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ABSTRACT: The MiniBooNE and LSND experiments are compatible with each other when
two sterile neutrinos are added to the three active ones. In this case there are eight possible
mass orderings. In two of them both sterile neutrinos are heavier than the three active
ones. In the next two scenarios both sterile neutrinos are lighter than the three active ones.
The remaining four scenarios have one sterile neutrino heavier and another lighter than
the three active ones. We analyze all scenarios with respect to their predictions for mass-
related observables. These are the sum of neutrino masses as constrained by cosmological
observations, the kinematic mass parameter as measurable in the KATRIN experiment, and
the effective mass governing neutrinoless double beta decay. It is investigated how these
non-oscillation probes can distinguish between the eight scenarios. Six of the eight possible
mass orderings predict positive signals in the KATRIN and future neutrinoless double beta
decay experiments. We also remark on scenarios with three sterile neutrinos. In addition
we make some comments on the possibility of using decays of high energy astrophysical
neutrinos to discriminate between the mass orderings in presence of two sterile neutrinos.
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1. Introduction

The long awaited results of the MiniBooNE experiment [[] showed that scenarios in which

one sterile neutrino is added to the three active ones are incompatible with data. Such

schemes were motivated by the results from the LSND experiment [[], which observed

flavor transitions interpreted as #, < ¥, neutrino oscillations. A number of authors B-

[l investigated the implications of such schemes. In particular, it was realized [§ that

so-called 242 scenarios (two pairs of neutrinos close in mass separated by a large gap)



are ruled out and that only 341 scenarios (three mostly active neutrinos separated by a
large gap from the mostly sterile one) are allowed, though only small part of the parameter
space survived. The MiniBooNE results ruled out even this part [fI] by excluding the LSND
parameter space at the 98 % C.L. [II.

Allowing one more sterile neutrino to enter the stage improves the compatibility of
LSND with other experiments [[L0], and in particular renders the MiniBooNE and LSND
experiments compatible [fJ]. Only comparably few models for neutrino schemes with two
extra sterile neutrinos have been constructed [, and the potentially rich phenomenology
of such scenarios is hardly investigated [[L3, [[4].

With two sterile neutrinos added to the usual three, one has eight possible mass order-
ings, which should be compared with the two schemes (normal and inverted ordering) in
case of “only” three active neutrinos. We study in this paper the predictions of the eight
cases for mass-related observables. We investigate the sum of neutrino masses as con-
strained by cosmological observations, the kinematic mass parameter as measurable in the
KATRIN experiment (partly analyzed also in ref. [Ld]), and the effective mass controlling
neutrinoless double beta decay.! We also investigate how and if mass-related observables
can contribute to distinguish the possibilities. The mass patterns in the 342 scheme can

be classified in three main classes:
e two 2+3 scenarios: the two sterile neutrinos are heavier than the three active ones;
e two 3+2 scenarios: the two sterile neutrinos are lighter than the three active ones;

e four 14341 scenarios: one sterile neutrino is heavier than the three active ones which
in turn are heavier than the second sterile neutrino.

The paper is build up as follows: first we summarize the required formalism in section [
before outlining in section J the eight possible mass orderings for scenarios with two sterile
neutrinos. In section [ we study the mass-related observables for the two scenarios which
have the sterile neutrinos heavier than the active ones, while in section ] the two scenarios
in which the sterile neutrinos are lighter than the active neutrinos are analyzed. Section fj
contains the four 14341 scenarios and a short discussion on scenarios with three sterile
neutrinos is delegated to appendix [A]. In appendix [J we discuss another interesting possi-
bility to distinguish between the different scenarios outlined above at neutrino telescopes,
allowing high energy astrophysical neutrinos to decay. Finally, in section [{ we discuss and

summarize our findings.

2. Formalism

2.1 Neutrino mixing

Neutrino mixing is described by the leptonic mixing, or Pontecorvo-Maki-Nakagawa-Sakata

!For related analyzes in different sterile neutrino scenarios, see, e.g., ref. [@}



(PMNS) matrix U:
Uet Uea Uesz Uey Ues
Un U2 Uuz Ups Uys
U=| U U Uz Uy Urs | - (2.1)
Usi1 Usy2 Usy3 Usyq Ugys
Usy1 Usy2 Usys Usya Usys

It links the mass eigenstates vy 2345 having masses mi 2345 with the three active flavor
states v, , r and the two new sterile states v, and v,,. In what follows we denote the
mostly active neutrinos with 17 23. Regardless of their ordering (normal or inverted) we
have

|Ue1 | ~ cos? O, |Ue|® ~sin? g and |Ues|* ~ sin® Ocrooz (2.2)

where 6 is the mixing angle for solar and KamLAND neutrinos and fcpooz the mixing
angle for short baseline reactor neutrinos. We further have the mass-squared differences
governing solar and atmospheric neutrino oscillations. In the following, we will use the
following best-fit and 30 ranges [[Lf]:

sin® 0o = 030008 with Am?2 = (8.01]5) -107° eV?, (2.3)
sin® fcrooz = 0.00700"  with Am3 = (2.6108) - 107 eV . (2.4)

The related typical mass scales are therefore \/Amé ~ (0.009 eV and 4/ Ami ~ (.05 eV,
respectively. In what regards the two additional sterile neutrinos, the analysis in ref.
resulted in the following best-fit values?

Am?2 = 6.49115 eV?  with |Ues| = 0.12, 23

Am2, = 089701 V2 with |Upy| = 0.11 . '
In what follows we will give for our observables explicit numerical values obtained with not
only these best-fit values, but also for another typical illustrative point in the parameter
space:

Am?2 = 190705 eV?  with |Ues| = 0.12, 2.

Am2, = 0.9019% eV?  with [Uw|=0.11 . '
The main feature of this point is of course the smaller overall neutrino mass it implies.
It corresponds approximately to the center of another, isolated region allowed at 90 %
C.L. of figure 6 from ref. [J. The two central points from egs. (B.§) and (.§) are quite
typical for the situation in the presence of two sterile neutrinos and we will make fre-
quent use of them. With the values of the two new mass-squared differences we can
estimate typical neutrino mass scales, which we will encounter frequently in the following:
VAmMZ ~2.55 (1.38) eV, \/AmZ, ~ 0.94 (0.95) eV, \/Am2Z — Am2, ~ 2.37 (1.00) eV, and
VAMZ + Am?2, ~2.72 (1.67) eV.

*We consider only the analysis which uses the MiniBooNE results above reconstructed neutrino energies
of 475 MeV, because results from the lowest energy bin are not well understood []




scheme b)) mg (m)

NH Am3% \/sin2 0o Amé +sin? crooz Am3 sin? 6, \/Amé +sin? cuooz / Am? el

IH |2Am3 AmZ VAm3R \/1 — sin? 20, sin® o /2
QD 3mg mo mo \/1 — sin? 20, sin® as/2

Table 1: Extreme limits of 3-flavor scenarios and the resulting mass-related observables. We have
defined 32 = (3 — (9.

