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INTEGRALLY CLOSED MODULES OVER TWO-DIMENSIONAL
REGULAR LOCAL RINGS

VIJAY KODIYALAM

Abstract. This paper is based on work of Rees on integral closures of modules

and initiates the study of integrally closed modules over two-dimensional regular

local rings in analogy with the classical theory of complete ideals of Zariski. The

main results can be regarded as generalizations of Zariski's product theorem.

They assert that the tensor product mod torsion of integrally closed modules is

integrally closed, that the symmetric algebra mod torsion of an integrally closed

module is a normal domain and that the first Fitting ideal of an integrally

closed module is an integrally closed ideal. A construction of indecomposable

integrally closed modules is also given. The primary technical tool is a study of

the Buchsbaum-Rim multiplicity.

1. Introduction

The theory of complete ideals in two-dimensional regular local rings is rich

both in structural and numerical results. The principal structural results are

the product theorem and the unique factorization theorem of Zariski ([ZrsSml,

Appendix 5]) which assert that the complete ideals are closed under the product

operation and have unique factorization into simple complete ideals. Much

work has gone into trying to understand and generalize these results both to

higher dimensions and weakening the hypothesis of regularity. See for instance

the papers [Ghn], [Lpm], [HnkSll], [Ctk2] and their bibliographies. Examples
due to Cutkosky ([Ctk]), Huneke ([Hnk2]) and Lipman ([Lpm]) show that the
main results of Zariski are false even in regular local rings of dimension three.

This paper generalizes Zariski's product theorem in a different direction. The

notions of integral closures and reductions of torsion-free modules over Noethe-

rian domains have recently been intoduced by Rees ([Rs]). A natural product

on the torsion-free modules is tensor product modulo torsion which in the case

of ideals reduces to the ordinary product. It is then natural to ask what parts of

Zariski's theory may be extended to finitely generated integrally closed modules

over two-dimensional regular local rings.

It turns out that a substantial portion of Zariski's theory generalizes. The

main theorems of this paper are a first step in such an extension. Precisely, we

prove first that over a two-dimensional regular local ring, the product of inte-

grally closed modules is itself integrally closed. We also show that the torsion-

free symmetric algebra of an integrally closed module is a normal domain. Fi-
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nally, we show that a certain Fitting ideal of an integrally closed module is a

complete ideal.

The structure of the proofs are patterned closely after the proof for ideals as

in Huneke's expository paper [Hnk]. Thus the main ingredients are a numerical

criterion for a module to be contracted and a theorem asserting the decrease of
multiplicity on taking transforms. The appropriate notion of multiplicity here

is the Buchsbaum-Rim multiplicity.
In Section 2 we define some numerical invariants for finitely generated

torsion-free modules over two-dimensional regular local rings and establish

some relationships that hold between these invariants. One of the main re-

sults is a numerical criterion for such a module to be contracted from a point

on the blow-up of the maximal ideal of R. In Section 3 we discuss the def-

initions of reductions and integral closures of modules and the related notion

of Buchsbaum-Rim multiplicity. This section is basically a collection of vari-

ous results of Rees ([Rs]) and Buchsbaum-Rim ([BchRm]). The heart of the

proof is contained in Section 4. The main result of this section is a proof

that the Buchsbaum-Rim multiplicity decreases on taking transforms. Section

5 brings together the material from the previous sections to show that prod-

ucts, torsion-free symmetric powers and torsion-free exterior powers of inte-

grally closed modules are all integrally closed. The non-triviality of the theory

is shown by a construction and some examples.

2. Contracted modules

The main results of this section are contained in Propositions 2.2, 2.5 and

in Theorem 2.8. Each of these is an analogue for torsion-free modules of a

result known in the case of ideals. The proofs generalize those in [Hnk]. Just as

contracted ideals play an important role in the theory of integrally closed ideals,

so do contracted modules in the theory of integrally closed modules.

Throughout this section, R will denote a two-dimensional regular local ring

with maximal ideal m, infinite residue field k and field of fractions K. The

valuation of K determined by the powers of m is denoted ord«(_). Therefore,

for an element a £ R, by definition, ord/?(a) = largest integer n such that

a £ m" . Similarly, for an ideal / of R, we set ord/?(7) = largest integer n

such that /Cm".

Let (_)* denote the functor HomR(_,R). In this section, M always denotes

a finitely generated torsion-free i?-module and F stands for its double dual,
i.e., F = M**. We begin with the following proposition which is well-known

and gives a characterization of F :

Proposition 2.1. For a finitely generated torsion-free R-module M, the double

dual F is a free R-module which canonically contains M and is such that

the quotient module F/M is of finite length. Moreover, if G is any free R-

module containing M such that G/M is of finite length, then there is a unique

isomorphism F -> G that restricts to the identity on M.

Proof. Direct calculation shows that over any domain R, a regular sequence of

length 2 on R is also a regular sequence on the dual of any .R-module. Thus

here, depths(M*) = 2 and then it follows from the Auslander-Buchsbaum

formula that M* is a free Ä-module. Hence, so is F = M**.

Since  M  is a finitely generated torsion-free  .R-module, the natural map
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M —y M** = F is injective and via this map, M is canonically identified

as a submodule of F . Then, since the functor (_)* is compatible with localiza-

tion on finitely generated Ä-modules and since for any height 1 prime P of R,

the finitely generated torsion-free module A/> over the discrete valuation ring

Rp is free, it follows that Mp = Fp for any such P. Therefore the quotient

module F/M is supported only at the maximal ideal m of R and is of finite

length.
Next, let G be a free Ä-module containing M with G/M of finite length.

The short exact sequence

0 —» M —» G —► G/M —► 0

on dualizing gives the exact sequence

0 —» C7* —» AT —> Ext¿(G/M, Ä) -t-» 0.

The module (G/M)* vanishes since C7/Af is of finite length and ExtxR(G, R)
vanishes since G is free.

Now, since ExtR(G/M, R) is of finite length and the modules G* and

M* are free, it follows from the Auslander-Buchsbaum formula again that

ExtR(G/M, R) = 0. Thus the map G* —► M* is an isomorphism and a

further dualization gives an isomorphism F = M** —► G** = G. By func-

toriality of the construction, this isomorphism restricts to the identity map on

M.
To show uniqueness of such an isomorphism, consider the difference of two

such. This is a map F —> G that vanishes on M. But since F/M is of finite

length, for some t > 0, we have that m'F C M => <¡6(m'F) = 0 => ml<f>(F) = 0.
But 0(F) is a submodule of the free module G. So it follows that </>(F) = 0 =>

</> = 0.   D

Let rank/{(Af) denote the rank of M and uR(M) denote the minimal num-

ber of generators of M. Recall that the rank of M is the vector space dimen-

sion of the A-vector space M% = M ®RK. In our setting, M ®RK = F ®RK

since F/M is of finite length and so rankj?(A/) = rankÄ(F). But F is free

and so rank^F) = vR(F).
Choose a basis of F and a set of generators of M and consider the matrix

expressing this set of generators in terms of the chosen basis of F . We consider

the elements of F as being column vectors and so the resulting matrix is a

rankR(M) x uR(M) matrix. The ideal of maximal minors, i.e., rank^(Af) sized

minors, of this matrix is easily seen to be independent of the choices made and

is an invariant of M which will be denoted I(M). We define the order of M,

denoted ord^(Af), to be ordR(I(M)).
The next proposition is an analog for modules of the result uR(I) < ordR(I) +

1 that holds for an m-primary ideal /. The proof for ideals in [Hnk] uses the

Hilbert-Burch theorem. For modules, we use the Buchsbaum-Eisenbud structure

theorem.

Proposition 2.2. Let M be a finitely generated torsion-free R-module. Then,

vR(M) < ordR(M) + ran\tR(M).

Proof. If M is free, then F = M and I(M) = R so that ordÄ(Af) = 0. Also,

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



3554 VIJAY KODIYALAM

vR(M) = rankÄ(M) and so equality holds in the proposition. Next, consider

the case that M is not free.

