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ABSTRACT. Let S be a polynomial ring over a field. For a graded S-module
generated in degree at most P, the Castelnuovo-Mumford regularity of each of
(i) its n*® symmetric power, (ii) its n*? torsion-free symmetric power and (iii)
the integral closure of its n'® torsion-free symmetric power is bounded above
by a linear function in n with leading coefficient at most P. For a graded ideal
I of S, the regularity of I"™ is given by a linear function of n for all sufficiently
large n. The leading coefficient of this function is identified.

Let S = k[x1,--- ,z4] be a polynomial ring over a field k with its usual grading,
i.e., each x; has degree 1, and let m denote the maximal graded ideal of S. Let
N be a finitely generated non-zero graded S-module. The Castelnuovo-Mumford
regularity of N, denoted reg(N), is defined to be the least integer m so that, for
every 7, the j* syzygy of N is generated in degrees < m + j. By Hilbert’s syzygy
theorem, N has a graded free resolution over S of the form

0—F,—-—F—=F—-N-=0
where F; = @E;l S(—a;j) for some integers a;; — which we will refer to as the
twists of F;. Then, reg(N) < max; j{a;; —i} with equality holding if the resolution
is minimal. For other equivalent definitions and properties of this invariant, see
[Snb).

For a graded ideal I in S, the behaviour of the regularity of I™ as a function
of n has been of some interest. If I defines a smooth complex projective variety,
it is shown in [BrtEinLzr, Proposition 1] using the Kawamata-Viehweg vanishing
theorem that reg(I™) < Pn + @ where P is the maximal degree of a minimal
generator of I and @ is a constant expressed in terms of the degrees of generators
of I. In [GrmGmgPtt, Theorem 1.1] and in [Chn, Theorem 1] it is shown that if
dim(R/I) < 1, then reg(I™) < n.reg(I) for all n € N. In [Chn, Conjecture 1], this
is conjectured to be true for an arbitrary graded ideal. Supporting this conjecture is
the result of [Swn, Theorem 3.6] that reg(I™) < Pn for some constant P and for all
n € N. The method of proof makes it difficult to explicitly identify such a constant.
For monomial ideals, such a P is explicitly calculated in [SmtSwn, Theorem 3.1]
and improved upon in [HoaTrn, Corollary 3.2].

We show that with S and N as above, the regularity of Sym,, (N) — and related
modules — is bounded above by a linear function of n with leading coefficient at
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most the maximal degree of a minimal generator of V. For a graded ideal I of S, we
get the sharper result that reg(I™) is actually given by a linear function of n for all
sufficiently large n. The leading coefficient of this function is identified as a certain
invariant p(I) of I. This verifies Chandler’s conjecture in the case reg(l) > p(I)
and for all n sufficiently large.

One of the main ingredients of the proof is an analysis of a bigrading (= N?
grading) on the Rees ring, S[It], of a graded ideal I C S. This is defined by
decreeing an element of S[It] to be homogeneous of bidegree (p, n) if it is of the form
ft™ where f is a homogeneous element of degree p in S. For a recent application
of this bigrading, see [CncHrzTrnVI]].

Suppose that I is generated minimally by homogeneous elements f1,--- , fx in S
of degrees p1, - - - , pj respectively. Let R = k[Xy, -+, X4, 11, -, T)] with bigrading
defined by deg(X;) = (1,0) and deg(T;) = (pj,1). The natural map R — S[It]
defined by X; + x; and T — f;t is then a surjective homomorphism of bigraded
rings. In particular, S[It] is a cyclic bigraded R-module.

For a bigraded R-module M = @p,nGN My, define M™ to be the graded
S-module GBPGN My n) where z; acts as X; with its obvious grading. Note that

S[It]™ = I". The assignment M +— M) is an exact functor. For a,b € N,
define the twisted module M (—a, —b) by M (—a, —=b)(p,n) = M(p—a,n—p)- The crucial
observation used in the proof is that
R(—a,—b)™ = R("=Y(_g) = @ S(—lip1 — - — lkpr — a)
lit-+le=n—0b

as graded S-modules.

