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PARAMITA DAS AND VIJAY KODIYALAM

(Communicated by David R. Larson)

Abstract. We give a very simple ‘planar algebra’ proof of the part of the
Ocneanu-Szymański theorem which asserts that for a finite index, depth two,
irreducible II1-subfactor N ⊂ M , the relative commutants N ′ ∩M1 and M ′ ∩
M2 admit mutually dual Kac algebra structures. In the hyperfinite case, the
same techniques also prove the other part, which asserts that N ′ ∩M1 acts on

M with invariants N .

The Ocneanu-Szymański theorem [Cnn, Szy] is a basic result that has inspired
interesting generalisations of Hopf and Kac algebras [BhmNllSzl, NksVnr]. Given
the plethora of algebraic structures inherent in the planar algebras of [Jns], it is
natural to expect relationships between the planar algebra and the Kac algebra
structures. These are what we elucidate in this paper for the case of an irreducible,
depth two subfactor. The reducible case is treated in [Das].

1. Planar algebras

We begin with a brief summary of planar algebras. For details, the reader is
referred to [Jns] or to [KdyLndSnd]. The basic structure that underlies planar
algebras is an action by the ‘coloured operad of planar tangles’, which concept we
will now explain. Consider the set Col = {0+, 0−, 1, 2, · · · }, elements of which we
call colours. We will not define a tangle here, but several examples are shown in
Figure 1. We point out some of their features.

1.1. Tangles. Each tangle has an external box, denoted D0, and some (possibly
0) ordered internal boxes denoted D1, D2, · · · . Each box has an even number of
points marked on its boundary (again possibly 0)—a box with 2k points on its
boundary is called a k-box.

If a box has at least one point marked on its boundary, one of them is distin-
guished and marked with a ‘∗’. There is also given a collection of disjoint curves,
each of which is either closed or joins a marked point on one of the boxes to another
such point. The whole picture is to be planar, and each marked point on a box
must be the end-point of one of the curves. Finally, there is given a black-and-white
shading of the regions, such that moving away from (resp. towards) the ∗ on one
of the internal boxes (resp. the external box) along the curve of which it is the
end-point, a black region is to the right. A 0-box is said to be a 0+-box if the
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Figure 1. Some useful tangles

region touching its boundary is white and a 0−-box otherwise. A tangle is said to
be a k-tangle if its external box is of colour k. As a matter of notation, tangles will
be given names, including subscripts and a superscript. The subscripts indicate
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the colours of the internal boxes and the superscript indicates the colour of the
tangle. Given the superscript, the entire shading scheme is determined and will not
be indicated. We will not distinguish between tangles that can be obtained from
each other by a planar isotopy preserving the ∗’s, the shading and the ordering of
the internal boxes.

1.2. Operad of planar tangles. The basic operation that one can perform on
tangles is substitution of one into a box of another. If T is a tangle that has some
internal boxes Di1 , · · · , Dij

of colours ki1 , · · · , kij
and if S1, · · · , Sj are arbitrary

tangles of colours ki1 , · · · , kij
, then we may substitute St into the box Dit

of T
for each t, such that the ‘∗’s match’, to get a new tangle that will be denoted
T ◦(Di1 ,··· ,Dij

) (S1, · · · , Sj). If T has a single internal box, the subscript to ◦ will be
omitted and indeed, the box D1 itself will not be named, as is clear from Figure 1.
The collection of tangles along with the substitution operation is called the coloured
operad of planar tangles.

1.3. Planar algebras. A planar algebra P is an algebra over the coloured operad
of planar tangles. By this we mean the following: P is a collection {Pk} of vector
spaces for k ∈ Col and maps ZT : Pk1 ⊗ Pk2 ⊗ · · · ⊗ Pkb

→ Pk0 for each k0-
tangle T with internal boxes of colours k1, k2, · · · , kb. The collection of maps is
to be ‘compatible with substitution of tangles and renumbering of internal boxes’
in an obvious manner. Further, planar algebras are required to be non-degenerate
in the sense that for each k ∈ Col, the map ZIk

k
is the identity map of Pk. A

pleasant verification then shows that each Pk has the structure of an associative,
unital algebra, where the multiplication is given by ZMk

k,k
and the unit by Z1k(1),

which we will denote by �k. The tangles Ik
k , Mk

k,k and 1k are the straightforward
generalisations to k-tangles of the tangles I2

2 , M2
2,2 and 12 that appear in Figure 1.