Consider a free resolution of F/M of the form

O^K-^G^F^ 0

where G is chosen to map minimally onto M so that ranket?) = vR(M).

Since F/M is a non-zero Ä-module of finite length, K ± 0. Let /(</>) and

I(y/) denote the ideals of maximal minors of matrices representing cj> and y/

with respect to some (any) choice of bases for F, G and K. Since F/M is

of finite length, the above sequence is split exact after localizing at any height 1

prime of R and it follows from this that I(4>) and I(y/) are both m-primary

ideals. Note that by definition, I(M) = I(cf>). A corollary of the Buchsbaum-

Eisenbud structure theorem ([BchSnb, Corollary 5.1]) asserts that I(cf>) = I(ip)

as ideals of R. Since these are both m-primary ideals, this implies that they

are equal. Hence ordR(M) = ordR(I(M)) = ordR(I ((/>)) = ordR(I(y/)).

Finally, as G is chosen to map minimally onto M, any matrix represent-

ing y/ has all its entries in m and so ordR(I(y/)) > rankß(A) = rank^(G) -

rankÄ(ir) = vR(M) - ran)tR(M). This completes the proof.   D

Observe that from the proof, it follows that I(M) is always m-primary (or

the whole of R if M is free).
We will refer to rings between R and its field of fractions K as birational

overrings of R . For such a birational overring S, let MS be the 5-submodule

of Mk = M ®r K generated by M. Note that MS is contained in the free

S-module FS. As an 5-module, MS is isomorphic to M <&RS modulo S-
torsion. We call MS the transform of M in S. The module M is said to be

contracted from S if M = MS n F regarded as submodules of F S.

Note that for an ideal I of R its transform according to this definition

is merely the extension to S while in [Hnk] the transform is defined differ-

ently. However both definitions give isomorphic ¿'-modules which is all that is

required in this context.

The next two remarks will be needed in the proof of Proposition 2.5 which

characterizes modules contracted from birational overrings of the form S =

R[™] for a minimal generator i of m. The function kR(-) denotes the length

function on R-modules.

Remark 2.3.   vR(M) - rank^A/) = kR((M :F m)/M).

Proof. Consider calculation of Torf (F/M, k) in two different ways. First,

the resolution of F/M in Proposition 2.2 can be used to calculate it. Since

i// vanishes on tensoring with k , we have dimjt(Torf (F/M, k)) = rankj?(A).

But rankfl(A) = rank#(C7) - rankÄ(F) = uR(M) - rank/^Af).

Secondly, the Koszul resolution

0 —y R —y R2 —yR —>0

of k can be used to calculate it and shows that Torf (F/M, k) = (M :F m)/M.

Comparing these calculations proves the remark.   D

Remark 2.4. For a minimal generator x £ m,

kR(F/(xF + M)) = kR(R/(x, I(M))).
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Proof. Let - denote going modulo x and consider the_ free module F over

the discrete valuation ring R. The image of M in F is a free submodule

and of maximal rank since F/M and hence also F/(xF + M) are of finite

length. By the structure theorem for modules over a principal ideal domain,

in an appropriate basis of F, the image of M is generated by a set of gen-

erators represented by a diagonal matrix. Then the image of I(M) in R is

generated by the product of the diagonal elements. The remark follows from

these observations.   D

Proposition 2.5. With M a finitely generated torsion-free R-module and F =

M**, the following conditions are equivalent:

(1) There exists x £ m - m2 so that M is contracted from S = R[j] ■

(2) There exists x e m - m2 so that (M :F x) = (M :F m).

(3) There exists x £ m-m2 so that kR(F/(xF + M)) = vR(M)-rankR(M).

(4) ordR(M) = uR(M)- rank*(A/).

(5) For any x £ m such that ordR(I(M)) = kR(R/(x, I(M))), M is con-

tracted from S = R[f].

Proof. (1) => (2). It suffices to show that for v £ F , if xv £ M then mv C M.

But mv = xv.^ c MS n F = M.
x  —

(2) & (3). The exact sequence of finite length iv-modules

(M :Fx) F    X) F       ) F

M * M      . M     ■* (xF + M)

and additivity of length show that kR((M :F x)/M) = kR(F/(xF + M)). Using
this together with Remark 2.3 gives that (M :F x)/M = (M :F m)/M if and

only if kR((F/xF + M)) = vR(M) - rankÄ(Af).
(3) =► (4). By Remark 2.4, (3) =» kR(R/(x, I(M))) = uR(M) - rankR(M).

Hence ordR(M) = ordR(I(M)) < kR(R/(x, I(M))) = uR(M) - rankR(A/). As

the reverse inequality always holds by Proposition 2.2, we obtain equality.

(4) =* (5). Let x £ m be such that ordR(I(M)) = kR(R/(x, I(M))). By
Remark 2.4 and (4) we have that for such x , uR(M)-rankR(M) = kR(F/(xF +

M)). By the equivalence of (2) and (3), then, (M :F x) = (M :F m). Consider

S = R[f] = U„>o $ • Then (MS n F) = U„>0(m"^ -f *") ■ To show that
this is equal to M we induce on n to show that each term of the union is M.

The basis case n = 0 is clear. For n > 0 and v £ F, suppose that xnv £
m"M = ynM + xmn~xM where m = (x, y). Then write x"v = y"v' + xav"

where a £ m"_1 and v', v" £ M. So x(x"~xv - av") = y"v'. Reading

this equation in F, we get that v' = xw and x"~xv - av" = ynw for some

w £ F. Finally, since xw = v' £ M, w £ (M :F x) = (M :F m) and so
y"w £ Mm"~x => v £ (Mm"'1 :F xn~x) = M.

(5) =í> (1). That such an x exists is clear. For instance, if a £ I(M) is an

element of minimal order, then any x whose leading form in the associated

graded ring grm(7?) does not divide the leading form of a works.   D

Proposition 2.6. Let BCF be finitely generated free R-modules of equal rank.

For some choice of bases of F and B, let B be the square matrix whose columns

are the coordinate representations of the basis of B in terms of that of F. For

a prime element x of R, the following three conditions are equivalent:

(1)   x does not divide det(B) in R.
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(2) (B:Fx) = B.

(3) Torf(F/B,R/xR) = 0.

Proof. (1) => (2). Suppose that v £ (B :F x). Then xv £ B. Let the column

vector v represent v in terms of the basis of F . Since xv £ B , xv = Bw for

some column vector w . Multiplying both sides by the adjoint matrix adj(B)

gives xad)(B)v = det(B)w . Since x is a prime element of R and does not

divide det(5), it follows that x divides every entry of the column matrix w .

Hence w = xu for some matrix U. But then, xv = Bw => xv = xBu =>v =

Bu. Therefore v £ B.
(2) «• (3). Calculating Torf (F/B, R/xR) from the resolution

O-^iv-^iv—>0

shows that it is isomorphic to (B :F x)/B . The equivalence follows.

(3) =► (1). Vanishing of Torf (F/B, R/xR) implies that (with - denoting
modulo x )

0 —> F —y F

is exact. Hence det(B) is not 0 in R. Lift back to R .   D

Suppose that M and A are finitely generated torsion-free .R-modules. We

define their product, denoted MN, to be M ®RN modulo R-torsion. Equiv-

alent^, if F and G are free .R-modules containing M and A respectively,

then MN is the image in F ®^G of M®RN. Hence, if after a choice of bases

of F and G, the matrices M and N have columns generating M and A,

then the Kronecker product or the outer product M ® Ñ of the matrices has

columns generating MN for a suitable basis of F ®RG. Recall that the outer

product of two matrices is obtained by replacing each entry of one of them by

the product of that entry with the other matrix.

For a finitely generated torsion-free .R-module M, and an integer n > 0,

set S„(M) = Sym„(M) modulo .R-torsion where Sym„(M) denotes the nth-

symmetric power of M. We will refer to Sn(M) as the torsion-free «th-

symmetric power of M. For M contained in a free .R-module F, we have

that S„(M) is the image of Sym„(Af) in Sym„(.F). In terms of matrices, if M

is generated by the columns of M, then, S„(M) is generated by the columns

of the matrix S„(M). These columns are obtained by regarding the columns

of M as linear forms in a basis of F and then taking the coefficients of the

monomials of degree n in these forms.