Theorem 1. Let k be a field and S = klx1, -+ ,2q] graded as usual. Let R =
kX, -, Xa, T, -, Ti] with bigrading defined by deg(X;) = (1,0) and deg(T;) =
(pj, 1) for some p; € N. For q finitely generated bigraded R-module M, there exists
a constant Q so that reg(M™) < Pn+Q for alln > 1 where P = max{py,--- ,pr}.

Proof. By a bigraded version of Hilbert’s syzygy theorem, the R-module M has a
bigraded free resolution of the form

0O—=F,—- —F—=F—-M-=—0
where F; = @?:1 R(—aij, —bij).

Applying the functor ( - )™ to this resolution yields a graded free S-resolution
of M from which an upper bound on its regularity can be read off. Since

ti
Fi a5 D S(—lip1 — -+ — lepr — aiz),

J=1 114 +lp=n—by;
the maximal twist in F; is max;{P(n — b;;) + a;;} where P = max{pi,--- ,pr}
Hence reg(M(")) S Pn + Q with Q = maxl-_’j{aij — Pblj — Z} |

As a matter of notation, for a graded S-module N, by 6(/N) we will denote the
maximal degree of a minimal generator of N. Equivalently, (N) = reg(N/mN).
For the definition and properties of integral closures of modules, see [Res].

Corollary 2. Let S = k[z1,---,24] and N be a finitely generated graded S-module
with O(N) = P. Let F,,(N) denote any one of:

(1) Sym,,(N) — the nth symmetric power of N.
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(2) S, (N) — the nth symmetric power of N modulo S-torsion.
(3) (Sn(N)) — the integral closure of the module S,,(N).

Then, there exists @ so that reg(F,(N)) < Pn+ Q for all n € N.

Proof. Let N be generated by minimal generators in degrees p; < --- < pr = P and
let R = k[Xy,---,Xg4,T1,---,T] bigraded as before. Then, M = @, .y Fn(NV) is
naturally a finitely generated, bigraded R-module with M (") = F,(N). Now appeal
to Theorem 1. O

Recall that an ideal J C I is said to be a reduction of I if for some n € N we
have that I"™ = JI"~1. We will denote by p(I) the minimum of 6(.J) over all graded
reductions J of I. Clearly, reg(I) > 6(I) > p(I).

Corollary 3. Let I be a graded ideal of S = k[z1, - ,x4] and let P = p(I). Then
there exists a constant Q so that reg(I™) < Pn+ Q for alln € N.

Proof. Let J be a graded reduction of T with 6(J) = P. As above, map a bigraded
polynomial ring R onto S[Jt]. Since J is a reduction of I, S[It] is a finitely gener-
ated bigraded S[Jt]-module and hence also a finitely generated bigraded R-module.
Apply Theorem 1 to this module. O

In order to improve the inequality of the corollary to an asymptotic equality, we
first linearly bound reg(I™) below by simply bounding 6(1™).

Proposition 4. Let I be a graded ideal of S = k[x1, - ,xq4] and let P = p(I).
Then 0(I™) > Pn for all n € N.

Proof. Let p € N be largest so that there exists f € I of degree p with f* ¢ mI™
for all n € N. Hence I"™ has a minimal generator in degree pn for every n and so
O(I™) > pn for all n € N. It suffices to show that p > P or equivalently that there
exists a graded reduction J of I with 6(.J) < p.

Choose a minimal generating set f1,---, fi of I of degrees p; < --- < pj respec-
tively so that f;' ¢ m[™ for all n and p; > p; = p for i > j. Set J = (f1,---, f;)
and K = (fj41,---, fx). Clearly J is a graded ideal with 6(J) = p and we claim
that J is a reduction of I. This will complete the proof.

