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A very useful approach in tackling scientific prob-
lems is to ask what the answer could possibly be,
under the constraints of the given problem. In
the first part of the series, this approach is il-
lustrated with some examples from elementary
vector analysis.

Scientific problems are very often first solved by a com-
bination of analogy, educated guesswork and elimination
— in short, ‘insight’. The refinements that come later do
not make this earlier process less important. Rather,
they generally serve to highlight its value.

There is no graded set of lessons by which one progres-
sively gains insight. However, a profitable line of ap-
proach is to ask, at each stage, what the answer to a
problem could possibly be, subject to the conditions in-
volved. Techniques such as dimensional analysis, scaling
arguments and order-of-magnitude estimates, as well as
checks based on limiting values or limiting cases are part
of the armoury in this mode of attack. In this set of
three articles, I shall use a series of examples mainly in
elementary vector analysis in an attempt to provide a
flavour of this approach.

An Example from Algebra

To set the stage, let us begin with an example in ele-
mentary algebra. Consider the determinant

1 1 1
A(wy,m9,23) = | T1 Ty T3 (1)
Towy
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It is straightforward, of course, to find A explicitly by
expanding the determinant. But the point I wish to
make here is that A can be evaluated almost by inspec-
tion, if we note the following facts:

e Multiplying each of x1, x2 and x3 by some number
A multiplies the value of A by A3. Thus A is a
homogeneous function of degree 3.

e A vanishes if any two the z’s are equal. Therefore,
regarded as a function of z1, A is quadaratic with
factors (z; — x2) and (x; — x3); and similarly for
Ty and xs.

e A changes sign if any two of the z's are inter-
changed.

Combining these points, we conclude that A must be
given by

Az1, 22, 23) = Clar — 22) (22 — 23) (23 — 21),  (2)

where C' is some numerical constant.

e To find the constant C, we have only to look at a
simple case, e.g., 1 = 0,29 = 1,23 = 2. This gives
C = 1. (Alternatively, match the term +z2x2 ob-
tained by multiplying together all the diagonal el-
ements of the determinant with the corresponding
term +Czqoz3 on the right in equation (2)). Fi-
nally, therefore, we have

A(l‘l,l'g,l'g) = (1'2 — 1'1)(1'3 — 1'1)(1'3 — 1'2). (3)

The factors have been written in such a way that select-
ing first term in each bracket yields the product of the
diagonal elements of the determinant with the correct
Sigm.
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What is important is that our chain of reasoning permits
us to gemeralize this result to the case of the (n x n)
determinant (called the Vandermonde determinant)

1 1 1
N e e B Y
l.gn—l) l.gn—l) 'T,Eln_l)

We can now see that A must simply be a product of
the n(n — 1)/2 distinct factors (z; — xj) that can be
formed from the variables x1,...,x,. The diagonal el-
ement +zox3xs ... 2" indicates that the sign of each
term in A is taken care of if we always maintain j > k

in each factor (z; — xy). Therefore we have the general

result
Azy,...,zp)= ][] (25— k) (5)
1<k<j<n
without going through a tedious calculation. This is
the spirit in which we shall approach the problems that
follow.

Some Vector Identities

Let us now go on to vector analysis. As the first exam-
ple, we consider the derviation of the identity

ax(bxc)=(a-c)b—(a-b)c (6)

where a, b and c are three arbitrary vectors (in the
usual three dimensional space, say). We would like to
avoid the ‘brute force’ method of writing out compo-
nents, etc. in some particular coordinate system. We
therefore proceed as follows. Let a x (b x ¢) = d.

e If a, b and c are three general non-planar vectors
in three-dimensional space, any arbitrary vector
can be uniquely written as a linear combination of
these three vectors. (They serve to define a set of
‘oblique’ axes). But d cannot have any component
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along a, because, as is easily seen, b x c is per-
pendicular to b, ¢ and d but not to a. Therefore,
in general, d must be expressible as

d = b + ¢ (7)

e where 3 and ~ are scalars. Note that this argu-
ment is valid even in the case of oblique axes, i.e.
b and c are not required to be perpendicular to a.

e d is of first order in each of the vectors a, b and
c: that is, multiplying any one of them by a con-
stant multiplies the answer by the same constant;
further, d vanishes if any of these three vectors
is zero. Therefore § must be proportional to (a-c
and vy to (a - b), as these are the only first-order
scalars that can be formed from (a, c) and (a, b)
respectively. Hence

d=\a-c)b+pua- b)), (8)

where A and g are absolute constants — dimen-
sionless pure numbers — independent of a, b and
c.

e But d changes sign if b and c are interchanged,

because ¢ X b = — b x c. Therefore

—d = \(a-b)c+ pu(a-c)b. (9)
Comparison with equation (8) gives u = —A, so
that

d = A(a-b)c—(a-c)b]. (10)

e Having nearly solved the problem, we may now
determine A by looking at an appropriate simple
special case because equation (10) is valid for all
a, b, c. Thus, getting a =i, b=i, c=j, we get d =
—j by direct evaluation of a x (b x c), while the
right-hand side of equation (10) gives —\j. Hence
A = 1. We thus obtain the general formula quotes
in equation (6).
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General
considerations of
linearity, symmetry
(or antisymmetry),
dimensionality,
homogeneity, etc.
practically determine
the final answer in
such problems.