Finally, for a finitely generated torsion-free .R-module M and an integer

n > 0, set E„(M) = f\n(M) modulo R-torsion where f\„(M) denotes the «th-

exterior power of M. The En(M) will be called the torsion-free «th-exterior

power of M. Again, if F is free and contains M, then E„(M) is the image

of f\n(M) in /\n(F). In particular E„(M) vanishes for n > rankR(M). In

matrix terms, a column of E„(M) is obtained by choosing n columns of M

and taking the «-sized minors of the submatrix obtained.

Corollary 2.7. Let B ç F and C ç G be pairs of finitely generated free R-

modules such that B and F have equal rank and C and G have equal rank
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and let B and C be matrices whose columns are minimal generators of B and

C with respect to some chosen bases of F and G. Suppose that x is a prime

element of R.

(1) (BC :f®rg x) = BC if and only if x does not divide each of det(ß)

and det(C).

(2) (Sn(B) :sym„(F) x) = Sn(B) if and only if x does not divide det(B).

(3) (En(B) : a ,F) x) = En(B) if and only if x does not divide det(ß).

Proof. ( 1 ). By the above remarks, in an appropriate basis of F®RG, a matrix of

generators of BC is the outer product of the square matrices B and C. Since

det(B ® C) = det(B)siz^cl det(C)size(B>, the outer product of the non-singular

square matrices B and C is still non-singular and so BC is a free submodule

of F ®R G with maximal rank. In fact, it follows that the prime element x does

not divide det(B® C). Now, Proposition 2.6 shows that (BC :f®rg x) = BC.
The proofs of (2) and (3) are similar and essentially follow from the ob-

servations that det(Sn(B)) and det(En(B)) are each a power of det(B) with

appropriate binomial coefficient exponents.   D

We are now prepared to prove the main result of this section that asserts

that products, torsion-free symmetric powers and torsion-free exterior powers

of contracted modules are contracted. The utility of this result is that once

integrally closed modules are shown to be contracted, this theorem provides a

way to prove that they are closed under products, torsion-free symmetric powers

and torsion-free exterior powers by going to a larger ring and then contracting

back.

Theorem 2.8. Let M and N be finitely generated torsion-free R-modules that

are both contracted from S = R[j] for some x e m - m2. Then

(1) Their product MN is also contracted from S.

(2) For every n > 0, the module S„(M) is contracted from S.

(3) For every n > 0, the module En(M) is contracted from S.

Proof. Let F and G be the double duals of M and A respectively. So

we canonically have M ç F and N ç G with finite length quotients. Let_-

denote going modulo x and consider the image of M m the free .R-module F .

This is also a free .R-module of rank equal to rank^(F) — rank«(A/"). Choose

rank#(Af) elements in M that minimally generate its image in F . Let B be the

submodule of M generated by these. B is a free submodule of F of maximal

rank since elements of F that are linearly independent modulo x are already

linearly independent. Note that as the image of B in F is free of maximal rank,

x does not divide det(B). We have that M = B + (xF nM) = B + x(M :F x).
Similarly choose a C ç A such that N = C + x(N :g x) with x not dividing

det(C).
(1) Let H denote F ®R G and consider MN = im((Af ®R N) —> H). By

right-exactness of the tensor product, MN is of finite colength in H. Therefore

H, by Proposition 2.1, can be regarded canonically as the double dual of MN.

The proof of Proposition 2.5 shows that to see that MN is contracted from

S, it is enough to see that (MN :H x) = (MN :H m).
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From the definitions, MN = BC + xM(N :G x) + xN(M :F x), where the

equation holds as submodules of H. To show that (MN :# x) = (MN :# m)

suppose v £ (MN :H x). Then v £ H and xv £ MN = BC +
xM(N :G x) + xN(M :F x). So for some v' £ M(N :G x) and v" £ N(M :F x)

we have x(v - v' - v") £ BC . But by Corollary 2.7, (BC :F x) = BC. Hence
v £ BC + M(N :G x) + N(M :F x). Therefore mv ç mBC + Mm(N :G x)
+m(M :F x)N ç MN since M and A are contracted from S and so

m(M :F x) ç M and m(A :F x) ç A.

(2) Let H denote Sym„(ir) for some fixed n > 1. S„(M) is the image in

H of Sym„(A/). As before, S„(M) is of finite colength in H and we need to

see that (Sn(M) :H x) = (Sn(M) :„ m).

For submodules Qx, (?2, • •• , Q„ of F , define Qx * Q2 * ■ ■ ■ * Qn to be
the image of Qx <S> Q2 <8> • • • ® Q„ in H. Thus S„(M) = M * M * ••• * M
(n A/'s). Since M = B + x(M :F x), it follows that S„(M) = S„(B) +
x(M :F x) * M * M * ■ ■ ■ * M (n - \ M's). Now suppose that v £ (S„(M) :h

x). Then xv £ S„(B) + x(M :F x) * M * M * ■ ■ ■ * M. So for some v' £
(M :F x) * M * M * ■ ■ ■ * M, we have that x(v - v') £ S„(B). By Corollary 2.7,
v -v' £ S„(B). Hence mv £ mSn(B) + m(M :F x) * M * M * ■ • • * M ç S„(M)

since (M :F x) = (M :F m).

(3) If now H denotes f\n(F) for some fixed n > 1 and for submodules Qx ,

Ô2, ••, Qn of F, we let Qx*Q2*-*Qn denote the image of Qi®Ö2®- • ®Qn
in H, the proof of (2) goes through to show that E„(M) is contracted from

o .    □

3. Integral closure and Buchsbaum-Rim multiplicity of modules

In this section we review the notions of reductions and integral closures of

modules as developed by Rees in [Rs] and the notion of the Buchsbaum-Rim

multiplicity of a module as developed by Buchsbaum and Rim in [BchRm]. The

term Buchsbaum-Rim multiplicity is due to Kirby in [Krb].

The theory of reductions and integral closures of modules can be developed

for torsion-free modules over an arbitrary Noetherian domain without assump-

tions of locality or regularity. So we let R be a Noetherian domain with field of

fractions K and let M be a finitely generated torsion-free .R-module. By Mk

we denote the finite-dimensional A-vector space M®RK . If A is a submodule

of M, then NK is naturally identified with a subspace of Mk ■

For any birational overring S of R, we use the notation MS to be the

5-submodule of Mk generated by M. In the special case when R is a two-

dimensional regular local ring, recall that MS is the so-called transform of M

in S. In this section, the birational overrings of R that we will focus on are

the discrete valuation rings of K containing R.

Definition 3.1. With notation as above, an element u £ MK is said to be integral

over M if u £ MV for every discrete valuation ring V of K containing R.

The integral closure of M , denoted M, is the set of all elements of Mk that

are integral over M. The module M is said to be integrally closed if M = M.

A submodule A of M is said to be a reduction of M if M ç A.

We begin with some immediate consequences of this definition. First, it is

clear that M is an R-submodule of Mk  which contains M.  In fact, since
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any valuation ring of K which contains R also contains its integral closure

R in K, we have that M is an .R-module. Rees shows in [Rs] that M is a

finitely generated Rl-module exactly when R is a finitely generated .R-module.

He also shows that in this case, if (_)t denotes the functor Hom/{(_, R), then

A/tt can be naturally identified with a submodule of Mk and that M ç A/tt.

Thus, if R is a Noetherian normal domain, and so in particular if it is a two-

dimensional regular local ring, this implies that M ç A/**, where (_)* as usual

denotes HomÄ(_, R).