1.4. Subfactor planar algebras. Among planar algebras, the ones that we will
be interested in are the subfactor planar algebras. These are finite dimensional and
connected in the sense that each Pk is a finite-dimensional vector space and P0±

are one dimensional. They have a positive modulus δ, meaning that closed loops
in a tangle T contribute a multiplicative factor of δ in ZT . They are spherical in
that for a 0-tangle T , the function ZT is not just planar isotopy invariant but also
an isotopy invariant of the tangle regarded as embedded on the surface of the two
sphere. Further, each Pk is a C∗-algebra in such a way that for a k0-tangle T with
internal boxes of colours k1, k2, · · · , kb and xi ∈ Pki

,

ZT (x1 ⊗ · · · ⊗ xb)∗ = ZT∗(x∗
1 ⊗ · · · ⊗ x∗

b),

where T ∗ is the adjoint of the tangle T (which, by definition, is obtained from T
by reflecting it and moving all reflected ∗’s clockwise by one position). Finally, the
pictorial trace τ : Pk → C = P0+ defined by

τ (x) = δ−kZ
tr

0+
k

(x)

is postulated to be a faithful, positive, normalised trace. Here, tr
0+
k is the tangle

with a single internal k-box generalising tr
0+
2 of Figure 1.

We illustrate the process of adjunction for tangles in an example in Figure 2
for the tangle W . The tangle on the left is W and the dotted line is the line of
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reflection. The tangles on the right are W ∗. Note that it follows that ZW (a⊗b)∗ =
ZW (ZR(b∗) ⊗ ZR(a∗)) in any subfactor planar algebra.
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Figure 2. The adjoint of W

1.5. Jones’ theorem. The fundamental theorem of Jones asserts that given an
extremal II1-subfactor N ⊂ M of finite index δ2 and basic construction tower
N ⊂ M(= M0) ⊂e1 M1 ⊂e2 · · · ⊂ek Mk ⊂ek+1 · · · , there is a subfactor planar
algebra P = PN⊂M , which is unique subject to certain conditions, such that Pk =
N ′ ∩Mk−1 for k ≥ 1, and that conversely all subfactor planar algebras arise in this
manner. We will use the following four consequences:

(i) the pictorial trace on Pk agrees with the restriction to Pk of the canonical
trace on Mk−1,

(ii) for 1 ≤ k ≤ n, Pk,n
def
= ran(ZQ(k)n

n
) is equal to M ′

k−1 ∩ Mn−1, where Q(k)n
n

is the n-tangle in Figure 3, where there are k strands going straight through and k

*

*

· · ·

· · ·

· · ·· · ·

Figure 3. The tangle Q(k)n
n

loops on the internal n-box.
(iii) ZEk+1(1) = δek for k ≥ 1, where Ek+1 is the k + 1-tangle generalising E2

and E3 of Figure 1, and
(iv) Z(E′)n

n
(x) = δEM ′(x) for all x ∈ Pn, where EM ′ is the N ′-trace preserving

conditional expectation of Pn onto M ′ ∩ Mn−1, and (E′)n
n is the tangle Q(1)n

n.
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2. Kac algebra structure on relative commutants

For the rest of this paper, we fix an irreducible, depth two subfactor N ⊂ M and
let P = PN⊂M so that P0± = C and Pk = N ′ ∩ Mk−1 for k ≥ 1. In particular, by
irreducibility, P1 = C. We will show, in this section, that the relative commutants
N ′∩M1 and M ′∩M2 are endowed with the structure of a pair of dual Kac algebras.

2.1. Hopf and Kac algebras. We restrict ourselves to finite-dimensional alge-
bras. Recall that a finite-dimensional complex vector space H equipped with maps
µ : H ⊗ H → H, η : C → H, ∆ : H → H ⊗ H, ε : H → C and S : H → H is said
to be a Hopf algebra if

(i) (H, µ, η) is an associative unital algebra,
(ii) (H, ∆, ε) is a coassociative, counital coalgebra,
(iii) the bialgebra conditions hold, i.e., ∆ and ε are unital algebra maps and
(iv) the antipode conditions hold, i.e., S (is the unique map that) satisfies µ ◦

(S ⊗ idH) ◦ ∆ = η ◦ ε = µ ◦ (idH ⊗ S) ◦ ∆.
The dual vector space H∗ admits a Hopf algebra structure for the dual maps
∆∗, ε∗, µ∗, η∗ and S∗.