In ref. [§ the allowed ranges of the mixing matrix elements |Ugy| and |Ues| are not
given. However, we will see in our discussions that especially for neutrinoless double beta
decay it is sometimes important to analyze the impact of varying these parameters. In
absence of any information we have varied |Ug4| and |Ugs| by 50% around the best-fit
points in eqs. (B.§) and (2.6). Thus we consider the following ranges for the parameters
|Ueq| and |Ues:

Uus| = 012599 and  |Upy| = 0.117002 . (2.7)
for both the best-fit point and the second illustrative point considered in eq. (B.§).

2.2 Neutrino masses

As neutrino oscillations are sensitive only to mass-squared differences, the neutrino mass
scale is not known, but only limited from above by different experiments and observations.
Typically, the mass scale is inversely proportional to the scale of the mechanism which
is responsible for neutrino mass. Therefore, knowing the mass is a very important step
towards the understanding of neutrino physics.

Mass-related observables are the sum of neutrino masses
S =Y 29
i

which can be inferred from cosmological observations. Typical limits are smaller than
about 1 eV [[7]-R0], but they depend on the used data sets, the number of neutrino species
and how the mass is distributed among the different neutrinos. We will discuss this in

more detail in section f]. One also has the kinematic neutrino mass parameter measurable

mp = /Z \UeiPm? . (2.9)

This quantity is measured when the electron energy interval around the endpoint of the

in B-decay experiments

investigated beta decay is much larger than the m;, otherwise corrections to this formula
are required [1]].



This condition is fulfilled for the values of the neutrino masses we choose.? The current
limit on mg is 2.2eV at 95% C.L. B3], and improvement by one order of magnitude is ex-
pected by the KATRIN experiment [RJ]. Finally, we have the effective mass in neutrinoless
double beta decay:

(m) =

(2.10)

2 2 o
E Uei m; E ’Uei‘ e 'm;
A %

Here a3 45 are the four possible and unknown* Majorana phases (we can choose o = 0).

Applying nuclear matrix element uncertainties on the current 90% C.L. limits on life-
times [24, 5 gives limits on the effective mass in the range of 1 eV, and sizable improvement
is expected also in this field [24].

Let us summarize for the sake of comparison the situation in 3-flavor scenarios (see for
instance [27, PJ]). We have three extreme cases of the mass ordering, the normal hierarchy
(NH, m% ~ Am3 > m} ~ Am2 > m?), the inverted hierarchy (IH, m3 ~ m? ~ Am3 >
m3) and quasi-degenerate neutrinos (QD, m3 ~ m3 ~ m} = m3 > Am3, Am?). Table
shows the results for the mass-related observables. Obviously, mg is unobservably low for
NH and IH, while (m) and X are for NH. It may be possible to probe the inverted hierarchy
regime through future cosmological observations [[L7].

Certain mass orderings to be discussed in the following will have problems with some
of the three observables ¥, mg or (m). Does this mean that they are ruled out? Not nec-
essarily, because cosmological neutrino mass [Rg] (and number [B{]) limits can in principle
be evaded, or relaxed by a factor of a few, by means of unknown neutrino interactions or
other cosmological features. Furthermore, confronting a mass ordering with the limit on
the effective mass makes only sense when neutrinos are Majorana particles, which however
is a very well justified assumption. Only the kinematic parameter mg does not suffer from
any underlying model assumption and provides an unambiguous test. We will leave aside
discussions of the validity of the different limits in particular on . Our aim is simply to
study the predictions for the observables for all eight possible mass orderings, which we
will outline in the next section.

3. Eight possible mass orderings in neutrino scenarios with two sterile
neutrinos

As mentioned in the Introduction, analyzes of the LSND and MiniBooNE, as well as
various other experiments, give a consistent picture only if two additional independent
mass-squared differences Am2, > Am2, are present. We assume here that the difference

3In principle, the analysis of ref. [E] allows sterile neutrino mass values of Am? > 10 eV?, which are
indeed close to the energy interval used by the upcoming KATRIN experiment [@] These values are
however in very strong conflict with all mass-related observables and we therefore omit them. For the
values used we estimate corrections to eq. (@) to be at most of order 10%.

“In fact, the analysis of neutrino scenarios with two sterile neutrinos gives some constraint on a CP
phase [E] (see also ]) Being a “Dirac-phase”, however, it does not appear in (m).
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Figure 1: Allowed 2+3 mass orderings which are defined by having two sterile neutrinos heavier

than the three active neutrinos. (Not to scale).

between the two, Am?2, = Am2 — Am2,, is much larger than Am3, an assumption used
in the 3+2 analyzes in [f] from where we take the values of the additional parameters.
Our convention is the following: we call the masses of the three predominantly active
neutrinos mg, msy and my. The mixing among them is responsible for the solar, atmospheric
and short baseline reactor neutrino oscillation results. If they are normally ordered, then
mg > mo > my with
m3 —mj=Am3 and mj—mi=Am2 . (3.1)

They can also be inversely ordered, in which case mo > mq1 > mg and

mi —m3=Am3 and m3—mi=Am2 . (3.2)
We have to add two predominately sterile neutrino states, whose masses we denote by
my4 and my. They can either be heavier or lighter than the three active neutrinos (in
what follows, we will omit for simplicity the word “predominately” or “mostly” in front
of “sterile neutrinos” and “active neutrinos”). Without loss of generality, we can choose
that mj is either the largest or the smallest mass and associate it always with Am?2,, while
my is always associated with AmZ,. In this case, we do not have to rename the matrix
elements Ugy and Ugs, which quantify the mixing of the two additional neutrinos with the
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Figure 2: Allowed 3+2 mass orderings which are defined by having two sterile neutrinos lighter
than the three active neutrinos. (Not to scale).

electron neutrino. In general, one could choose the labels of the masses such that always
ms > myg > m3g > mg > mq holds. In this case, however, the mixing matrix elements
would be different for each of the possible mass orderings. With our convention, the values

of |Ug| are fixed by eqgs. (B.9) and (2.5), (R.) and do not have to be relabeled.

Let us first discuss the case of both sterile neutrinos being either heavier or lighter than
the three active ones: the largest of the two independent new mass-squared differences,
Amgl, is then always the largest possible mass-squared difference. If the two sterile states
are above the three active ones (“2+3 scenarios”), then Am2, is the mass-squared difference
between the lightest sterile state (which is also the second heaviest state) and the lightest
available state (which is active). If the two sterile states are below the three active ones
(“3+2 scenarios”), then Am2, is the mass-squared difference between the heaviest state
(which is active) and the heaviest sterile state (which is the second lightest state). The
four possible schemes are shown in figures [l and fJ. The names of the schemes are defined
as follows: depending on whether the active neutrinos are normally or inversely ordered,
the scheme has the capital letter “N” or “I” in its name. Depending on whether the two
sterile neutrino masses m4 and ms are lighter or heavier than the active ones, the capital
letters “SS” appear after or in front of this capital letter. For instance, if ms > my4 > mg3 >
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Note that not necessarily Am2 = Am?2, and Am2, = Am2, holds.

meo > my, then we call the scenario SSN, while for mo > m1 > mg > my4 > ms we call it
ISS.