From the definition of p it follows easily that, for some n € N, K™ C m[™. Then
I"=((J+K)"=JJ+ K" !+ K"CJI"!+mI". By Nakayama’s lemma, it
follows that J is a reduction of I. O

Theorem 5. Let I be a graded ideal of S = k[x1,--- ,x4] and let P = p(I). Then
there exists a constant M € N so that, for all n € N sufficiently large, reg(I™) =
Pn+ M.

Proof. By Proposition 4, reg(I™) = Pn+ @, for non-negative integers @Q,,. We will
show that the sequence @, is eventually constant.

Choose a graded reduction J = (f1,---, fr) of I where f; is homogeneous of
degree p; and 6(J) = P. Let R be the bigraded ring k[Xy, -, X4, T1,- -, Tk]
mapping onto S[Jt] as before. Consider the Koszul complex of the bigraded R-

module S[It] with respect to Ty,--- ,Tk. All homology modules of this complex
are annihilated by a power of (T1,---,Tk) and hence, for all sufficiently large n,
applying the functor ( - )(™) yields an exact complex of graded S-modules:

0= 1" Fpr—pr—=pp) = = " p) @I (—pp) = I" = 0.
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This complex may be used to construct a resolution of I™ given resolutions of
=1 ... " F and it follows from this construction that, for all n sufficiently large,
reg(I™) < max{reg(I"~1)+max;{p;}, reg(I"~2)+max;; {pi+p;} -1, - - ,reg(I" )
+p1+ -+ pr — (k—1)}. Since P = max;{p;},2P > max;<;{p; + p;} etc., this
implies that Q, < max{Qn_1,Qn_2—1,--+ ,Qn_r — (k—1)}.

For n > k, define M,, = max{Qn_1, -+, @n—k}. Then for all sufficiently large n,
the sequence M, is a non-increasing sequence of non-negative integers and therefore
eventually constant with value, say, M. The sequence @Q,, is bounded above for all
large n by M. For sufficiently large n, if some @,, < M, it follows that all successive
Q@’s are also less than M. But then, M,, would also be less than M for all large
n. The contradiction shows that the sequence @Q,, is also eventually constant with
value M. O

Remarks. (1) The theorem should be compared with [BrtEinLzr, Proposition 1]
and its refinements in [Brt]. Explicit determination of a @ as in Corollary 3 seems
to involve fairly subtle techniques. On the other hand, it may be possible to find
the M of Theorem 5 in the spirit of the methods of this paper.

(2) Following [SnbGot], say that a graded ideal I has a linear resolution if its
regularity is equal to the degree of each of its minimal generators. In an earlier ver-
sion of this paper I had the following proof that Chandler’s conjecture is equivalent
to the statement: If I has a linear resolution, so do all powers of I.

Proof. Clearly, Chandler’s conjecture implies that statement. Conversely suppose
that powers of ideals with linear resolutions also have linear resolutions. Let I be
an arbitrary graded ideal of S with reg(I) = r. By [SnbGot, Proposition 1.1], the
graded ideal I>, ( =INm" ) has a linear resolution. Hence, so does (I>,)" for all
n € N. Since r > 6(I), (I>,)" = I" N m"™. By [SnbGot, Proposition 1.1] again,
reg(I™) < rn = n.reg(I). |

Subsequently, I was made aware of an example, attributed to Terai in [Cnc], of a
monomial ideal with linear resolution whose square does not have a linear resolution
in characteristic different from 2. Thus, Chandler’s conjecture is false. A recent
preprint of Bernd Sturmfels [Str] gives a characteristic free such example.

(3) The main result of this paper has been independently obtained in [CtkHrzTrn].
This paper also studies the regularity of the saturations of powers of an ideal.

(4) The referee has suggested that the bound

reg(I") < max{reg(I" ') + max{p;}, - ,reg(I" %) + p1 + - +pr — (k — 1)},

in the proof of Theorem 5 follows easily by inductively applying the lemma: If
0 — A — B — C — 0is an exact sequence, then reg(C) < max{reg(B),reg(A)—1}.
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