A Hopf algebra H is said to be a Kac algebra if it is, in addition to all the
above, a C∗-algebra with ∆ being a ∗-homomorphism. The dual vector space then
acquires a Kac algebra structure for the ∗-structure defined by f∗(a) = f(Sa∗).

We will find it convenient to adopt (with some minor changes) Sweedler’s no-
tation for comultiplication and its iterates. In this notation it is usual to denote
∆(a) by

∑
(a) a(1) ⊗a(2). We will omit the parentheses from the subscripts and the

summation symbol and simply denote ∆(a) by a1 ⊗ a2.

2.2. Definition of S, ∆ and ε. Let S : P2 → P2 be ZR. The tangle equations
R ◦ R = I2

2 and R∗ = R imply that S is involutive (in particular, surjective) and
commutes with ∗. The depth assumption implies that an arbitrary element of P3

can be written as a linear combination of those of the form ae2b for a, b ∈ P2, and
therefore also as a linear combination of (Sa)e2b = δ−1ZW (a ⊗ b), the equality
following from (iii) above. This shows that ZW : P2 ⊗ P2 → P3 is surjective.
Consideration of the graph invariants of N ⊂ M in conjunction with the depth
and irreducibility assumptions shows that the index δ2 is an integer (which we
denote n) and that the dimension of Pk is nk−1. Hence ZW is an isomorphism.
The equations of Figure 4 hold for each a ∈ P2 since P1 is C and so an arbitrary
element is a scalar multiple of its identity �1, where the scalar is just its trace. The
last equality appeals, in addition, to the sphericality of P .

For a ∈ P2, define ∆(a) ∈ P2 ⊗ P2 and ε(a) ∈ C = P0+ by the equations

∆(a) = Z−1
W ◦ ZF (a), ε(a) = δ−1ZL(a).

Figure 5 is a pictorial depiction of these definitions.
We now show that P2 endowed with the maps ∆, ε and S is a Kac algebra with

dual Kac algebra P1,3.

2.3. ∆ and ε are unital algebra maps. The multiplicativity of ∆ follows from
Figure 6 which shows that ZF (ab) = ZW (a1b1 ⊗ a2b2).

That ∆ is unital is a consequence of the obvious tangle equation F ◦ 12 =
W ◦(D1,D2) (1

2, 12). Multiplicativity of ε follows from its definition and use of Figure
4 while ε(�2) = 1 follows from the fact that the planar algebra P has modulus δ.
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Figure 5. Pictorial definitions of ∆ and ε

2.4. Coassociativity of ∆ and counitality of ε. We prove these by showing
that with respect to a non-degenerate pairing between P2 and P1,3, ∆ and ε are
dual, respectively, to the multiplication and unit of P1,3. The tangle B gives a map
ZB : P2⊗P3 → C. Since ZF is known—and easily verified—to give an isomorphism
from P2 onto P1,3 and ZB(a ⊗ ZF (b)) = δ2τ (ab), the non-degeneracy of τ implies
that the pairing 〈 · | · 〉 : P2⊗P1,3 → C defined by 〈a|f〉 = δ−1ZB(a⊗f) for a ∈ P2

and f ∈ P1,3 is a non-degenerate pairing satisfying 〈a|ZF (b)〉 = δτ (ab).
Verifying that P2 and P1,3 are a dual pair of bialgebras amounts to checking that

〈a1|f〉〈a2|g〉 = 〈a|fg〉 and
ε(a) = 〈a|�3〉,

for all a ∈ P2 and f, g ∈ P1,3. We set f = ZF (x), g = ZF (y) for x, y ∈ P2. Observe
that ZF (x)ZF (y) = Z(F◦C)(x⊗y) and therefore Figure 7 verifies the first equation.
The second equation holds since B ◦D2 13 = L and by definition of ε.