The last possible class of mass orderings is when one sterile neutrino is heavier then
the three active ones, which in turn are heavier than the second sterile neutrino (“143+1
scenarios”). The heaviest neutrino can either be separated by Am2 or Am2, from the
active neutrinos. If it is separated by Am?2, (Am2,) then we call the scenario SNSa or SISa
(SNSb or SISb). The possibilities are shown in figure f|. We note here that the fit of ref. [g],
and also the analyzes of refs. [[[0], [(1]], do strictly speaking not apply to these schemes. The
reason is that in the oscillation probabilities for v, — v, transitions there are not only
terms proportional to sin? Am?2 & and to sin? Am2, &, but also an interference term
proportional to cos(Am? & +0), where ¢ is a CP phase (which does not appear in survival
probabilities). Refs. [J—[[] make the implicit assumption |Am?| = |Am2 | —|AmZ,|, which
is not fulfilled for the 14341 scenarios. In lack of any detailed fit of the data within these
schemes we will assume for simplicity that the mass-squared differences are the same. The
values of the mass-squared differences resulting from fits taking into account the 14341

case will remain of course in the eV range.



Summarizing we end up with eight different schemes.® We can already at the present
stage make some general statements. First of all, the sum of neutrino masses depends
basically only on the new mass-squared differences and typical values will be

S > /Amd 4 /Amd, or ©>3,/Amk or $>3,/Amd,, (3.3)

depending on the details of the mass ordering. In general, all of them are expected to
face serious problems with cosmology, and the smaller the mass-squared differences Am2
and Am?Z, are, the smaller ¥. Another point worth mentioning is that the effective mass
governing neutrinoless double beta decay can be written as

(m) = | {m)® + (m)™| , (3-4)

where <m>3 = cos? O, my + sin? O ma €2 + sin? Ocrooz M3 €48

and (m)*" = |Ues|? my €' + |Ugs|> ms €15 .

Obviously, |(m)?| is an effective mass similar to the one analyzed in the usual three-flavor
situation 27, cf. table . The quantity |(m)*| is the contribution from the two sterile
states. We will encounter in the following all cases: dominance of the sterile contribution,
dominance of the active contribution, and equal-sized contributions, leading potentially to
complete cancellation. The same cases are also present for the kinematic neutrino mass
mg, where however no cancellation is possible as it is given by an incoherent sum.

We will discuss now the three mass-related observables for the eight possible mass
orderings. We give approximate analytic expressions for these observables in the limit of
vanishing smallest mass and sin?fcpooz. We use these expressions to give illustrative
numerical values in each case for the best-fit values of the oscillation parameters (or for
the second illustrative central point from eq. (R.6)). We will also plot the observables as
a function of the smallest neutrino mass for the central points as well as by varying the
parameters in their corresponding allowed ranges from eqs. (B.3), (B-H), (£.6).

4. Sterile neutrinos heavier than active neutrinos: 2 + 3 scenarios

4.1 Scheme SSN

In this scheme, ms > my > mg3 > mgo > mq. The three lowest states account for the solar

and atmospheric neutrino mass-squared differences according to eq. (B.]). We have

Amgl = mg — m% and Am§2 = mi — m% . (4.1)

Schematically, this scheme is shown in figure . We can express the individual masses in
terms of the smallest mass m and the independent mass-squared differences:

mgzy/Am%—l—m%, mgz\/Ami—l—Am%%—m%,
my = \/AmZ +m?, ms = \/Am?2 +m? . (4.2)

5In scenarios with three sterile neutrinos one would have 16 possible mass orderings, see appendix @




The typical masses are therefore mo =~ \/Am% ~ 0.01eV, mg ~ AmQA ~ 0.05eV,
mg =~ /Am2, ~ 0.94 (0.95) eV and ms ~ /Am2 ~ 2.55 (1.38)eV. The three lightest

neutrinos have the same values as in a normal hierarchical 3-flavor framework. The upper
left plot in figure | shows the individual masses as a function of the smallest mass in this
picture. The limit where all five neutrinos are quasi-degenerate comes when the smallest
mass is beyond 1eV.

If this scheme is realized then the sum of neutrino masses which is constrained from
cosmology is given as

»SSN \/Am% + \/Ami + \/Amgl + \/Amgz

~ v/ Am2 +\/Am2, ~ 3.49 (2.32) eV . 4.3
sl s2

Neglecting m; is a good approximation as long as my < 0.1eV. For such values, ¥ lies
roughly between 3.3 and 3.8 (or 1.9 and 2.6) eV, but it can reach unrealistically large
values of 10eV for a smallest mass in the eV range.

The kinematic mass is also mainly given by the sterile neutrino contribution:

m%SN ~ y/sin? 0 AmZ + sin? Ocnooz Am3 + [Uea|? AmZ, + |Ues |2 Am?2

~ \/\Ue4]2 Am2, + |Ues|? Am2 ~ 0.32 (0.20) eV . (4.4)

Both ¥ and mg are shown in figure H, where the solid lines are these quantities at the best-
fit values of eq. (R.H) whereas the bands are obtained by varying the masses and the mixing
angles within their allowed ranges. The KATRIN experiment, having a sensitivity of 0.3 eV,
will find a positive signal if m; & 0.3eV. For smaller values, however, mg can lie below
0.3eV. If mg larger than 0.5eV is found then this scenario is ruled out, unless m; 2 0.2¢€V.
No qualitatively different features are found for the second point from eq. (R.6).

Finally, neutrinoless double beta decay should be triggered by an effective mass given

by

(m>SSN ~ [sin® 6, Am?D + sin® Ocnooy, \/Ami eilas—az2)

+HUea|? \/Am2 €/@1702) 4 |Us|? \/ Am2, efl@57e2)

~ '|Ue4|2 A, + |Ues|? \/ Am2, (@ 729) | ~ (0.025 + 0.048) eV,  (4.5)

where the two sterile neutrinos provide the leading contribution. In case of the second
typical point from eq. (B-§) the two additional neutrinos give a leading contribution between
0.008 and 0.031¢V. The upper left panels of figures [] and [] show the effective mass as a
function of the smallest mass in this scenario. The shaded region inside is drawn for the
best-fit values of mass and mixing parameters and varying the Majorana phases between 0
and 27, while for the outer shaded regions we vary these parameters also in their permissible

ranges. The figures show that neglecting the smallest mass is a good approximation as long

,10,
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Figure 4: Scenarios with three active and two sterile neutrinos: the individual neutrino masses
as a function of the smallest neutrino mass for scenarios SSN, SSI, NSS and SNSa. For the mass-
squared differences related to the sterile neutrinos the best-fit point given in eq. @) is used and
we assumed that Am2, = Am?2, and Am2, = AmZ,. Scenario ISS is indistinguishable from case
NSS and SISa from SNSa. The schemes SNSb and SISb are very similar to NSS.

as m1 S 0.01eV. There is for both central points a cancellation regime (for m; between
0.02 and 0.1 eV) in which the effective mass vanishes or becomes unobservably small. If we
use the ranges around the two central points of the sterile neutrino parameters, then the
two terms can cancel when the conditions |Ues/Ues|? = /Am2 /Am2, and a5 — ay ~ 7
are fulfilled. For the smallest neutrino mass above 0.1eV the effective mass cannot vanish
due to the non-maximal solar neutrino mixing angle. For smaller values of m; the scenario
is ruled out if (m) is found to be larger than 0.1eV.