The arguments used above can be repeated to tackle
numerous other cases. Let us consider, for instance, the
scalar product of (a x b) and (¢ x d), where a, b, ¢, d
are four arbitrary vectors. We again observe that

e the expression is linear (of first order) in each of
the vectors, and

e the presence of (a x b) and (¢ x d) does not allow
any contribution proportional to (a - b) and (c -
d). Hence the answer must be of the form

(axb)-(cxd) = A(a-c)(b-d)+pu(a-d)(b-c) (11)
where A and p are pure numbers.

e As before, since the answer changes sign if a and
b are interchanged, we get A = —pu.

e Finally, the overall constant factor is fixed by look-
ing at a special case, e. g, a=c=i,b=d =.
This gives A = 1. We thus obtain the familiar
formula

(axb)-(cxd) =(a-c)(b-d)—(a-d)(b-c). (12)

The formulae (6) and (12) are, of course, well known,
and several different proofs of their validity can be given.
My aim has been to bring out the fact that general con-
siderations of linearity, symmetry (or antisymmetry),
dimensionality, homogeneity, etc. practically determine
the final answer in such problems. This is brought home
even more convincingly in the example I came across
sometime ago in an entrance test for admission to a re-
search institute.

Evaluation of Some Integrals

We will first evaluate the integral

I, = /(er -a)(e, - b)(e, - c)(e, - d)de, (13)
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where the unit radial vector e, varies over the surface of
a sphere of unit radius centred at the origin. Here a, b,
¢, d are four arbitrary constant vectors, which is why I
have used the notation I,. (Such integrals occur in sev-
eral contexts in physical calculations — for example, in
the theory of collisions of particles). A brute force ap-
proach to the evaluation of I, is a formidable task, but
there is a very ‘physical’ way of tackling the problem.
We may try to simplify the task by choosing spherical
polar coordinates with the polar axis along one of the
given vectors, say a. But his does not help much, be-
cause there are three other vectors pointing in arbitrary
directions. Instead, we note that I, (i) is a scalar, (ii) is
of first order in each of the four vectors a, b, c, d and
vanishes if any one of them is zero, and (iii) is totally
symmetric under the interchange of any of these vectors
among themselves. Therefore I, must be of the form

Iy =Xa-b)(c-d)+(a-c)(b-d)+ (a-d)(b-c), (14)

where )\ is a pure number. The plus signs and the overall
constant A for each term follow from (iii) above. (To be
precise — and this will be relevant further on — we have
also used the fact that (a - b) (c - d) = (c- d) (a - b),
as well as a - b=Db- a.) Likewise, combinations such as
(a x b) - (cx d) are not allowed by this symmetry, (iv)
The constant A is now determined by going over to the
special case a= b=c= d=k (the unit vector along the
polar or z-axis). In that case, since e, - k = cosf, Iy
reduces by direct evaluation to

1 21 47'('
I, = / d(cosf) dipcos’t) = — (15)
-1 0 b
on the one hand, while equation (14) gives Iy = 3\ on

the other. Hence A\ = 47/15, completing the evaluation
of I4.

Generalization is again tempting and possible! We see
at once that all the odd numbered integrals Iy, I5, I5, . ..
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must vanish identically, because there is no way that we
can form a scalar from an odd number of vectors a, b, c,
... that satisfies both (ii) and (iii) listed above. What
about the corresponding general integral of even order,

L, = /dQ f[l(e,. -a;) (16)

involving the 2n arbitrary vectors a;, as, ..., as, 7 The
arguments given earlier now yield

I2n =A Z(ah ' aiz)(ai3 ' ai4) o (ai2n71 ' aizn)v (17)

{ir}
where A is a constant, yet to be determined, and (i1, i2,
..., l2,) is a permutation of (1,2,...,2n). An interesting

little bit of combinatorics enters here. The summation
in equation (17) is over all the possible permutations
subject to the conditions that (i) (a; - a;) and (a; - a;)
are not counted as two different combinations, and (ii)
all the n permutations of each set of n scalar products
(i, - a;,) -+ (2, , - &, )are counted only once. The
number of distinct terms in the summation in 17) is
therefore (2n!)/(2"n!). The special case of a; = ... =
as,=k now gives

Lon =2 / " d(cosh)cos?) — —" (18)
n — &7 COSU )CcOs = s
2 1 2n+1

while the right-hand side of equation (17) reduces to
A(2n)!/2"n!). The constant A in equation (17) is there-

fore given by
n!

(2n+ 1)1
This completes the evaluation of the general integral I5,.

A= 22 (19)

A further generalization of these results that suggests
itself (and which may indeed occur in actual calcula-
tions) is the evaluation of such integrals in an arbitrary
number d of dimensions. In other words, what is

Ig= /dQ(er cay) ... (e ay), (20)
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where e, varies over the surface of a unit sphere in d-
dimensional (Euclidean) space? I leave the further ex-
ploration of this question to the reader.

Concluding Remarks

In the next part of the series we will see how, tak-
ing off from the simple vector identity in equation (6),
we can understand concepts such as reciprocal bases,
dual spaces, and bra and ket vectors. The concepts are
extremely useful in many branches of physics includ-
ing, among others, quantum mechanics and solid state
physics.

I am indebted to S Seshadri for his invaluable assistance
in the preparation of this series of articles.
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