differentiation to P1+ plasmatocytes (Figure 3F), phenoco-

pying the asrij null mutant. In addition, the Antennapedia-positive

(Antp+) niche is reduced (Figure 3G). This confirms the develop-

mental role of Asrij in regulating JAK-STAT signaling and indi-

cates a direct correlation between Asrij levels and STAT activa-

tion in maintaining stem cell self-renewal.

Mouse Asrij Can Rescue the Drosophila Null Mutant
Phenotype
Because JAK/STAT signaling is highly conserved and Asrij

shows significant sequence conservation, especially in the

OCIA domain, we tested whether Asrij function is also

conserved. Transgenic flies that expressed mouse asrij in the

Drosophila null mutant showed complete rescue of premature

differentiation (Figure 3H). This indicates that the mouse and fly

gene are homologs and could regulate similar signaling networks

to maintain stem cells.

The OCIA Domain Is Necessary and Sufficient
for Endosomal Localization
Other than the OCIA domain containing two hydrophobic

stretches, no remarkable features are predicted for Asrij and

the nondomain region is intrinsically unstructured (http://elm.

eu.org) (Figure 3I). FLAG-tagged reporter constructs expressing

a mouse Asrij-N-terminal fragment (arjN, aa 1–132) that encom-

passes the OCIA domain or a C-terminal fragment lacking the

OCIA domain (arjC, aa 133–257) in human embryonic kidney

293 (HEK293) cells showed vesicular or cytoplasmic localization,

respectively (Figure 3J). The samewas seenwithDrosophilaAsrij

fragments in Drosophila hemocytes (described below). Thus, the

OCIA domain is sufficient to target proteins to endocytic

vesicles.

Dominant-Negative Effect of Asrij-C-Terminal Fragment
on mESC Pluripotency and Drosophila Hematopoiesis
To test whether vesicular targeting of Asrij is essential for its

function, and to analyze the biological significance of the OCIA

domain, we generated transgenic Drosophila carrying Asrij
d Maintaining Stemness

ere assessed and compared. Genotypes are as indicated.

with precocious differentiation into P1+ plasmatocytes.

FP activation upon asrij overexpression and decreased statGFP activity in the

genotype (n = 10).

overexpression larvae.

emature differentiation into P1+ plasmatocytes and restore a fully functional

phenocopy asrij null mutants as seen by P1 expression (F), and have fewer

ession of mouse asrij as seen by P1+ plasmatocytes and ProPO+ crystal cells.

ment containing the OCIA domain (ArjN, gray bar) and the C-terminal fragment

d (white bars).

ualize localization of the fragment ArjN or ArjC.

d stained for P1+ plasmatocytes show premature differentiation in ArjC lymph

ression of ArjN, but not ArjC.

staining and the image was used to draw the lymph gland boundary (white line).
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Figure 4. Overexpression of ArjC Reduces STAT3 Phosphorylation in ESCs

Analysis of arjN and arjC ESC lines.

(A) Morphology.

(B) Graph showing AP+ colonies in a clonal assay.

(C and D) qRT-PCR analysis showing expression of pluripotency markers (C) and differentiation markers (D).

(E and F) Western blot and graphical representation showing the (E) pSTAT3 level and (F) pERK level. GAPDH was used as a normalizing control.

Statistical significance is indicated by *p < 0.02, **p < 0.05, ***p < 0.001. Error bars show SD of the mean. Scale bar, 10 mM. See also Figure S3.
fragments (arjN or arjC) downstream of upstream activating se-

quences (UAS) and expressed them in the lymph gland to look

for a dominant-negative effect in the wild-type or a functional

rescue in the null mutant (arj9). ArjN expression did not hinder

development or hematopoiesis, whereas arjC gave a phenotype

similar to that of the null mutant (Figure 3K). Forced expression of

arjN, but not arjC, could rescue the premature differentiation in

asrij null mutant (Figure 3L). Also, in the presence of excess

expression of full-length Asrij, the dominant-negative phenotype

of arjC overexpression was milder (Figure 3M). Analysis of frag-

ment localization in hemocytes showed that in transgenic

Drosophila too, the arjN fragment that contains the OCIA domain

was necessary and sufficient for vesicular localization. Impor-

tantly, the unstructured arjC could interfere with Asrij function.