Further, if M and A are finitely generated torsion-free .R-modules that

are integrally closed, then so is their direct sum M © A. Over a Noetherian

normal domain, each integrally closed ideal is an integrally closed module in

the sense of the above definition. Thus a good source of examples of integrally

closed modules of large rank over such a ring is obtained simply by taking

direct sums of integrally closed ideals. In one sense, these are trivial as they are

decomposable. In the last section we give an explicit construction of integrally

closed indecomposable modules.

Before we state the next result, we will require some notations and results

about symmetric and exterior powers and algebras associated to a module.

For a Noetherian domain R and a finitely generated torsion-free .R-module

M, by S(M) we will denote the image of the symmetric algebra SymR(M)

in SymK(Mk) under the canonical map. As an .R-algebra, S(M) = SymR(M)

modulo its ideal of .R-torsion elements. The symmetric algebra SymÄ (M) is a

graded algebra whose graded components are the symmetric powers of M and

similarly S(M) is a graded algebra whose graded components are the torsion-

free symmetric powers of M. One fact that we will need is that the integral

closure of one graded domain in another is still naturally graded. Note that

since SymK(MK) is a polynomial ring over K and hence integrally closed,

S(M) ç SymK(MK) and is thus a graded domain. In particular, the homoge-

neous component of degree 1 of S(M) can be identified with a submodule of

Symf (MK) = MK .
We will not deal with the exterior algebra of M as an object but only with its

graded components f\n (M) and the torsion-free exterior powers En (M). Note

that E„(M) can be regarded as the image of /\n(M) in f\n(MK)—the latter

exterior power over the field K. Thus, when n = rankR(M), E„(M) is an

.R-submodule of K and therefore isomorphic to an ideal of R. Also note that

in this case if A ç M ç Nk then, E„(N) ç E„(M) and fixing an isomorphism

of En(M) with an ideal of R identifies E„(N) as a subideal.
We are now prepared to state a fundamental theorem due to Rees ([Rs, The-

orems 1.2,1.5]) which gives three different characterizations of when an element

is integral over a module.

Theorem 3.2. Let R be a Noetherian domain and let M be a finitely gener-

ated torsion-free R-module of rank r. For an element v £ Mk, the following

conditions are equivalent:

( 1 )  The element v is integral over M.

(2) The element v £ Mk = Symf (Mk) is integral over S(M).
(3) Under some isomorphism of Er(M + Rv)  with an ideal I of R, the

subideal J corresponding to Er(M) is a reduction of I.   D
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The three criteria of the theorem, in order, will be referred to as the valuative,

equational and determinantal criteria for integral dependence. The following

corollary of Theorem 3.2 is a local-global principle for integral dependence on

a module.

Corollary 3.3. Let R be Noetherian normal domain and M be a finitely gener-

ated torsion-free R-module. The R-module M is integrally closed if and only if

for every maximal ideal m of R, the Rm-module Mm is integrally closed.

Proof. First, suppose that each Mm is an integrally closed Rm-module. Con-

sider an element v £ Mk that is integral over M. By definition, it is in MV

for every discrete valuation ring V of K that contains R. Hence, for every

maximal ideal m of R, and every discrete valuation ring of K containing

Rm, v is in Mm V = M V . Since each A/m is integrally closed, it follows that

v £ Mm for every maximal ideal m of R. Therefore v £ M.

Next, suppose that M is an integrally closed .R-module and that m is a

maximal ideal of R. To show that A/m is integrally closed, consider an element

v £ Mk integral over Mm . By the equational criterion, v satisfies an integral

equation over the image S(Mm) of SymRm(Mm) in SymK(MK). Any element

in S(Mm) is multiplied into S(M) by some element of JR not in m. Suppose

that s £ R-m multiplies every coefficient of the equation for v into S(M).

Then sv is integral over M and, since M is integrally closed, is in M. So

V £ Mm .    D

Another result of Rees ([Rs, Lemma 2.2]) generalizes to modules the well

known theorem that any m-primary ideal of a ¿/-dimensional Noetherian local

ring (R, m) with infinite residue field has a ¿/-generated reduction.

Theorem 3.4. Let R be a d-dimensional Noetherian local domain with infinite

residue field and M be a finitely generated torsion-free R-module. Then M has

a reduction which is generated by rankR(M) + d - \ elements,   u

It is also true that in the situation of the above theorem, if M is contained

in a free .R-module F with finite length quotient, then no reduction of M is

generated by fewer then rankR(M)+d- 1 elements. Below, we discuss in detail

an example to illustrate these theorems and some of the results of the previous

section.

Example 3.5. Let R = k[[x, y]] be a ring of formal power series over a field

k and let K denote its field of fractions. Denote by F the free Ä-module

R © R of rank 2 whose elements will be represented by column matrices with

two entries. Let M be the submodule of F generated by the columns of the

matrix

M ={X    y    ^\
\0   x   y)'

As a matter of notation, let T be the column vector [10]* and U be the

column vector [01]* (with * denoting transpose). M is then the submodule

of F generated by xT, yT + xU and yll. Since x(yT + xU)-y(xT) = x2U
and y(yT + xU) - x(yU) = y2T, the module M contains the direct sum

of ideals (x, y2) © (y, x2). It follows that kR(F/M) is finite and hence, by

Proposition 2.1, F can be canonically identified with the double dual of M.
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Consider the element yT of F . We will show that this element is integral

over M using each of the criteria of Theorem 3.2. First, let V be any discrete

valuation ring of K containing R. To show that yT is integral over M, it

must be seen that yT £ MV. Consider the ideal (x, y)V of the local ring

V . Since it is generated by x and y and is principal, one of x or y generate

it. Say xV = (x,y)V so that y/x £ V. Then, yT = (y/x)(xT) £ MV.
Similarly, if yV = (x, y)V then yT = (yT + xU) - (x/y)(yU) £ MV . So by
the valuative criterion, yT £ M.

Next, consider S(M) ç S(F) ç SymK(MK) = SymK(FK). By definition,

S(F) is the image of SymR(F) in SymK(MK). We may identify SymK(MK)

with a polynomial ring in two variables T and U over K and then S(F) is its

subring R[T, U]. Furthermore, S(M) isthesubring R[xT, yT+xU, yll] of

R[T, U]. The element yT of R[T, U] satisfies the integral equation (yT)2-

(yT + xU)yT + (xT)(yU) = 0 over R[xT, yT + xU, yU]. Therefore, by the
equational criterion, yT is integral over M.

Lastly, consider the submodule A of F generated by M and the element

yT, i.e., the submodule of F generated by the columns of the matrix

N-(X   y    °   A
V 0    x    v    0 1'

We have that E2(M) c E2(N) ç E2(F). Since F is a free .R-module of
rank 2, E2(F) is isomorphic to R and under any such isomorphism, E2(N) is

identified with the ideal (x2, xy, y2) of the 2x2 minors of A. Also, E2(M)

is identified with the ideal of 2 x 2 minors of M which also happens to be

(x2, xy, y2). Since any ideal is a reduction of itself, it follows from the deter-

minan tal criterion that yT £ M.

We next show that A is the integral closure of M. It only needs to be seen

that A is integrally closed. But from the matrix A, it is clear that A = m © m

and is therefore integrally closed, being the direct sum of integrally closed ideals.

Note that vR(M) = 3 and uR(N) = 4 and that I(M) = I(N) = (x2, xy, y2)

so that ordR(M) = ordR(N) = 2. So we have that uR(N) = ordR(N) +

rank^(A). This agrees with Proposition 2.5 in that A is contracted from

5" = R[j] for some ( actually all ) x £ m - m2. We will see in the next section

that this is characteristic of all integrally closed modules over a two-dimensional

regular local ring. Given this, that M is not integrally closed follows simply

from the numerical inequation uR(M) / ordR(M) + rankÄ(Af).   D

We will next review the basic facts about the Buchsbaum-Rim multiplicity

of modules. This concept of multiplicity was intoduced in 1964 by Buchsbaum

and Rim as the alternating sum of the homology of a certain complex which is

now called the Buchsbaum-Rim complex. Beginning with the papers of Kirby

([Krb]) and Kirby and Rees ([KrbRs]), there has been a revival of interest in

this topic. A recent comprehensive paper of Kleiman and Thorup ([KlmThr])

provides a detailed introduction to the geometric theory of Buchsbaum-Rim

multiplicity.
In the rest of this section, the notation will be as follows. R will be a

Noetherian local ring of dimension d, not neccesarily a domain. Let P be an

.R-module of finite length with a free presentation
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Let S(G) be the image of SymÄ(<7) in SymR(F) = S(F). Then S(G) is a
graded subring of S(F) whose homogeneous components are denoted Sn(G).