4.2 Scheme SSI

In this scenario, schematically shown in figure [, it holds ms > my4 > ma > my > ma, i.e.,
the two heavy sterile neutrinos are heavier than the three light neutrinos which enjoy an
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Figure 5: The sum of neutrino masses > and the kinematic neutrino mass mg for scenarios SSN
(top left), SSI (top right), NSS (bottom left) and SNSa (bottom right). The solid lines give the
values of the respective observable at the best-fit point eq. (E)While the shaded regions are obtained
by varying the parameters involved in their corresponding ranges from egs. (2.3) and (2.79). We
assumed that AmZ = Am?2 and Am2, = AmZ,. Scenario ISS is indistinguishable from case NSS,
SISa is indistinguishable from SNSa, and SNSb/SISb are indistinguishable from NSS. For these two
observables SSN and SSI give identical results. Also indicated is the KATRIN sensitivity on mg of
0.3eV.

inverted hierarchy. Consequently, eq. (B.2) holds. In addition, we have
Am2 =mi —m} and AmZ, =mj —m3, (4.6)

and the masses in terms of the smallest mass are

mlzy/AmQA—km%, mgz\/AmQA—kAm%—i—m%,
my = \/Am2Z, +m2, ms = \/AmZ +m3 . (4.7)
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Figure 6: The effective mass (m) for scenarios SSN (top left), SSI (top right), NSS (bottom left)
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Neglecting the smallest mass we find typical values of my ~ m; ~ (/Am% ~ 0.05¢V,

myg =~ /Am?2, ~ 0.94 (0.95) eV and mj ~ \/Am2 ~ 2.55 (1.38) eV. The active neutrinos
behave according to an inverted hierarchy in a 3-generation framework. As a function of
the smallest neutrino mass ms the other masses are shown in figure fl. One finds that %55
is identical to XN in eq. (£3) (Am2 has to be replaced with Am3, which does not make
a notable difference). The kinematic mass is also basically identical to the one in scenario
SSN, which is given in eq. ({4). In the effective mass the situation is different,® because

5There is another non-oscillation probe which can distinguish SSN and SSI, namely the decay of astro-
physical high energy neutrinos, treated in appendix .
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Figure 7: Same as figure E for the second typical sterile parameter point and the corresponding
range from eq. (.4).

the light neutrinos obey an inverted hierarchy and therefore a contribution of the same

order of magnitude as the sterile ones:

sin® 0, \/ Am3 +cos® 0 \/ Am3 "2 +|Ues|* \/ Am2 " +|Ues|* \/ Am2 ‘
(4.8)

The absolute value of the first two terms is (see table [) \/Am3 /1 — sin® 26 sin? ay/2
(between 0.020 and 0.051 V) while for the best-fit values from eq. (R.§) the absolute value
of the last two terms is between 0.025 and 0.048 eV, see eq. ([.5§). Hence, the effective mass
can vanish completely in this scheme even for the best-fit values and a vanishing smallest
neutrino mass. This is borne out by the dark shaded regions in the upper right panels of
figures f| and [f for the best-fit points of eqs. (R.5) and (R.6). The effective mass can be
as large as 0.1eV (or 0.08 eV for the second typical point from eq. (2.6)) in the small m;
($0.1eV) regime. Finding a larger (m) will rule out scenario SSI.

<m>SSI ~
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current limit on (m) of 1eV (left) and a future limit of 0.5eV (right). The 30 ranges from eq. (2.3)
and the ranges around the best-fit point from eq. (@) are used.

We remark here that only in the schemes SSN and SSI the magnitudes of Ugq and Ues
are important for the predictions of mg and (m). However, our statements regarding the
possible exclusion of scenarios SSN and SSI with future measurements is rather insensitive
to the precise values of Ugy and U,s.

5. Sterile neutrinos lighter than active neutrinos: 3 4+ 2 scenarios

5.1 Scheme NSS

In this scheme, ms > mo > m; > myg > ms, ie., the three normally ordered active
neutrinos are heavier than the two sterile neutrinos, see figure P. Apart from eq. (B.1) it

holds that
AmZ =m3 —m? and AmZ, =m3 —m3, (5.1)

and the masses in terms of the smallest mass and the mass-squared differences are

m4:\/Am§1—Am§2+m§, mlz\/Amgl—Ami—Am%—i—mg,

me = \/Amgl — Am3 +m2, ms = \/Am2 +m2 . (5.2)

We therefore have for a negligible smallest mass three quasi-degenerate neutrinos and
another quite massive state. Their values are m; ~ mg ~ m3 ~ /Am2 ~ 2.55 (1.38) eV
and my ~ \/Am?2 — Am2, ~ 2.37 (1.00) eV. As a function of the smallest mass ms, they

are given in figure [§.
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Let us neglect the smallest neutrino mass and insert the best-fit values. In this case,
the sum of masses as constrained by cosmological observations is given by

NS \/Amgl — Am2, + 3\/Am§1 ~10.0 (5.14) eV . (5.3)

The kinematic mass is given by

my ~ \/AmZ) (1 — |Ues|?) ~ 2.55 (1.38) eV . (5.4)

With |Ues|? being very small there is basically no dependence on the mixing parameters
|Uci|? because of the quasi-degenerateness of the three leading neutrinos. Only for ms
reaching eV values one observes deviations from the last two equations in figure f]. The
cosmological observable ¥ is quite large, namely between 9 and 11 (3 and 6) eV. Interest-
ingly, mg ~ \/Am?2, lies always above 1eV, and is even above the current bound of 2.3 eV
for the best-fit point. Hence, this scenario constraints Am?2, to lie below ~ 5.3eV2. In
general, if this scenario is realized, KATRIN will definitely observe a positive signal the
absence of which can rule out this scenario.
Finally, for neutrinoless double beta decay we have (in the limit |Ugy| — 0)

(m)N ~ \/AmZ /1 —sin® 20, sin® /2 ~ (1.02 + 2.55) (0.55 +1.38) eV,  (5.5)

which is dominated by the three active quasi-degenerate neutrinos and cannot vanish due to
the non-maximality of solar neutrino mixing as is reflected in the lower left panel of figure [§.
The effective mass ranges from /Am?2 cos 20 to v/Am?2. In general, the effective mass
is sizable in scenario NSS and already a part of it around the best-fit point is disfavored
by the current upper limit of 1eV. In fact, improving the limit on the effective mass below
0.2 eV rules out this scheme if neutrinos are Majorana particles.

