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Abstract. Let S be a polynomial ring over a field. For a graded S-module
generated in degree at most P , the Castelnuovo-Mumford regularity of each of
(i) its nth symmetric power, (ii) its nth torsion-free symmetric power and (iii)
the integral closure of its nth torsion-free symmetric power is bounded above
by a linear function in n with leading coefficient at most P . For a graded ideal
I of S, the regularity of In is given by a linear function of n for all sufficiently
large n. The leading coefficient of this function is identified.

Let S = k[x1, · · · , xd] be a polynomial ring over a field k with its usual grading,
i.e., each xi has degree 1, and let m denote the maximal graded ideal of S. Let
N be a finitely generated non-zero graded S-module. The Castelnuovo-Mumford
regularity of N , denoted reg(N), is defined to be the least integer m so that, for
every j, the jth syzygy of N is generated in degrees ≤ m + j. By Hilbert’s syzygy
theorem, N has a graded free resolution over S of the form

0 → Fk → · · · → F1 → F0 → N → 0

where Fi =
⊕ti

j=1 S(−aij) for some integers aij — which we will refer to as the
twists of Fi. Then, reg(N) ≤ maxi,j{aij − i} with equality holding if the resolution
is minimal. For other equivalent definitions and properties of this invariant, see
[Snb].

For a graded ideal I in S, the behaviour of the regularity of In as a function
of n has been of some interest. If I defines a smooth complex projective variety,
it is shown in [BrtEinLzr, Proposition 1] using the Kawamata-Viehweg vanishing
theorem that reg(In) ≤ Pn + Q where P is the maximal degree of a minimal
generator of I and Q is a constant expressed in terms of the degrees of generators
of I. In [GrmGmgPtt, Theorem 1.1] and in [Chn, Theorem 1] it is shown that if
dim(R/I) ≤ 1, then reg(In) ≤ n. reg(I) for all n ∈ N. In [Chn, Conjecture 1], this
is conjectured to be true for an arbitrary graded ideal. Supporting this conjecture is
the result of [Swn, Theorem 3.6] that reg(In) ≤ Pn for some constant P and for all
n ∈ N. The method of proof makes it difficult to explicitly identify such a constant.
For monomial ideals, such a P is explicitly calculated in [SmtSwn, Theorem 3.1]
and improved upon in [HoaTrn, Corollary 3.2].

We show that with S and N as above, the regularity of Symn(N) — and related
modules — is bounded above by a linear function of n with leading coefficient at

Received by the editors October 28, 1997 and, in revised form, April 15, 1998.
1991 Mathematics Subject Classification. Primary 13D02; Secondary 13D40.

c©1999 American Mathematical Society

407

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



408 VIJAY KODIYALAM

most the maximal degree of a minimal generator of N . For a graded ideal I of S, we
get the sharper result that reg(In) is actually given by a linear function of n for all
sufficiently large n. The leading coefficient of this function is identified as a certain
invariant ρ(I) of I. This verifies Chandler’s conjecture in the case reg(I) > ρ(I)
and for all n sufficiently large.

One of the main ingredients of the proof is an analysis of a bigrading (= N2

grading) on the Rees ring, S[It], of a graded ideal I ⊆ S. This is defined by
decreeing an element of S[It] to be homogeneous of bidegree (p, n) if it is of the form
ftn where f is a homogeneous element of degree p in S. For a recent application
of this bigrading, see [CncHrzTrnVll].

Suppose that I is generated minimally by homogeneous elements f1, · · · , fk in S
of degrees p1, · · · , pk respectively. Let R = k[X1, · · · , Xd, T1, · · · , Tk] with bigrading
defined by deg(Xi) = (1, 0) and deg(Tj) = (pj , 1). The natural map R → S[It]
defined by Xi 7→ xi and Tj 7→ fjt is then a surjective homomorphism of bigraded
rings. In particular, S[It] is a cyclic bigraded R-module.

For a bigraded R-module M =
⊕

p,n∈N M(p,n), define M (n) to be the graded
S-module

⊕
p∈N M(p,n) where xi acts as Xi with its obvious grading. Note that

S[It](n) ∼= In. The assignment M 7→ M (n) is an exact functor. For a, b ∈ N,
define the twisted module M(−a,−b) by M(−a,−b)(p,n) = M(p−a,n−b). The crucial
observation used in the proof is that

R(−a,−b)(n) ∼= R(n−b)(−a) ∼=
⊕

l1+···+lk=n−b

S(−l1p1 − · · · − lkpk − a)

as graded S-modules.