We begin by summarizing some results ([BchRm, Theorems 3.1-3.4]). A clear,

recent exposition of parts of this theorem and several related results appears in

[Ktz].

Theorem 3.6. If P ¿0, then the length kR(SymR(F)/S„(G)) is asymptotically
given by a polynomial function of n of degree rankß(.F) + d - \. The nor-

malized leading coefficient of this polynomial is independent of the presentation

chosen.   U ■

Recall that the normalized leading coefficient of a numerical polynomial of

degree d is d\ times its leading coefficient. The normalized leading coefficient

above is an invariant of P and is called the Buchsbaum-Rim multiplicity of P.

We denote it by e(P). We define the Buchsbaum-Rim multiplicity of the zero

module to be 0.
We require a property of the Buchsbaum-Rim multiplicity given by the fol-

lowing proposition ([BchRm, Corollary 4.5]). This property is analogous to the

well known characterization of Cohen-Macaulay local rings as those for which

the multiplicity of an ideal generated by a system of parameters is equal to its

colength.

Proposition 3.7. Let R be a Cohen-Maculay local ring of positive dimension d

and F a finitely generated free R-module. Let M ç F be a submodule such

that kR(F/M) is finite. If M is generated by rankR(F) + d - 1 elements, then

e(F/M) = kR(F/M).   D

It follows fairly easily from the definition of reductions of ideals that an

m-primary ideal and any reduction have the same multiplicity. In the case of

modules, the proof is similar and we show this next for completeness.

Proposition 3.8. Let R be a Noetherian local domain of positive dimension d

and F be a finitely generated free R-module. Let N ç M be submodules of F

suchthat kR(F/N) is finite. If N is a reduction of M then e(F/N) = e(F/M).

Proof. Consider free presentations of F/M and F/N of the form

G —► F —► F/M —► 0,

H ^F ^F/N —»0.

By definition, e(F/M) and e(F/N) are the leading coefficients of the rankR(.F)

+ d-\ degree polynomials that give kR(Sn(F)/S„(G)) and kR(Sn(F)/Sn(H))
for large n . Hence, to show that e(F/M) = e(F/N), it is enough to show that

the polynomial that gives kR(S„(M)/Sn(N)) for large n is of strictly smaller

degree then rank«(77) + d - I .

Consider the finitely generated graded Tî-algebras S(N) ç S (M). By the

equational criterion, it follows that S(M) is a finite S(N) module since each

of its generators is integral over S(N). Choose a finite set of homogeneous

generators for S(M)/S(N) as an 5'(A)-module. Since each graded component

of S(M)/S(N) is of finite length, some power of m annihilates each of these

generators and hence some power of m5*(A) annihilates S(M)/S(N).

Therefore, S(M)/S(N) is a finitely generated graded module over the ho-

mogeneous graded ring S(N)/mkS(N)  for some  k > 0.   To conclude the
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proof, it suffices to see that the dimension of the ring S(N)/mkS(N) is at

most rank^(F) 4 d - 1, for then the length of the graded components of any

finitely generated graded module over this ring will be given by a polynomial of

strictly smaller degree.

The dimension of the ring S(N)/mkS(N) is equal to that of the ring

S(N)/mS(N). Now consider R ç S(N) ç S(F) = polynomial ring in rankÄ(F)

variables over R. Applying the dimension inequality between R and S(N)

gives dim^A)) < rank/{(7r) 4 d. Since m ^ 0 and S(N) is a domain, it

follows that dim(S(N)/mS(N)) is at most rankR(F) + d - 1 .   D

4. Behaviour of Buchsbaum-Rim multiplicity under transforms

The goal of this section is to establish a basic inequality—Theorem 4.8—

concerning the Buchsbaum-Rim multiplicity of a module and those of its trans-

forms. This inequality will be used to induce on the multiplicity to show that

products of integrally closed modules are integrally closed.

In this section we will revert to the notation of Section 2. So R will be a two-

dimensional regular local ring with maximal ideal m, infinite residue field k

and field of fractions K. Let M be a finitely generated, torsion-free .R-module

and with (_)* denoting the functor Homfi(., R), let F = M**.
Recall that the module M is said to be integrally closed if it is equal to its

integral closure, M, in the sense of Definition 3.1. Since M ç M** over a

Noetherian normal domain, M is integrally closed precisely when each element

of F that is integral over M is contained in M. Equivalently, if S(M)

denotes the image of the symmetric algebra SymR(M) in the polynomial ring

S(F) = SymR(F), then M is integrally closed when the first degree piece of

the integral closure S(M) in S(F) is equal to M.

The next proposition proves that integrally closed modules are contracted

from rings of the form i?[™] for x e m - m2. So all the results proved in

Section 2 about contracted modules are applicable to integrally closed modules.

This proposition is an intermediate step in proving that the transform of a

integrally closed module is integrally closed.

In the proposition below and the rest of the paper, when we say that most

x G m satisfy a certain property we mean that the set of x £ m not satisfying

the property is contained in a finite union of ideals each of which is strictly

contained in m. For instance, most x e m are part of a minimal generating

set of m. Since the residue field of R is assumed to be infinite, no ideal of R

is expressible as a finite union of ideals strictly contained in it. Thus, if most

x £ m satisfy finitely many properties individually then most x £ m satisfy

each of the properties.

Remark 4.1. For a Noetherian local ring R with maximal ideal m and a

discrete valuation ring V with maximal ideal n that birationally dominates

R, most x £ m generate mV. For, since mV is principal, any element in

mF-nmF is a generator. Consider the ideal nmV C\R. This is an ideal of R

properly contained in m (since some element of m does generate mV ) and

such that for any x £ m not in this ideal, x generates ml.   D

Remark 4.2. For a two-dimensional regular local ring R with maximal ideal m

and an m-primary ideal I of R, for most x e m, ordR(I) = kR(R/(I, x)).
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Hence, for a torsion-free .R-module M, if M is contracted from 5 = R[j] for

some x £ m-m2 , then M is contracted from S = R[j] for most x £ m-m2 .

Proof. We always have an inequality ordR(I) < kR(R/(I, x)). Choose a £ I

of minimal order. By virtue of the inequality, it suffices to show that for most

x £ m, ordR(a) = kR(R/(a, x)). This will hold as long as the leading form of x

does not divide that of a in the associated graded ring grm( R) ( which of course

is a polynomial ring in two variables over the residue field of R ). Consider the

linear factors of the leading form of a and lift them back arbitrarily to R. We

get a finite set xx, X2, ■ ■ ■ , xk of elements each of which is a minimal generator

of m. It is now easy to see that any x £ m avoiding the k ideals x¡R 4 m2

cannot have leading form dividing that of a. This proves the first statement.

The second follows from this and the proof of ( 1 ) =>• (5) of Proposition 2.5.   D

Proposition 4.3. If M is integrally closed, then for most x £ m, we have that

M is contracted from S = R[j] ■

Proof. Since M is integrally closed, by Definition 3.1, we have that M =

f)MV where the intersection ranges over all the discrete valuation rings V

of K that contain R. Since F/M is of finite length, it is possible to choose

finitely many such Vx, V2,--- , Vn suchthat M = MVX r\MV2Ci- ■ -V\MVn nF .

Again, since F/M is of finite length it vanishes on localization at any height 1

prime of R, and so it can be assumed that each of Vx, V2, ■ ■■ , Vn is centered

on m.