It is possible to set limits on Am?2 and in particular on 6 and the Majorana phase
as demanding (m) to lie within a specific limit. Using the 30 ranges from eq. (R.J) and the
ranges around the best-fit point from eq. (R.H) one can investigate what values are allowed.
The result for ap and sin? 6, can be seen in figure §. We took for (m) the current limit of
1eV and a future limit of 0.5eV. Taking the second central point for the sterile neutrino
parameters gives hardly any constraint for a limit of 1eV, but for (m) < 0.5eV the plot
looks similar to the 1eV plot of the best-fit point.

5.2 Scheme ISS

In this scheme (see figure ) it holds ms > m1 > m3 > my > ms, i.e., the three inversely
ordered active neutrinos are heavier than the two sterile neutrinos. Apart from eq. (B.3)
we have

Amgl = m% — m% and Amé = m% — mi, (5.6)

and the masses in terms of the smallest mass are

m4:\/Am§1—Am§2+m§, mgz\/Amgl—Ami—Am%—i—m%,

my = \/Amgl — AmZ +m2, me = \/Am2 +m2 . (5.7)
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The results are basically identical to scenario NSS. We therefore do not give the expressions.
Distinguishing between scenarios ISS and NSS could for instance be done via matter effects
in oscillation experiments or in supernovae [@]

6. One heavy and one light sterile neutrino: 1 4+ 3 + 1 scenarios

We will discuss now the mass-related observables when the three active neutrinos are
“’sandwiched” between the sterile ones. Recall that the fit from [[J] does not apply in this
case. We note that apart from the mass-squared differences the mixing matrix elements U,y
and Ugs might also be different. However, their values do hardly influence the predictions.
We will insert for the rest of this section the numerical values from egs. (R.5), (.6) for the
sterile neutrino parameters, but will indicate that there might be differences by replacing
in the expressions Am2, — Am2 and Am2, — AmZ,.

6.1 Scheme SNSa

In this scheme, ms > ms3 > mas > m; > my. Apart from eq. (B.1]) we have

Afngl = mg — m% and Afné = m% — mi, (6.1)

see figure [J. We can express the individual masses as

mlzy/Arth%—mi, m2:\/ATh§2+Amé—|—mi,

my = /A2 + Amd + Amd £ m2, my = ARG + A £ md . (6.2)

We therefore have three quasi-degenerate active neutrino masses of order \/Am2, =~
0.94 (0.95) eV and one very heavy mass around \/Am?2 + Am2, ~ 2.71 (1.67) eV. A plot
of the m; as a function of my is given in figure f|. Neglecting the smallest mass is correct
as long as it is below 0.5eV. We can estimate that

YSNSa ~ 3\ /AMZ, + /Am2 + AmZ, ~ 5.55 (4.52) eV . (6.3)

The magnitude of ¥ is quite sizable, and can be between 5 and 6 (4 and 5) eV, if one varies
the mass-squared differences in their allowed ranges.

The sterile masses provide the leading contribution not only in this observable, but
also in the kinematic mass:

mENS o~ /A2, + |Ues|? (Am2) + Amdy) ~ 1.00 (0.97) eV . (6.4)

As in scenarios NSS and ISS, mg ~ \/Am2, is always above the KATRIN sensitivity
of 0.3eV, therefore a signal in this experiment corresponding to at least 1eV should be
observed if this scheme is realized.

Finally, neutrinoless double beta decay should be triggered by an effective mass given

by
cos? 0 \/ A, + sin? 0 /A2, €92 + |Ugs | \/ A2, + Am2, e

~ \/Amgz \/1 — sin? 260, sin? an /2, (6.5)

<m> SNSa ~
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where the third term can be neglected. Hence, <m>SNS&L is dominated by the active neu-

trinos and lies between \/Amé and \/Amé cos 20, which is roughly 0.9 and 0.38 ¢V,
respectively. The effective mass for this scenario is plotted in the lower right panel of fig-
ure f] for the best-fit values as well as by varying all parameters within their allowed range.
The situation for (m) is unfortunately similar to scenarios NSS and ISS, even though here
the overall mass scale is \/AmZ,, while it was \/Am2 in the previous cases. The problem
is of course the allowed range of the mass-squared differences and the unknown Majorana

\/Am2 cos20 > ¢ \/ Am2, (6.6)

is fulfilled, then we can distinguish scenarios NSS/ISS and SNSa/SISa via neutrinoless
double beta decay. In eq. (B.) we have included a factor ¢ > 1, which takes into account

phase. Only if the condition

the nuclear matrix element uncertainty, a necessity when one tries to distinguish different
mass orderings via neutrinoless double beta decay [R§]. For the best-fit values and ¢ =1
indeed eq. (p.6) is fulfilled, but already for the second central point one cannot distinguish
the schemes anymore as can also be seen from the lower panels of figure .

Anyway, if neutrinos are Majorana particles, then we can rule out scenario SNSa if
(m) < 0.1eV. One can generate plots as shown in figure f| in order to obtain constraints

on the parameters 6 and sin? oy from experimental information about (m). This requires

limits which are stronger by a factor v/Am?2, /AmZ, than the limits used to generate figure[§.

6.2 Scheme SISa

In this scheme we have ms > mo > mq > mg > my, i.e., the sterile neutrinos are above
and below three inversely ordered active neutrinos, see figure f. One finds

A% =mi—m} and AmZ =m3 —m3, (6.7)

and can express the individual masses as

ms = /AmZ, +m?, mlz\/Arhé%—Ami—l—mi,

my = /A2 + Amd + Amd £ md, my = /ARG 4 At m . (6.8)

We do not give the expressions for ¥, mg or (m), because the results are indistinguishable
from scenario SNSa. Again, matter effects in neutrino oscillation experiments could be
used to distinguishing the scenarios.

6.3 Scheme SNSb
In this scheme, mg > mg3 > mo > my > ms. Apart from eq. (B.J])) we have
Am2 =m? —m? and AmZ, =m3—m?, (6.9)

see figure . The individual masses are

my = \J A2+ m?, my = \/ AR + Am2 +m2,

ms = \/Arhgl + AmZ + Am% +m2, my = \/Arhgl + AmZ, +m2 . (6.10)
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The mass-related observables are obtained from the formulae for scenario SNSa from sec-
tion p.1] with the exchange Am?2 < Am2,. Hence,

»SNSh ~ 3\/Afn§1 + \/Am§1 + Am2, ~10.36 (5.81) eV .

mSNSb \/Mﬁl + |Ues |2 (A2, + Arny) ~ 2.57 (1.39) eV .