We also generated stable ESC lines additionally expressing

either arjN or arjC of mouse Asrij (see Experimental Procedures;

Figure S3H). Whereas the arjN ESC colonies resembled OV col-

onies, the arjC colonies looked flat and differentiated (Figure 4A).

This was reflected in the expression of pluripotency marker

genes, which was increased in arjN and reduced in arjC

compared with controls (Figure 4B). Further, upon LIF with-

drawal, differentiation was suppressed and clonogenicity

improved in arjN, with the opposite effect in arjC cells (Figures
654 Cell Reports 4, 649–658, August 29, 2013 ª2013 The Authors
4C and 4D). arjC also showed reduced pSTAT3 levels (Figure 4E),

a phenotype similar to +/� cells, indicating a dominant-negative

effect as seen in Drosophila. However, we did not see an in-

crease in STAT3 phosphorylation in the arjN line, suggesting

that the full-length protein may be required for this. As for

the +/� cells, we observed an increase in ERK phosphorylation

in the arjC line (Figure 4F) indicating that full-length Asrij is

required to keep ERK phosphorylation in check.

Asrij Colocalizes and Interacts with pSTAT3
Our results show that in mESCs and Drosophila, an endogenous

level of Asrij is required for STAT3 activation. Previous reports

have suggested that STAT3 could be activated on endosomes

(Shah et al., 2006). To determine whether Asrij and STAT3 reside

on the same endosomes, we cotransfected asrijORF and FLAG-

STAT3 in HEK293 cells and, using immunolocalization, found

that Asrij and STAT3 colocalize on Rab5+ endosomes (Fig-

ure 5A). Cellular fractionation showed that Asrij resides primarily

in the membrane compartment and to a small extent in the nu-

clear fraction (Figure 5B). Further, Asrij coimmunoprecipitates

with STAT3 upon pull-down with FLAG antibody (Figure 5C).

Western blot analysis showed that a significant amount of Asrij

protein interacts with STAT3. LY294002 is a known



phosphatidylinositol 3-kinase (PI3K) inhibitor that blocks endo-

cytosis by blocking the fusion of clathrin or nonclathrin vesicles

with early endosomes (Naslavsky et al., 2003). OV cells cultured

in LY294002 showed abrogation of pSTAT3 even after LIF stim-

ulation (Figure 5D). These experiments indicate that endosomal

recruitment is essential for STAT3 activation, which could be

mediated by Asrij.

The interaction of Asrij with STAT3 and the difference seen be-

tween arjN and arjC fragments in terms of cellular localization

and function raise the interesting question as to which region

of Asrij interacts with STAT3. To address this, we used the

in situ proximity ligation assay (PLA), which has been used suc-

cessfully in mESCs to demonstrate protein-protein interactions

(Johansson et al., 2010). To assess the interaction of Asrij with

STAT3 in situ and correlate it with the pSTAT3 status, we per-

formed a PLA on +/+, ArjN, and ArjC lines. As expected, we

saw that Asrij and STAT3 interacted in vivo in mESCs (Figure 5E).

Interestingly, ArjN cells showed a significantly increased number

of Asrij-STAT3 complexes, indicating that this region can interact

with STAT3. On the other hand, ArjC overexpression caused a

significant reduction in Asrij-STAT3 complexes compared

with +/+, indicating that the dominant-negative phenotype of

ArjC results from its ability to block Asrij-STAT3 interaction.

This correlates well with the pSTAT3 levels observed in each

cell line (Figure 4E).

DISCUSSION

Recent studies have shown that signaling networks are not

controlled solely by soluble cytosolic proteins and transcription

factors, and that components of the transport machinery can

exert rapid spatial and temporal control over cell signaling. How-

ever, whether endosomal control can achieve specific regulation

of a stem cell phenotype in a dynamic environment remains un-

clear. Our data suggest that Asrij provides a master regulatory

switch to control stem cell signaling. Importantly, we show that

this mechanism is conserved in evolution and across stem cell

types. Our results support the concept that endosomal proteins

can provide precise control of the stem cell state and herald a

conceptual advance in stem cell biology.

asrij is a conserved developmental gene that exhibits a dy-

namic and tightly regulated expression pattern from the earliest

stages of development. Loss of this regulation leads to carcino-

genesis. We found that in diverse systems, such as mESCs and

fly hematopoiesis, Asrij levels affect stemness. In the context of

mESCs, Asrij reduced LIF dependence and this was irrespective

of autocrine stimulation by the ESCs themselves, as seen with

hLIF05 blocking.