Now, by the remarks above, most x £ m generate mV¡ for each i =

1, 2, • • • , n . For any such x then m/x C V¡ for / = 1, 2, • • • , n and so

S = R[j] QVi for / = 1, 2, • • • , n . Therefore MSnF ç M\\ n MV2 n • • • n
M V„ n F = M. This shows that M is contracted from S.   □

The next proposition is a special case of the product theorem for integrally

closed modules. The ideal m of R is integrally closed and for a finitely gen-

erated torsion-free .R-module M, the product mM in the sense of the tensor

product m ®R M modulo .R-torsion is just the usual product mAf.

Proposition 4.4. If M is integrally closed then so is mM.

Proof. Since F/M is of finite length, so is F/mM and then the characteriza-

tion of the double dual in Proposition 2.1 shows that (mM)** is also equal to

F . Therefore the module A = mAf is a submodule of F and it is to be shown

that A = mM.
As in the proof of Proposition 4.3, choose discrete valuation rings Vx, V2, ■ ■ ■,

V„ of K birationally dominating R such that both the equations M = MVX n

MV2 n • • • n MV„ n F and A = mMVx n mMV2 n ■ • • n mMVn n F hold. Then
choose an x £ m such that xV¡ = mVi for each / = 1, 2, ■ ■ • , n . For such an

x and any v £ F , if xv £ N then xv £ (f|"=, mMV¡)nF = (f|"=1 xMV¡)nF .

Hence v £ (f)"=i MV¡) n F = M and this shows that (N :F x) = M.
Suppose now that the submodule mM 4 xF of F is integrally closed. Then

A = mM ç mM + xF and so A = mM 4 x(A :F x) = mM 4 xM = mM.

This will complete the proof.
So it only needs to be seen that mAf + xF is integrally closed. By a similar

argument as the one used for mAf ,it follows that (mAf 4 xF)** = F and so

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



INTEGRALLY CLOSED MODULES 3565

to show that mAf + xF is integrally closed we need to show that any element

of F integral over mAf 4 xF is in mAf 4 xF . Consider such an element v .

With S(mM + xF) denoting as usual the image of the image of the symmetric

algebra of mM + xF in the symmetric algebra of F , the element v satisfies an

integral equation over S(mM + xF). Reducing this equation modulo x gives

an integral equation for the element v £ F/xF over the symmetric algebra

of the image mAf of mAf in F/xF. This shows that v is integral over the

submodule mAf of the free module F/xF over the discrete valuation ring

R/xR. But, by definition of integral closure, any submodule of a free module

over a discrete valuation ring is integrally closed. Thus v £ mM. This implies

that v £ mM 4 xF which is what is needed,   o

We next briefly recall the notion of quadratic transforms of a two-dimensional

regular local ring and that of proper transform of an ideal.

A first quadratic transform of R is a ring obtained by localizing a ring of the

form S = R[j] at a maximal ideal containing mS. For future use, we note that

if x, y generate m, then any first quadratic transform of R is obtainable as

a localization of either R[™] or R[j]. Such a ring is itself a two-dimensional

regular local ring that birationally dominates R, i.e., it is a subring of K con-

taining R and whose maximal ideal contains m. We inductively define an

«th-quadratic transform of R as a first quadratic transform of an (n - 1 )st-

quadratic transform of R. This again is a two-dimensional regular local ring

which birationally dominates R . A quadratic transform (without qualification)

of R is an «th-quadratic transform of R for some n . We regard R itself as

a quadratic transform of R with n = 0 .

By a standard result on quadratic transforms, if T is a quadratic transform

of R, there is then a unique sequence R = To ç Tx Ç---T„\ ç Tn = T where

each Ti+X is a first quadratic transform of T¡ for i = 0, 1, • • ■ , n - 1 . This

result implies that under the relation of inclusion, the set of quadratic trans-

forms of R acquires a tree structure—R itself on level 0, the first quadratic

transforms of R on level 1, the second quadratic transforms of R on level 2

and so on.
For an m-primary ideal I of R, the proper transform of the ideal in S is

defined to be the ideal x~rIS where r = ordR(I). It is denoted by Is . It is

easy to see (and is shown in [Hnk]) that S/1s is an Artinian ring. For a first

quadratic transform T of R the proper transform of / in T is denoted IT

and defined to be x~rIT. Note that if T is a localization of S then IT = IST.

For a quadratic transform T of R with associated sequence R = To Ç Tx C

• • • Tn-X C T„ = T, the transform of I in T is defined inductively as (IT"-')T .

By convention the transform of I in R is set to be / itself. The notion of the

transform of an ideal is well-defined and it follows from the definition that if

V is a quadratic transform of T and T is a quadratic transform of R, then

¡r _ (¡Ty'. Note that the proper transform of an m-primary ideal of R is

primary to the maximal ideal of T (or the whole of T).

The fundamental numerical result about complete ideals in two-dimensional

regular local rings is the Hoskin-Deligne length formula for which several proofs

are known. For a recent proof based on techniques of [Hnk] and references to

other proofs, see [JhnVrm]. The theorem below is very much in the spirit of
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this formula but holds for general m-primary ideals instead of just complete

ideals. The ideas in its proof can be easily extended to give another proof of

the Hoskin-Deligne formula but we do not pause for that as it will not be needed

in this paper.

Theorem 4.5. Let I be an m-primary ideal of R of order r and T be a first

quadratic transform of R. Suppose that mT = xT for x £ R. Then the map

mr   x-r    T

I IT

is a surjection of R-modules. In particular, kF(T/IT) < kR(R/I).

Proof. We have that T is a localization of S = R[™] at one its maximal ideals.

Further, the ring S/1s is Artinian and T/IT is one of its Artinian local factors.

Therefore it suffices to see that the map

mr   x-r    S

T-'18
is surjective. Following this map up with multiplication by xr and using that

xrS = mrS reduces the theorem to proving surjectivity of

in/ _^ mrS

I IS

where the map is induced by inclusion. Therefore, we need to see that mrS ç
IS + mr.

In proving this, there is no loss of generality in assuming that I is contracted

from S since both I and ISnR have the same order and extend to the same

ideal of S. Now,

ord«(/) = r = kR(R/(mr, x)) < kR(R/(I, x)) = vR(I) - 1

the last equality from the proof of ( 1 ) =>■ (2) => (3) of Proposition 2.5. How-

ever, as the reverse inequality between ord^(7) and vR(I) - 1 always holds by

Proposition 2.2, we have that there is equality and so (mr, x) = (I, x). In

particular, mr C /4xmr_1 and multiplying by m gives that mr+1 C 7m4xmr.

With that as the basis case, an easy induction on n gives mr+n ç 7m" +x"mr

for all n > 0. Dividing this by x" shows that

. m"      _ m"
m .— ç /.—-r 4 m .

Since 5 is the union over all n of ^ , this completes the proof.   D

Proposition 4.6. Let M be a integrally closed R-module and T be a first

quadratic transform of R. Then, the transform MT is a integrally closed T-

module.

Proof. Begin by choosing an x £ m-m2 so that T is a localization of S = R[j]

at a maximal ideal containing mS. Then Af T is a localization of AfS and

so to show that Af T is integrally closed, it suffices by Corollary 3.3 to see that

ATA is integrally closed.
We have MS is contained in the free ^-module FS and since S is an

integrally closed domain, FS is an integrally closed S-module. Hence, MS ç
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Consider an element v £ F S integral over MS. By the equational criterion,

the element v £ Symf (FS) satisfies an equation of the form v" + axv"~x -\-\-

a„ = 0 where the a, £ S (MS) ç Syms(FS). Since we are in the context of

graded rings and homogeneous elements, we can further assume that deg(a,) = i

for each /. Now choose an integer A so large that xNv e F and such that for

all i, xNa¡ £ S(M) ç SymR(F).

Multiply the integral equation for v with xNn . Direct calculation shows that

a¡xNl £ S(mNM) ç SymR(F). So we now have an integral equation for the

element xNv over S(mNM). By the equational criterion again, we have that

xNv is integral over m^Af. But by Proposition 4.4, mNM is integrally closed.