2.5. The antipode condition. To see that they are Hopf algebras, it suffices
to check that idP2 has a one-sided convolution inverse, for then the finite dimen-
sionality implies that it is an antipode for P2. The proof in Figure 8 shows that
S(a1)a2 = ε(a)�2 for a ∈ P2. Note the second equality follows from the pictorial
definition of ∆, while the third is a consequence of the pictorial definition of ε and
Figure 4. Hence P2 and P1,3 are a dual pair of Hopf algebras. In particular, S is
an anti-algebra and anti-coalgebra map.
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2.6. ∆ is a ∗-map. To see that ∆ commutes with ∗, use the definition of the
adjoint tangle to take ∗ of both sides of ZW (a1 ⊗ a2) = ZF (a). This gives

ZW (S((a2)∗) ⊗ S((a1)∗)) = ZF (S(a∗)).
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Now use the commutativity of S and ∗ in all three places, replace Sa by a, and use
that S is an anti-coalgebra map to read off that a∗

1 ⊗ a∗
2 = (a∗)1 ⊗ (a∗)2.

2.7. Kac algebra duality. Finally, to see that 〈a|f∗〉 = 〈Sa∗|f〉, suppose that
f = ZF (b) for b ∈ P2. It is easy to see that f∗ = ZF (Sb∗). Then 〈a|f∗〉 = δτ (aSb∗),
while 〈Sa∗|f〉 = δτ (Sa∗b). These are conjugates of each other since τ is positive,
τ ◦S = τ by sphericality of P , and S is a ∗-preserving anti-algebra involution. This
establishes duality as Kac algebras.

3. Action on M

We will now verify that—in the hyperfinite case—the Kac algebra P2 = N ′∩M1

‘acts on the factor M with invariants N ’.

3.1. Definition of an anti-action. Begin by defining, for a ∈ P2, a map α
(n)
a :

P1,n → P1,n pictorially by the equation in Figure 9. Note that, by definition, the
argument of α

(n)
a is an arbitrary element of P1,n. It should be clear that the α

(n)
a

are compatible with the inclusions of P1,n into P1,n+1 and thus patch up to define
a map, which we will denote αa, from

⋃
n P1,n to itself.

*

*

*
*

*

a

a

α(n)
a

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

==

Figure 9. Definition of the action

3.2. Invariants of the anti-action. Easy pictorial proofs show that α1 = id,
αab = αa◦αb and that αa(�k) = ε(a).�k for all a, b ∈ P2. The two other verifications
needed to see that a �→ αa defines an anti-action of P2 on

⋃
n P1,n are that αa(xy) =

αa2(x)αa1(y)—recall the notation introduced in §2.1—and that αa(x)∗ = αSa∗(x∗).
The former follows from Figure 10 below, while the latter is an easy consequence
of the definition of the adjoint tangle (and, of course, the fact that P is a subfactor
planar algebra).

Observe that for this anti-action of P2 on P1,n, the ‘invariants’ defined by {x ∈
P1,n : αa(x) = ε(a).x for all a ∈ P2} are exactly the elements of P2,n. That elements
of P2,n are invariant follows from the definition of the action and Figure 4. For the
other inclusion, observe that αe1(ZQ(1)n

n
(y)) = ZQ(2)n

n
(y) and therefore for x ∈ P1,n,

even αe1(x) = x implies that x ∈ P2,n.

3.3. Conclusion of the proof. Using Jones’ theorem to identify N ′ ∩Mn−1 with
P1,n and M ′∩Mn−1 with P2,n, we have thus defined an anti-action x �→ αa(x) of P2

on
⋃

n N ′∩Mn−1 with invariants
⋃

n M ′∩Mn−1. An appeal to consequence (iv) of
Jones’ theorem and the first equality in Figure 9 shows that αa(x) = δ2EM ′(axe1)
and that therefore αa is continuous for the weak topology on N ′. This implies that
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Figure 10. Verification of αa(xy) = αa2(x)αa1(y)

αa admits a unique weakly continuous extension to the weak closure M ′ ∩ M∞
which is still an anti-action and has invariants M ′

1 ∩ M∞. Here M∞ is the weak
closure of ∪ Mn in its natural representation on the Hilbert space obtained by the
GNS construction with respect to its unique trace. In the hyperfinite case, the
fundamental result of Popa (see Theorem 5.5.1 of [Ppa]) shows that the subfactor
M ′

1 ∩M∞ ⊂ M ′ ∩M∞ is anti-isomorphic to N ⊂ M and thus the anti-action of P2

gets translated to an action on M with invariants N .
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