LIF/UPD-mediated JAK-STAT signaling also governs HSC

maintenance in Drosophila. The Drosophila asrij null mutant

has fewer Col+ cells, and we found that JAK/STAT pathway acti-

vation is compromised as expression of the receptor is lost.

Thus, the reduced niche is incapable of maintaining HSCs, lead-

ing to a loss of Dome+ prohemocytes, which are required for

receiving and transmitting signals of the pathway. Lack of Asrij

inactivates the pathway, and the positive feedback loop that

controls Dome expression might be deregulated. However, Asrij

does not play a downstream role in the JAK-STAT pathway in
maintaining the HSC population, as stat92e depletion in lymph

glands along with forced expression of Asrij leads to precocious

hemocyte differentiation, thereby disrupting hemocyte homeo-

stasis. The same effect is seen with overexpression of the Asrij

C-terminal part in ESCs, indicating conservation of structural do-

mains and function. The col mutant phenotype is rescued by

forced expression of Asrij, indicating that Asrij promotes niche

and HSC maintenance and can do so in a Col-independent

manner. Interestingly, mouse Asrij overexpression also renders

themouse ESCs LIF (JAK/STAT pathway activator) independent,

making them resistant to differentiation cues.

Sequence conservation is a good indication of functional ho-

mology in proteins. Interestingly, we found that the OCIA domain

is necessary and sufficient for vesicular localization, whereas

absence of this domain renders the protein soluble, regardless

of the species of origin. This is also reflected in Asrij’s function.

arjN functionally complements the asrij null mutant, indicating

that the OCIA domain is the functional domain. These results

prove that endosomal localization of Asrij is essential for its func-

tion. In contrast, the C-terminal half lacking the OCIA domain is

not essential for stem cell maintenance. However, this region

could impart an essential function of protein-protein interaction,

as indicated by the dominant-negative effect in flies or ESCs

overexpressing arjC. The functional interactions of Asrij may be

homotypic or heterotypic. This led us to speculate that Asrij

may function in the endosome by interacting with or aiding the

interaction of proteins that require endosomal activation, such

as STAT3. Asrij and STAT3 interact biochemically, supporting

this idea. Protein-protein interaction assays demonstrate that

the Asrij N-terminal OCIA domain is essential for its interaction

with STAT3, whereas the free C-terminal domain hinders this

interaction, suggesting that arjC could interact with Asrij and/or

STAT3, thereby sequestering/masking relevant sites/motifs

and resulting in a dominant-negative effect. Asrij-STAT3 interac-

tion is essential for STAT3 phosphorylation, because arjC also

has a dominant-negative effect on pSTAT3 levels. Alternatively,

ArjC may interact with other molecule(s) to block STAT3 phos-

phorylation; however, this is unlikely given the direct correlation

among PLA complexes, pSTAT3 levels, and cellular phenotype.

Further, this mechanism is also conserved in Drosophila, where

arjN is functionally adequate and arjC has a dominant-negative

effect, supporting a direct dependence of STAT3 phosphoryla-

tion on the arjN region. However, it should be noted that in

mESCs, arjN overexpression does not drastically increase

pSTAT3 levels or significantly change pERK levels, suggesting

that the full-length protein is essential for efficient pSTAT3

phosphorylation.