Hence xNv £ mNM. Dividing by xN gives that v £ MS and completes the

proof.   D

We will now analyze how the ideal /(Af) associated to a module Af be-

haves under transform. Recall that this ideal is the ideal of maximal minors

of a matrix whose columns generate M considered as a submodule of the free

module F. The notation (_)* in the proposition below refers to dualization

with respect to the appropriate ring; R-modules are dualized with respect to R

and r-modules, with respect to T.

Proposition 4.7. Let T be a quadratic transform of R. Then, I(MT) = I(M)T.

Proof. As observed after the proof of Proposition 2.2, the ideal /(Af) is an

m-primary ideal of R and similarly I(MT) is an n-primary ideal of T where

n is the maximal ideal of T. The ideal I(M)T is also an n-primary ideal of T

and so to see that it is equal to I(MT) it is enough to see that it is isomorphic

to /(Af T).
Consider M ç F where F is free and kR(F/M) is finite. From here, we

have MT ç FT. Though FT is a free T module, in general kF(FT/MT)
is not finite. However we have MT ç (MT)** ç FT and MT is of finite

colength in the free submodule (MT)** of FT.
Choose a basis of F and generators of Af and consider the following ma-

trices. D has columns that are representations of the generators of M with

respect to the basis chosen for F . C is a square matrix whose columns are rep-

resentations of a basis of (MT)** with respect to the basis of FT which is the

same as that of F . E has columns whose columns which are representations

of the generators of MT with respect to the basis of (MT)**.

There is then a matrix equality D = CE . By definition, /(Af) = ideal in R

of maximal minors of D and /(Af T) is the ideal in T of maximal minors of

E. So from the matrix equation above, it follows that I(M)T = det(C).I(MT).

Therefore I(M)T s I(MT) => I(M)T s I(MT) =*> I(M)T = /(Af 7).   D

We are now ready to prove the main result of this section. We will show that

the Buchsbaum-Rim multiplicity e(M**/M) associated to a finitely generated

torsion-free module Af decreases on taking transforms. The main point of the

proof is to express the Buchsbaum-Rim multiplicity in terms of the colength of

a certain ideal and then to use Theorem 4.5 to ensure its decrease.

Theorem 4.8. Let T be a first quadratic transform of R and let M be a finitely

generated torsion-free R-module. Then e((MT)**/MT) < e(M**/M).
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Proof. Consider Af C Af** = F with F free and with kR(F/M) finite. As
usual, we denote rank«(/r) by r. By Theorem 3.4, there is a submodule A ç Af

such that A is generated by r 4 2 - 1 = r + 1 elements and is a reduction of

M, i.e., every element of M is integral over A.

From the determinantal criterion, it follows that the ideal of maximal minors

of generators of A is a reduction of /(Af) and in particular m-primary. Since

this ideal multiplies F into A, we have that A is of finite colength in F and

F = A** by Proposition 2.1.
Since A is a reduction of Af we have by Proposition 3.8 that e(F/M) =

e(F/N) and since A is generated by rank«(/7)42-1 elements over a Cohen-

Macaulay ring we have by Proposition 3.7 that e(F/N) = kR(F/N).
In some basis of F , suppose that A is generated minimally by the columns

of the r x (r + 1) matrix A. The ideal of maximal minors of A is by defini-

tion /(A) and is m-primary. So by the Hilbert-Burch theorem, R/I(N) has a

resolution,

0 —>F* -£•+ G* —*R —y 0

where rankÄ(67) = r4l . Dualizing this resolution shows that ExtR(R/I(N), R)

= F/N. But by local duality ([BrnHrz, Theorem 3.5.8]), Ext2R(R/I(N), R) 3
(R/I(N)Y—the Maths dual of the module R/I(N). So

kR(R/I(N)) = kR((R/I(N)Y) = kR(Ext2R(R/I(N), R)) = kR(F/N).

Summarizing, we have so far shown that for any r + 1 generated reduction A

of Af , e(M**/M) = kR(R/I(N)).
Next we consider the quadratic transform T of R. The inclusion of R-

modules A ç Af gives an inclusion of r-modules NT C MT. Since A is a

reduction of Af, it follows from the equational criterion that Ar is a reduction

of MT. Also NT is generated by r4l = rankF(MT) + l elements. Therefore,

e((MT)**/MT) = kT(T/I(NT)).
Now, by Proposition 4.7, I(NT) = I(N)T and then by Theorem 4.5,

kT(T/I(N)T) < kR(R/I(N)). Hence,

e((MT)**/MT) = kT(T/I(NT)) = kT(T/I(N)T) < kR(R/I(N)) = e(M**/M).

This finishes the proof.   □

5. Integral closure of products, symmetric powers

and exterior powers

In this last section we prove the main results of this paper and work out an

example. The main results all assert that some module or ideal is integrally

closed and can all be regarded as generalizations of Zariski's product theorem.

We then show the non-triviality of the theory by giving a general construction

of integrally closed indecomposable modules. Based on this construction, we

exhibit an explicit example of such a module.

The notations in this section are the same as those of Section 4. Thus, R will

be a two-dimensional regular local ring with maximal ideal m, infinite residue

field k and field of fractions K . M will be a finitely generated torsion-free

.R-module and F will denote its double dual Af **.
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Proposition 5.1. For x £ m-m2 let S = R[^].  Then, MS = FS n (f) MT)
where the second intersection ranges over all the first quadratic transforms T of

R that are localizations of S.

Proof. It is clear that MS ç FS and that MS ç MT for each T as in the
proposition. To show the reverse inclusion, note that MS = f)(MS)n where

the intersection ranges over all the maximal ideals n of S where we identify

(MS)n with the submodule MSn of MK . Now consider an element v £

FSn (P| MT). We will show that v £ MS by showing that v £ MSn for every
maximal ideal n of S. There are two cases to consider. Case 1 : mS ç n.

In this case the localization Sn is, by definition, a quadratic transform T of

R and therefore v £ MS„. Case 2: mS g n. In this case, the ideal n is of

height 1 and has height 1 contraction to R. Since F/M is of finite length,

Fp = Mp for any height 1 prime P of R and therefore MS„ = FS„. Hence
v £ F S ç FS„ = MS„ . This completes the proof.   D

Theorem 5.2. Suppose that M and A are finitely generated torsion-free inte-

grally closed R-modules. Then MN is integrally closed.

Proof. Set F = M** and G = A**. Then F and G are free .R-modules
containing Af and A respectively and with finite length quotients. We will

prove that Af A is integrally closed by induction on min{e(F/M), e(G/N)} .
If this minimum is 0, then one of Af or A is free and then Af A is just a

finite direct sum of copies of the other. Since a direct sum of integrally closed

modules is integrally closed, we are done in this case.

Suppose the minimum is positive. By Proposition 4.3, choose an x £ m-m2
such that both Af and A are contracted from S = R[j] ■ By Theorem 2.8

we have that Af A is also contracted from S. Thus, if H = F ®R G, then

H = (MN)** and Af A = MNSnH ç HS. Suppose now that Af AS is shown
to be an integrally closed 5-module. Then, consider any element of H integral

over Af A. This element is also integral over Af NS and hence is in MNS.

Therefore the element is in Af A. This will show that A/A is integrally closed

and complete the proof.

We now show that MNS is integrally closed. Since S is an integrally closed

domain, by Corollary 3.3, it is enough to verify that for any maximal ideal n

of S, MNSn is an integrally closed ^-module.

There are two cases to consider. If mS g n, then n is of height 1 and so

Sn is a discrete valuation ring over which any module is integrally closed. If

mS ç n, then S„ is a first quadratic transform T of R and here we have to

see that M NT is integrally closed.
By definition of the product and transform operations, M NT = MT.NT.

We have by Proposition 4.6 that each of MT and NT is integrally closed.

Then, by Theorem 4.8,

min{e((MT)**/MT), e((NT)**/NT)} < min{e(F/M), e(G/N)} .