(m) NP~ eos? 6 Am2, + sin? 0,/ A2, €92 4 |Ues|? \/ A2, + Am2, '
~ \/Amgl \/1 — sin? 26 sin? an/2 . (6.11)

All these expression are almost identical to the ones for scenarios NSS and ISS, because
the leading contributions to all observables correspond to a situation with three quasi-

degenerate active neutrinos having a mass \/Arhgl. Therefore mass-related observables

can not distinguish these cases, unless the mass-squared differences Am?2, and Am?2 are
very much different from each other.

6.4 Scheme SISb

In this scheme we have my4 > mo > mq > mg > ms, i.e., the sterile neutrinos are above
and below three inversely ordered active neutrinos, see figure f. One finds

A% =m3 —m? and AmZ =mj —m3, (6.12)
and can express the individual masses as

mg = \/AmZ +m2, mlz\/Arhgl%—Ami—l—m%,

mo = \/Afngl + Am% + AmZ +m2, my = \/Afngl + AmZ, +m? . (6.13)

We do not give the expressions for ¥, mg or (m), because the results are indistinguishable
from scenario SNSb and therefore also from NSS and ISS. Again, matter effects in neutrino

oscillation experiments could be used to distinguish between the scenarios.

7. Discussions and summary

Adding two sterile neutrinos to the three active ones gives rise to eight possible mass
orderings, out of which the right one should be identified in order to pin down the flavor
structure of the neutrino mass matrix. We have investigated how and if mass-related
measurements can do the job. In addition, we studied the general properties of the non-
oscillation observables in scenarios with two sterile neutrinos. The possible mass orderings
are shown schematically in figures ), (f and B Apart from the usual 3-generation masses
and mixing parameters we have to cope with two additional mixing matrix elements |Ue4]
and |Ugs| as well as with two mass-squared differences Am2 and Am2,. Without loss of
generality we can assume Am2, > Am2, and associate Am? with the state 5 and Am2,
with state 4, respectively.
We use the following nomenclature for the eight different schemes:
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s (oV) ) V) = (V)

SSN 0.15 =+ 0.52 0.0 +0.11 3.33+ 3.85

SS1 0.16 = 0.52 0.0 + 0.16 3.33 + 3.85

NSS, ISS, SNSb, SISb 23 +27 0.43 =+ 2.72 9.16 = 10.80

SNSa, SISa 0.89 = 1.11 0.09 = 1.03 5.19 + 5.92
Current Bound 2.3eV (95% C.L.) | ~1eV (90% C.L.) ~1eV

Table 2: The ranges of the predictions for mg, (m) and ¥ according to the various mass orderings
for Mgmallest < 0.1eV and assuming that Am?2, = Am?2, and Am2, = Am?2,. Also shown are the
current bounds on these observables.

(i) SSX, where X = N for a normal and X=I for an inverted ordering of the mostly active
neutrinos. In these schemes the two predominantly sterile neutrinos are heavier than
the three predominantly active neutrinos (243 scenarios);

(ii) XSS (X = N or I as before), where the two predominantly sterile neutrinos are lighter
than the three predominantly active neutrinos (3+2 scenarios);

(iii) SXS with X = N or I, where the three active neutrinos are sandwiched between the
sterile ones (1+3+1 scenarios). In this class there can be four possible scenarios
which we denote as SXSa and SXSb. The scheme SXSa corresponds to the state 5
higher than the three active states and SXSb corresponds to the state 5 lower than
the three active states. Those scenarios are strictly speaking not covered by the

available analyzes of scenarios with two sterile neutrinos. In absence of any fit of this

possibility, we assumed for simplicity that the parameters are the same as for the

other scenarios.

The following general comments can be made about the different mass related ob-
servables:” the sum of neutrino masses depends basically only on the new mass-squared
differences, and typical (minimal) values are \/Am2 4+ \/Am2, 3\/Am2 or 3v/Am2,

depending on the mass ordering. Given the best-fit values and allowed ranges of masses

this is already in conflict with the standard cosmological scenario, as discussed below.

The parameters relevant for neutrinoless double beta decay and direct beta-decay
searches can be written as a contribution from the three mostly active states and the two
mostly sterile neutrinos:

3 t
(m) = (<m> +(m)*| and mg = /(m)2 + (m)? . (7.1)
where |(m)?| and m, are the expressions known from 3-flavor analyzes, see table[ll. All cases
are possible in eq. (.I]): dominance of the sterile contribution, dominance of the active
contribution, and equal-sized contributions, leading potentially to complete cancellation
only in (m).

"Predictions for mass-related observables in the presence of yet another sterile neutrino are discussed in
appendix @
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scheme feature KATRIN | 0vgp

SSN NH plus vs,, vs, maybe | maybe

SSI IH plus v, , vs, maybe | maybe
NSS, ISS | QD with \/Amgl yes yes
SNSb, SISb | QD with /Am2 yes yes
SNSa, SISa | QD with \/Am§2 yes yes

Table 3: The various schemes with two sterile neutrinos and their meaning for KATRIN and future
Ovf33 experiments. We assumed that Am?2 and AmZ, are larger than 0.1eV2.

In general, the mass-related observables can not distinguish between a normal or in-
verted ordering of the three active neutrinos, with the exception of schemes SSN and SSI,
which have different predictions for (m). It will however be difficult to test this difference
in practise, as precise knowledge of the oscillations parameters is required. Only in the
schemes SSN and SSI the magnitude of |Ue4| and |Ues| is crucial for the predictions of
(m) and mg. For all other mass orderings the dependence on |Ues| and |Ues| is suppressed
(X does not depend on |Ueyq| and |Ues|). Scenarios SNSb and SISb are indistinguishable
from scenarios NSS and ISS if the mass-squared differences are equal or very similar. It
turns out that in order to summarize all phenomenology of the mass-related observables
it suffices to plot them for four schemes: SSN, SSI, SNSa (covering also SISa) and NSS
(covering also ISS, SNSb, SISb). Interestingly, these four cases have also the same phe-
nomenology in what regards decays of high energy astrophysical neutrinos, see appendix [B-
In table [ we present for the parameter ranges given in egs. () and (@) the predictions
of the three quantities mg, (m), ¥ for the four types of mass orderings in the realistic case
when the smallest neutrino mass is smaller than 0.1eV. Also shown are the current bounds
on these observables. table B summarizes what the various schemes mean for KATRIN
and for future experiments searching for neutrinoless double beta decay. The following
conclusions can be drawn:

e scenarios SSN and SSI predict for all observables the smallest values. Hence, they
are the easiest to rule out. The other scenarios correspond at leading order to quasi-
degenerate 3-neutrino scenarios with the common mass scale given by \/Am2 (NSS,