How an endosomal protein can impose fine control over

signaling, thereby maintaining the delicate balance between

pluripotent and differentiated states, has been an intriguing puz-

zle. Although endosome-associated proteins were previously

thought to be soluble, recent studies have suggested that they

may play a role in the activation of JAK-STAT signaling (Sehgal,

2008). Preassociation with endosomal membranes (Rab5 and

EEA1 positive) is crucial for STAT3 phosphorylation and activa-

tion. Small-molecule inhibitors of this association greatly reduce

cellular pSTAT3 levels (Sehgal et al., 2002; Shah et al., 2006). Our

studies showed that Asrij and STAT3 can reside in the same
Cell Reports 4, 649–658, August 29, 2013 ª2013 The Authors 655



(legend on next page)

656 Cell Reports 4, 649–658, August 29, 2013 ª2013 The Authors



endosomal compartment. We speculate that Asrij may act as a

scaffold, increasing STAT3 recruitment onto endosomes and

thus helping in its phosphorylation. Further, overexpression of

Asrij, as in OV cells, may produce a factor(s) that stimulates

plating efficiency, which in this case would reflect clonogenicity.

This factor is likely to be a cytokine (perhaps LIF) or another acti-

vator of pathways that regulate pluripotency or cell survival. It is

generally accepted that pluripotency is regulated by a complex

interconnected signaling network that is stimulated and regu-

lated by extracellular factors (Dejosez and Zwaka, 2012).

Because mouse and Drosophila Asrij are homologs, the same

mechanism may operate in both systems.

In summary, we showhere that an endosomal protein, Asrij, in-

teracts with STAT3 to aid its activation and thereby determine

the state of stem cells. Needless to say, this is such a complex

process that Asrij could be just one of the numerous adaptors

or scaffold proteins that aid in cellular signaling, and many

more such molecular integrators invite identification.

EXPERIMENTAL PROCEDURES

The generation of ESC lineswithmodulated Asrij expression is described in the

Extended Experimental Procedures. ESCs were cultured on primary mouse

embryonic fibroblasts (mEFs) or with LIF supplementation on 0.1% gelatin-

coated dishes as previously described (Mukhopadhyay et al., 2003) or in

N2B27+LIF+BMP as previously described (Ying et al., 2003). For cell prolifer-

ation assays, 2,000 ESCs/cm2 were plated. One set was trypsinized every

12 hr for cell counts. The average of three independent experiments with three

replicates for each time point per line was plotted with the SD. For cell-cycle

analysis, 50,000 cells/60 mm dish were grown for 48 hr with LIF supplementa-

tion. Cells were trypsinized, pelleted, washed, resuspended in PBS, ethanol

fixed overnight at 4�C, and stained with propidium iodide containing RNase

(BD) for flow-cytometry analysis on a FACS ARIAII (BD). For cell-doubling anal-

ysis, 50,000 cells were stained with 2 3 10�6 M PKH26 dye (Sigma) for 5 min.

They were then washed, plated on gelatinized 60 mm dishes, harvested by

trypsinization after 48 hr, resuspended in PBS, and analyzed by flow cytome-

try. Data were analyzed by FlowJo software.

For the clonogenicity assay, 100 cells/cm2 were grown for at least 4–5 days

with LIF in mES media until visible colonies appeared. Pluripotent clones were

identified by AP staining and counted to score for clonogenicity. For clonal

passaging, single-cell suspensions were seeded at clonal density on gelati-

nized dishes and cultured without LIF for 7–10 days in either complete ESC

medium or N2B27, harvested for analysis, or passaged again at clonal density

until no colonies appeared in the +/� genotype. One set of dishes in each

experiment was scored for AP-positive pluripotent clones by staining. Three

independent experiments were averaged and plotted with the SD of the

mean. For LIF withdrawal assays, 25,000 ESCs per gelatinized 35 mm dish

in media without LIF were allowed to differentiate until day 4.
Figure 5. Asrij Interacts with STAT3

(A) HEK293 cells bearing plasmids expressing Asrij, Rab5-RFP, and STAT-FLAG

Graphs show colocalizing pixels.

(B) Western blot of mESC lysate subjected to differential fractionation shows Asr

fraction; NF, nuclear fraction.

(C) Western blot analysis of lysate from cells expressing Asrij alone or with FLAG-S

probed with STAT3 and Asrij antibodies to assess interaction. Lanes 1 and 3: i

showing coimmunoprecipitation of Asrij only in the presence of STAT3.

(D) Blocking endocytosis abolishes STAT3 phosphorylation. Western blot anal

LY290042.