Theorem 1. Let k be a field and S = k[x1, · · · , xd] graded as usual. Let R =
k[X1, · · · , Xd, T1, · · · , Tk] with bigrading defined by deg(Xi) = (1, 0) and deg(Tj) =
(pj , 1) for some pj ∈ N. For a finitely generated bigraded R-module M , there exists
a constant Q so that reg(M (n)) ≤ Pn+Q for all n ≥ 1 where P = max{p1, · · · , pk}.
Proof. By a bigraded version of Hilbert’s syzygy theorem, the R-module M has a
bigraded free resolution of the form

0 → Fk → · · · → F1 → F0 → M → 0

where Fi =
⊕ti

j=1 R(−aij,−bij).
Applying the functor ( · )(n) to this resolution yields a graded free S-resolution

of M (n) from which an upper bound on its regularity can be read off. Since

F
(n)
i

∼=
ti⊕

j=1

⊕
l1+···+lk=n−bij

S(−l1p1 − · · · − lkpk − aij),

the maximal twist in Fi is maxj{P (n − bij) + aij} where P = max{p1, · · · , pk}.
Hence reg(M (n)) ≤ Pn + Q with Q = maxi,j{aij − Pbij − i}.

As a matter of notation, for a graded S-module N , by θ(N) we will denote the
maximal degree of a minimal generator of N . Equivalently, θ(N) = reg(N/mN).
For the definition and properties of integral closures of modules, see [Res].

Corollary 2. Let S = k[x1, · · · , xd] and N be a finitely generated graded S-module
with θ(N) = P . Let Fn(N) denote any one of:

(1) Symn(N) — the nth symmetric power of N .
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(2) Sn(N) — the nth symmetric power of N modulo S-torsion.
(3) (Sn(N)) — the integral closure of the module Sn(N).

Then, there exists Q so that reg(Fn(N)) ≤ Pn + Q for all n ∈ N.

Proof. Let N be generated by minimal generators in degrees p1 ≤ · · · ≤ pk = P and
let R = k[X1, · · · , Xd, T1, · · · , Tk] bigraded as before. Then, M =

⊕
n∈N Fn(N) is

naturally a finitely generated, bigraded R-module with M (n) ∼= Fn(N). Now appeal
to Theorem 1.

Recall that an ideal J ⊆ I is said to be a reduction of I if for some n ∈ N we
have that In = JIn−1. We will denote by ρ(I) the minimum of θ(J) over all graded
reductions J of I. Clearly, reg(I) ≥ θ(I) ≥ ρ(I).

Corollary 3. Let I be a graded ideal of S = k[x1, · · · , xd] and let P = ρ(I). Then
there exists a constant Q so that reg(In) ≤ Pn + Q for all n ∈ N.

Proof. Let J be a graded reduction of I with θ(J) = P . As above, map a bigraded
polynomial ring R onto S[Jt]. Since J is a reduction of I, S[It] is a finitely gener-
ated bigraded S[Jt]-module and hence also a finitely generated bigraded R-module.
Apply Theorem 1 to this module.

In order to improve the inequality of the corollary to an asymptotic equality, we
first linearly bound reg(In) below by simply bounding θ(In).

Proposition 4. Let I be a graded ideal of S = k[x1, · · · , xd] and let P = ρ(I).
Then θ(In) ≥ Pn for all n ∈ N.

Proof. Let p ∈ N be largest so that there exists f ∈ I of degree p with fn /∈ mIn

for all n ∈ N. Hence In has a minimal generator in degree pn for every n and so
θ(In) ≥ pn for all n ∈ N. It suffices to show that p ≥ P or equivalently that there
exists a graded reduction J of I with θ(J) ≤ p.

Choose a minimal generating set f1, · · · , fk of I of degrees p1 ≤ · · · ≤ pk respec-
tively so that fn

j /∈ mIn for all n and pi > pj = p for i > j. Set J = (f1, · · · , fj)
and K = (fj+1, · · · , fk). Clearly J is a graded ideal with θ(J) = p and we claim
that J is a reduction of I. This will complete the proof.