ISS), /AmZ, (SNSa, SISa) or /A2, (SNSb, SISb);

e model independent constraints on neutrino masses stem from direct searches in the
spectra of beta-decays. The Mainz data give the constraint mg < 2.2eV at 95% C.L.
(Ax? = 4) BI]. Following the procedure in [BI] the 68% C.L. (Ax? = 1) bound
is 0.7eV and the 99.73% C.L. (Ax? = 9) bound is 4.0eV. Scenarios SSN and SSI
with both sterile neutrinos being heavier than the active ones can have unobservably
small mg and are consistent with the current bound even at 1o as can be seen from
table 2. The table also shows that scenarios SNSa and SISa are allowed at 20,
while the scenarios NSS/ISS/SNSb/SISb are consistent with the Mainz result at 3o.
The other six mass orderings will definitely result in a signal in KATRIN. If the
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two sterile neutrinos are lighter than the active ones (NSS and ISS), then there is
a direct correspondence mg ~ \/Amgl, which can be used to rule out part of the
allowed range of Amgl already at the current stage. Scenarios SNSa and SISa predict
mg ~ \/Afné, which will rule out part of its allowed range in the near future;

e the effective mass governing neutrinoless double beta decay can only vanish when the
sterile neutrinos are heavier than the active ones (SSN and SSI, for which the largest
value is 0.1 eV). In the other orderings the non-maximality of the solar neutrino mix-
ing angle renders (m) non-zero. If the sterile neutrinos are lighter than the active
ones (NSS and ISS), then (m) is larger than 0.2¢V and has a maximal value above
the current limit® of ~ 1eV at 90% C.L. Consequently, this scenario can be ruled out
by a stronger limit on (m) and one can also constrain parameters with the current
limit. This concerns in particular sin? 6., and the Majorana phase ap. Unfortunately,
the sterile neutrino parameters are such that this scenario is hardly distinguishable
from the scenarios in which one sterile neutrino is heavier and the other one lighter
than the active ones. Whereas telling apart NSS/ISS from SNSb/SISb is basically
impossible if Am2, is similar to Am2, distinguishing SNSa/SISa from NSS/ISS re-
quires a condition of the form \/Am?2 cos20s > ¢ \/Am2,, where ¢ denotes the

nuclear matrix element uncertainty.

In general, the sum of neutrino masses in the scenarios under study is always larger
than about 2eV. This minimal value is obtained in the two schemes SSN and SSI in which
the sterile neutrinos are heavier than the active ones. In addition, the two mass-squared
differences related to the MiniBooNE/LSND experiments should be rather small, because
Y= \/ Amgl + \/ Am§2. The other scenarios have sizable values of X, approaching up to

10 eV if the sterile neutrinos are lighter than the active ones. However, cosmological limits
can always be evaded or relaxed. Nevertheless, we add some discussion on typical limits
obtained in the literature (for an overview, see [[[4]), which typically constrain both the
sum of neutrino masses and the effective number of neutrino species Ngg contributing to
the radiation density. Those limits depend also on Ny, which is the number of equally
massive species. As one example, we focus on ref. [[I§], in which likelihood contours are
provided in the Neg—X plane for three cases: (i) Ny = Neg, (ii) Ny = 3 and (iii) Ny, = 1.
The value Nog = 5 is allowed only at about 99% C.L. in all the above cases and the bounds
on ¥ are 0.62, 0.57 and 0.41 eV, respectively (all at 95% C.L.). The type Ia supernova data
from SNLS, large scale structure data from 2DF and SDSS, baryon acoustic oscillation
data from SDSS, CMB anisotropy data from WMAP and the smaller scale measurement
by the BOOMERANG experiment were included in that analysis. Adding the Lyman-«
forest data gives even stronger bounds [[[J], leaving out the baryon acoustic oscillation
relaxes the limits [[q]. For the unrealistic case when the lightest neutrino is heavier than
1eV we have Ny, = Neg = 5 and case (i) applies. The resulting ¥ in our scenarios is
of course much larger than allowed. Another example is when in scenarios NSS/ISS the

8Note that in our analysis we are not using the data coming from the positive evidence claimed by a
part of the Heidelberg-Moscow collaboration [@] and thus we have only an upper bound.
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smallest mass can be neglected. Then we have three quasi-degenerate neutrinos, but also
one other massive neutrino with mass / Amgl — Amé. This possibility, as well as the other
cases we study, is not covered by the analysis in [[[§] or in any other paper we are aware
of. Nevertheless, we can safely assume? that limits on the sum of masses for Nog = 5 do
not exceed 1eV. Consequently, and not surprisingly, all scenarios with two sterile neutrinos
have serious problems with cosmology and require non-standard physics (primordial lepton
asymmetries, low reheating temperature, additional neutrino interactions,. . .) as described,
e.g., in [29, Bd).

To conclude, scenarios with two sterile neutrinos offer rich and interesting phenomenol-
ogy. In six of the eight allowed cases KATRIN and future Ov(0 experiments will find a
signal. Mass-related observables alone, however, can not identify the correct mass ordering
completely, which leaves room for further studies in order to disentangle the possibilities
by means of oscillation experiments.
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A. On scenarios with three sterile neutrinos

For the sake of completeness we summarize briefly the formulae and results for the mass-
related observables in case when three sterile neutrinos are added. No qualitatively new
aspects are found in these scenarios. The authors of ref. [f]] also performed an analysis of
this possibility and it was found that no significant improvement of the fit can be achieved
in this way. The best-fit values for the mass-squared differences are

Am? =184 eV, AmZ =0.83 eV, Am2; = 0.46 eV . (A1)

Note that there can be scenarios in which the fit of ref. [[] does not apply. There is no
information given on the mixing matrix elements, let us therefore take for simplicity the
values

Uui| = 0.1 fori=4,5,6. (A.2)

We will estimate now the values of the mass-related observables for all possible mass
orderings. Again, we fix m1 2 3 to be responsible for the oscillations of solar and atmospheric

9A more quantitative and accurate estimate on the joint constraint on the number of neutrino species
and the sum of neutrino masses from cosmology in the various scenarios and estimating the Ax? would
require a more detailed analysis of the cosmological data sets which is clearly not in the purview of the
present analysis.
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neutrino oscillations. With the details given in the main text, it is quite easy to obtain
the following formulae, which are valid when the smallest neutrino mass is neglected. As
for two sterile neutrinos, the non-oscillation probes can not distinguish whether the active
neutrinos are normally or inversely ordered. There are in total 16 possible mass orderings,
which we group in 4 classes:

(i) the first type of mass spectrum holds when the three sterile neutrinos are all heavier
than the active ones (SSSN and SSSI). In this case,

3~ \/Amgl—l—\/AmgQ—i—\/Amgg ~29eV,

mg =~ \/\Ue4]2 Am2; + |Ues|?2 Am2y + |Ues|2 Am?, ~ 0.18 eV, (A.3)

(m) ~ ‘|Ue4|2 AmZ + |Ues|* \/ Am2Z, €954 + |Ugg|? \/ Am2, €64] < 0.29 eV,

where asq4 = a5 — a4 and agy = ag — a4 are combinations of Majorana phases. The
situation is somewhat similar to scenarios SSN and SSI;

(ii) a second class of spectra is found when the three sterile neutrinos are lighter than
the three active ones (scenarios NSSS and ISSS). One has