(E) In situ PLA for Asrij and STAT3 in ESCs. Interaction of STAT3 with Asrij or fragm

seen as white complexes. The graph represents the PLA complex dots/cell.

Nuclei in (A) and (E) were viewed with DAPI staining (blue). Boxed regions in (A) an

channel off. Statistical significance is indicated by *p < 0.01, ***p < 0.0001. Error
For coimmunolocalization, HEK293 cells cotransfected with constructs

pCAG-Asrij that expressed asrij ORF (aa 1–247), pCMVRab5-RFP, and

FLAG-STAT3 (a kind gift from Gautam Sethi) were fixed with 4% paraformal-

dehyde and stained with Asrij and FLAG antibodies, followed by incubation

with the appropriate secondary antibodies. Imaging was done using a Zeiss

LSM510meta confocal microscope. Images were processed in LSM software

and adjusted uniformly for brightness/contrast using Adobe Photoshop CS3.

For coimmunoprecipitation, HEK293T cells were cotransfected with pCAG-

Asrij and FLAG-STAT3 constructs, and after 48 hr the processed lysates were

incubated with FLAG-antibody-bound Protein-G-Sepharose beads (Sigma).

After overnight binding, the beads were pelleted, washed, mixed with loading

dye, electrophoresed on SDS-PAGE, and processed for western blot analysis.

To quantitatively determine the fold change in STAT3 and pSTAT3 in the

various Asrij-modulated ESC lines, we measured the density and pixel counts

for each band using ImageGauge software and normalized the values to the

respective glyceraldehyde 3-phosphate dehydrogenase (GAPDH) values

before obtaining the pSTAT3/STAT3 ratio. A similar approach was used to

determine the fold change in ERK and pERK.

For the in situ PLA, semiconfluent cultures of ESC lines grown on gelatinized

coverslip dishes were fixed in 2% paraformaldehyde, washed, permeabilized

with 0.1% triton X (Sigma Chemical), blocked using 3% fetal bovine serum in a

humid chamber at 37�C incubator for 1 hr, and then incubated with primary an-

tibodies (anti Asrij 1:25 and anti STAT3 1:50) for 2 hr at 37�C. The primary anti-

body was washed off and Duolink in situ PLA reaction (Olink Biosciences) was

carried out according to the manufacturer’s instructions. PLA complexes were

detected by imaging under a Zeiss LSM510meta confocal microscope and

analyzed by LSM software. Only PLA spots larger than 0.5 mm were counted.

TheDrosophila stocks used, transgenic fly generation, and additional details

are provided in the Extended Experimental Procedures.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Results and Discussion,

Extended Experimental Procedures, three figures, and one table and can be

foundwith this article online at http://dx.doi.org/10.1016/j.celrep.2013.07.029.

ACKNOWLEDGMENTS

We thank Ian Chambers (CRM, Edinburgh), Jyotsna Dhawan and Kouichi Ha-

segawa (inStem, Bangalore), and M.R.S. Rao (JNCASR) for helpful sugges-

tions. We also thank Arpita Mukhopadhyay, Sandip Khadekar, Deeti Shetty,

Ridim Mote, and members of our laboratory for help with experiments and in-

puts. This work was supported by the Department of Science and Technology

and the Department of Biotechnology, Government of India, and the UK India

Education and Research Initiative (UKIERI).

Received: November 24, 2012

Revised: May 18, 2013

Accepted: July 18, 2013

Published: August 22, 2013
were analyzed by coimmunolocalization of Rab5, STAT3 (FLAG), and Asrij.

ij primarily in the membrane fraction. CF, cytoplasmic fraction; MF, membrane

TAT3 as indicated, subjected to coimmunoprecipitation by FLAG antibody and

nput control; lane 4: beads alone; lanes 2 and 5: FLAG immunoprecipitation,

ysis of the relative pSTAT3 level in +/+ cells treated with the PI3K inhibitor

ents in control cells (+/+) or those overexpressing ArjN or ArjC (as indicated) is

d (E) are shown as a magnified inset below the respective panel, with the blue

bars show SD of the mean. Scale bar, 12.5 mm.
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