From the definition of p it follows easily that, for some n ∈ N, Kn ⊆ mIn. Then
In = (J + K)n = J(J + K)n−1 + Kn ⊆ JIn−1 + mIn. By Nakayama’s lemma, it
follows that J is a reduction of I.

Theorem 5. Let I be a graded ideal of S = k[x1, · · · , xd] and let P = ρ(I). Then
there exists a constant M ∈ N so that, for all n ∈ N sufficiently large, reg(In) =
Pn + M .

Proof. By Proposition 4, reg(In) = Pn+Qn for non-negative integers Qn. We will
show that the sequence Qn is eventually constant.

Choose a graded reduction J = (f1, · · · , fk) of I where fi is homogeneous of
degree pi and θ(J) = P . Let R be the bigraded ring k[X1, · · · , Xd, T1, · · · , Tk]
mapping onto S[Jt] as before. Consider the Koszul complex of the bigraded R-
module S[It] with respect to T1, · · · , Tk. All homology modules of this complex
are annihilated by a power of (T1, · · · , Tk) and hence, for all sufficiently large n,
applying the functor ( · )(n) yields an exact complex of graded S-modules:

0 → In−k(−p1 − p2 − · · · − pk) → · · · → In−1(−p1)⊕ · · · ⊕ In−1(−pk) → In → 0.
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This complex may be used to construct a resolution of In given resolutions of
In−1, · · · , In−k and it follows from this construction that, for all n sufficiently large,
reg(In) ≤ max{reg(In−1)+maxi{pi}, reg(In−2)+maxi<j{pi+pj}−1, · · · , reg(In−k)
+p1 + · · · + pk − (k − 1)}. Since P = maxi{pi}, 2P ≥ maxi<j{pi + pj} etc., this
implies that Qn ≤ max{Qn−1, Qn−2 − 1, · · · , Qn−k − (k − 1)}.

For n > k, define Mn = max{Qn−1, · · · , Qn−k}. Then for all sufficiently large n,
the sequence Mn is a non-increasing sequence of non-negative integers and therefore
eventually constant with value, say, M . The sequence Qn is bounded above for all
large n by M . For sufficiently large n, if some Qn < M , it follows that all successive
Q’s are also less than M . But then, Mn would also be less than M for all large
n. The contradiction shows that the sequence Qn is also eventually constant with
value M .

Remarks. (1) The theorem should be compared with [BrtEinLzr, Proposition 1]
and its refinements in [Brt]. Explicit determination of a Q as in Corollary 3 seems
to involve fairly subtle techniques. On the other hand, it may be possible to find
the M of Theorem 5 in the spirit of the methods of this paper.

(2) Following [SnbGot], say that a graded ideal I has a linear resolution if its
regularity is equal to the degree of each of its minimal generators. In an earlier ver-
sion of this paper I had the following proof that Chandler’s conjecture is equivalent
to the statement: If I has a linear resolution, so do all powers of I.

Proof. Clearly, Chandler’s conjecture implies that statement. Conversely suppose
that powers of ideals with linear resolutions also have linear resolutions. Let I be
an arbitrary graded ideal of S with reg(I) = r. By [SnbGot, Proposition 1.1], the
graded ideal I≥r ( = I ∩mr ) has a linear resolution. Hence, so does (I≥r)n for all
n ∈ N. Since r ≥ θ(I), (I≥r)n = In ∩ mrn. By [SnbGot, Proposition 1.1] again,
reg(In) ≤ rn = n. reg(I).

Subsequently, I was made aware of an example, attributed to Terai in [Cnc], of a
monomial ideal with linear resolution whose square does not have a linear resolution
in characteristic different from 2. Thus, Chandler’s conjecture is false. A recent
preprint of Bernd Sturmfels [Str] gives a characteristic free such example.

(3) The main result of this paper has been independently obtained in [CtkHrzTrn].
This paper also studies the regularity of the saturations of powers of an ideal.

(4) The referee has suggested that the bound

reg(In) ≤ max{reg(In−1) + max
i
{pi}, · · · , reg(In−k) + p1 + · · ·+ pk − (k − 1)},

in the proof of Theorem 5 follows easily by inductively applying the lemma: If
0 → A → B → C → 0 is an exact sequence, then reg(C) ≤ max{reg(B), reg(A)−1}.
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