So by the inductive hypothesis MT.NT is integrally closed which finishes the

proof.   D

Theorem 5.3. Suppose that M is a finitely generated torsion-free integrally closed

R-module. Then the torsion-free symmetric algebra S(M) is a Noetherian nor-

mal domain.
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Proof. Since S(M) is a graded domain, its integral closure is also graded and

its graded pieces are the the integral closures of the modules S„(M). Thus, to

see that S(M) is a normal domain, it suffices to see that each S„(M) is an

integrally closed module. For this, we follow the ideas of the previous proof.

Set F = M** and induce on the Buchsbaum-Rim multiplicity of F/M,

the case when it is zero being trivial. Otherwise, by Proposition 4.3, choose

an x € m so that M is contracted from S = R[j] ■ By Theorem 2.8 all the

S„(M) are also contracted from S and so to show that they are integrally closed

it suffices to show that all Sn(M)S are integrally closed.

Using Corollary 3.3 as in the previous proof, we reduce to showing that for

a first quadratic transform T of R , all the S„(M)T are integrally closed. But

by definitions, S„(M)T = S„(MT), which are integrally closed since MT is

integrally closed by Proposition 4.6 and by the inductive assumption. This

finishes the proof.   G

The proof of the following theorem follows by essentially the same reasoning

applied to the modules E„(M).

Theorem 5.4. Suppose that M is a finitely generated torsion-free integrally closed

R-module. Then each E„(M) is integrally closed. In particular, the ideal of

maximal minors /(Af ) is integrally closed. Furthermore, taking integral closure

commutes with taking the ideal of maximal minors for any finitely generated

torsion-free R-module.

Proof. Set F = M** and induce on the Buchsbaum-Rim multiplicity of F/M,

the case when it is zero being trivial. Otherwise, by Proposition 4.3, choose an

x £ m so that Af is contracted from S = R[j] ■ By Theorem 2.8 E„(M) is

also contracted from 5 and so to show that it is integrally closed it suffices to

show that its transform in S is integrally closed.

By the local-global principle, it is enough to see that for a quadratic trans-

form T of R, the module En(M)T is integrally closed. But by definitions,

En(M)T = E„(MT), which is integrally closed since MT is integrally closed

by Proposition 4.6 and by the inductive assumption.

Since /(Af) is the same as Er(M) where r = rankR(M), it is integrally

closed. For an arbitrary finitely generated .R-module Af, we have by the deter-

minantal criterion that /(Af) is integral over /(Af) and then by the previous

line that /(Af) is integrally closed—it follows that /(Af) = /(Af).    D

Remark 5.5. The theorem above shows that the first Fitting ideal of F/M (or

equivalently by the proof of Proposition 2.2, the first Fitting ideal of Af) is

integrally closed if Af is. However, it is not true that the other Fitting ideals

of F/M are integrally closed. For instance, if Af is the direct sum of ideals

I = (x2, xy3, y5) and / = (y3, y2x2, yx3, x4), then Af is integrally closed

since each of the ideals is, but the second Fitting ideal of F/M is the sum of

the ideals I + J = (x2, y3) which is not integrally closed. For an arbitrary

integrally closed module Af, I do not know whether all Fitting ideals of Af

itself are integrally closed.   D

Remark 5.6. We point out that while we have proved and used the reduction

of Buchsbaum-Rim multiplicity theorem, a different approach to the proof of

the main theorems is to induce on kR(R/I(M)). That this also decreases under
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transforms follows from Theorem 4.5 and Proposition 4.7. Still, Theorem 4.8

is interesting in itself and we hope to show in a future paper an equality for the

Buchsbaum-Rim multiplicity analogous to the formula

e(I) = J2ordT(IT)2

that holds for an m-primary ideal of R (assuming that the residue field is

algebraically closed). In the formula, the sum is over all quadratic transforms

T of R and this obviously implies that for any such T, e(IT) < e(I).   D

In Example 3.5, we considered an indecomposable .R-module M and found

that its integral closure A was a direct sum of ideals m © m. If it were to

be true that every integrally closed module decomposed as a direct sum of

ideals, then Theorem 5.2 would follow trivially from Zariski's product theorem.

In the theorem below we show that this is not the case by showing how to

construct indecomposable integrally closed modules over any two-dimensional

regular local ring.

We require the notion of a simple integrally closed ideal of R. This is a

integrally closed ideal of R which cannot be expressed a product of strictly

larger proper ideals.

Theorem 5.7. Let N be an R-module without a free direct summand such that

/(A) is simple. Then N is an indecomposable R-module. In particular, there

exist indecomposable integrally closed R-modules of arbitrary rank.

Proof. Note that a torsion-free .R-module A has no free direct summand ex-

actly when A ç mF where F = N**. Since mF is integrally closed, it follows

that A has a free direct summand if and only if A does.

Suppose by way of contradiction that A == P © Q is a non-trivial decompo-

sition. Then /(A) = I(P).I(Q). Since /(A) = /(A) is simple by assumption,

at least one of I(P) or I(Q) is R which means that at least one of P or Q

is free. This contradicts the assumption that A has no free direct summand.

To construct modules that do not have a free summand and whose ideal

of minors has simple integral closure, begin with any ideal J whose integral

closure is simple and resolve R/J minimally as below.

0^ F -^G^R—+ 0

Then, consider the transpose map G* -> F*. Its image has no free sum-

mand by minimality and has ideal of minors J . Taking, for instance, J to

be the integral closure of (xr, yr+x), where x and y form a regular system of

parameters of R, produces a module of rank r.   D

To conclude, we use the theorem to give an explicit example of a integrally

closed indecomposable R-module.

Example 5.8. Let R = k[[x, y]] be a ring of formal power series over a field k .

Denote by F the free .R-module R © R of rank 2 whose elements are column

matrices with two entries. The ideal / = (y3, -xy2, x2) is a simple integrally

closed ideal of R and R/I is minimally resolved by

0^R2-^/?3^R^0
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where <j> has a matrix representation as

In the notation of the Theorem 5.7, A is the submodule of R2 (actually of

(R2)* ) generated by the columns of the matrix

(x   y    0 \
V 0   x   y2 ) '

We will show that A is the submodule of R2 generated by the columns of

the matrix
'x   y    0     0\
0   x   y2   xy

Let r be the column vector [10]' and U be the column vector [01]'.

By using any of the three criteria as in Example 3.5, it is easily seen that xyll

is integral over A. So we next need to see any element integral over A is in

the submodule, say M, of F generated by xr,yT4xí7,y2í7 and xyU.

Equivalently, we want to see that Af is integrally closed.

To see this, note that by (4) and (5) of Proposition 2.5, Af is contracted

from A = R[j] and so to see that Af is integrally closed it suffices to see that

its transform Af S is integrally closed. By row and column operations over S,

it is easy to see that MS = S © P where P is the maximal ideal (y, x/y)S.
The only localization of S at which S © P is not actually free is at P.

Denote by T the first quadratic transform Sp of R and let n be its maximal

ideal. Then (S © P)p = T © n which is clearly an integrally closed T-module.

Therefore S © P and hence Af is integrally closed.

Thus Af is an integrally closed indecomposable .R-module. It seems too

optimistic to expect that a converse to Theorem 5.7 hold in the sense that an

indecomposable complete .R-module of rank bigger than 1 have a simple com-

plete ideal of maximal minors but it would be nice to have this clarified with

either a proof or counterexample.   D

Remark 5.9. Professor Lipman has pointed out that Theorems 5.2 and 5.3 also

hold for two-dimensional rings with rational singularities. With the appropriate

definitions of integrally closed sheafs of modules, the proofs can be deduced

by generalizing the proofs of Theorems 7.1 and 7.2 of [Lpm2]. Alhough these

theorems are stated and proved for sheafs of ideals, one of the crucial technical

facts ([Lpm, Lemma 7.3]) is proved there for modules and is the key to gener-

alization. It would be interesting to know whether the numerical relationships

for integrally closed modules such as uR(M) < rank/?(Af) 4 ordR(M) and the

decrease of Buchsbaum-Rim multiplicity on transforms also generalize.
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