¥~ 3y/AmE ~4.1eV,

mg ~ \/Am?Z ~ 1.36 eV,

(m) ~ \/Amgl \/1 — sin? 26 sin? o /2 ~ (0.54 + 1.36) eV . (A.4)

This is similar to the possibilities NSS and ISS;

(iii) two neutrinos can be heavier than the active ones which in turn are heavier than
the third sterile state. There are three possibilities for this. If the two heavy sterile
neutrinos correspond to Amgl and Am§2, then the resulting schemes SSNSa and
SSISa give

Yo~ 3\/Am§3 + \/Am§3 + Am2, + \/Am§3 + Am% ~4.7eV,

mg = \/Am§3 + |Ues|? (AmZy + AmZy) + [Ueo|? (AmZ; + AmZy) =~ 0.70 eV,

(m) ~ \/Am§3 \/1 — sin? 20, sin? ap /2 ~ (0.27 + 0.68) eV . (A.5)

Also possible is that the two heavy sterile neutrinos correspond to Am2 and

Am?; (schemes SSNSb and SSISb), in which case

Y~ 3\/Am§2 + \/Am§2 + AmZ + \/Am§2 + Am?2 ~55 eV,

mg ~ \/Am§2 + [Ues|? (AmZy + AmZ) + [Ueg|? (AmZy + AmZ)) ~ 0.93 eV,

(m) ~ \/Am§2 \/1 — sin? 20, sin? /2 ~ (0.36 + 0.91) eV . (A.6)
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Finally, the two heavy sterile neutrinos can correspond to Am2, and Am§3 (schemes

SSNSc and SSISc):

Y~ 3\/Am§1 + \/Amgl + AmZ + \/Amgl +Am%, ~72eV,

my = \JAmZ + |Ussl? (Am2 + AmZ) + [Ues[? (Am?, + Am2,) = 1.37 oV,

(m) ~ \/Amgl \/1 — sin? 20, sin? o /2 ~ (0.54 + 1.36) eV . (A.7)

(iv) the fourth class of mass orderings are scenarios in which the two sterile neutrinos are
lighter than the active ones which in turn are lighter than the last sterile one. As
for the previous class of scenarios, three possibilities are present. In scenarios SNSSa
and SISSa the two light sterile neutrinos correspond to Am2, and AmZ;:

Y~ 3\/Am§2 + \/Amg2 — Am% + \/Amgl + Am2, ~ 5.0 eV,

mg \/Am§2 + |Ues)? (Am2, — AmZ) + |Ues|2 (Am2 + Am2,) ~ 0.93 eV,

(m) ~ \/Am§2 \/1 —sin? 26 sin? an/2 ~ (0.36 + 0.91) eV . (A.8)

If the neutrinos associated with Am2 and Am2; are lighter (scenarios SNSSb and
SISSb), then

Y~ 3\/Am§1 + \/Amgl — AmZ; + \/Amgl + Am2, ~ 6.9 eV,

my = \JAmZ + Uesl? (Am2 — AmZ) + [Ues[? (Am?, + Am2) = 1.37 oV,

(m) ~ \/Amgl \/1 — sin? 20, sin? ap /2 ~ (0.54 + 1.36) eV . (A.9)

Finally, in scenarios SNSSc and SISSc the heaviest neutrino corresponds to Am§3:

Y~ 3\/Am§1 + \/Amgl — Am2, + \/Amgl + Am% ~ 6.6 eV,

mg ~ \/Amgl + |Ues)? (Am2, — Am2) + |Ues|2 (Am2 + AmZ) ~ 1.37 eV,

(m) ~ \/Amgl \/1 —sin? 20 sin? ap/2 ~ (0.54 + 1.36) eV . (A.10)

Hence, except for scenarios SSSN and SSSI one can expect a signal in KATRIN and in
neutrinoless double beta decay searches. The latter has in this case only three main pre-
dictions, given by a quasi-degenerate scenario with a common mass scale \/Am2, \/Am2,
or \/Am§3. In order to distinguish these cases, conditions in analogy to eq. (B.§) should
be fulfilled. Note that strictly speaking the analysis of ref. [ff] does not apply to the sce-
narios discussed in items (iii), (iv) and (v). The reason is the same as the one discussed in

section f] for schemes SNSa/SISa/SNSh/SISb.
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B. An alternative non-oscillation probe of neutrino spectra: decay of as-
trophysical neutrinos

Another interesting non-oscillation probe to distinguish different mass orderings is the
decay of astrophysical neutrinos [BJ]. Albeit such an analysis depends crucially on the
non-trivial assumption that neutrinos decay, it is an interesting exercise to investigate the
implications of such a situation.'® Different astrophysical sources can generate a neutrino
flux with a certain initial composition in v, v, and v,. Assuming that all neutrino states
except for the lightest v; decay, leads to

Do: D, By = Unil® : |Uuil® : |Unil?, (B.1)

where &, with o = e, u, 7 is the flux of neutrinos and anti-neutrinos of flavor a which
reaches Earth. Note that in the decay scenario this final flux is independent on the initial
flavor composition. The crucial observation is that the surviving lightest neutrino state
being v;, the flux ®,, which is proportional to |U,;|?, may differ in the eight neutrino mass
orderings under study. For scenario SSN we have ¢ = 1, while for SSI it holds ¢ = 3. This
corresponds to the situation in the three-flavor scenarios studied in refs. [BJ]. In contrast,
for scenarios NSS, ISS, SNSb and SISb we have ¢ = 5, while in the orderings SNSa and
SISa it holds that ¢ = 4. There are therefore four different possibilities, and the mass
orderings sharing the same phenomenology are in fact the same as the ones sharing the
same phenomenology of the mass-related observables.

What is eventually measured in neutrino telescopes like IceCube [BY] are ratios of
fluxes, and here for illustrative purposes we will focus on the ratio

P

Re,u q)_,u )

(B.2)
which can be obtained by comparing the rate of shower and muon events [Bf]. Taking
ratios including v, into account will complicate the situation considerably, as the mixing
elements |Ur4| and |Urs| enter the game, which are basically unconstrained (one could
however use these ratios to obtain information on these elements). We assume maximal
atmospheric neutrino mixing, take the best-fit values from eqs. (2.3), (.5) and use from
ref. [J that |U,s| = 0.12 as well as |Uyy| = 0.16. It follows for the ratios that RSN =

ep
2/tan? 0 = 4.7, REEI = 2sin? Ocnooz = 0, RIQ\LSS’ISS’SNSb’ SISb \Ues/?/|Uus/> = 1 and
REE 58158 — U412/ |U,a|? = 0.47. The ratios are easily distinguishable from each other,

in particular SSN and SSI, which we have shown in section { to be very similar in the
mass-related observables. Note however that for standard astrophysical sources (an initial
composition of 1:2:0) and no decay the ratio R, is equal to 1 for maximal atmospheric
mixing and Uz = 0, i.e., identical to RELS 5,185, SNSb, SISb 1) addition, taking the uncertainty
of the mixing matrix elements into account complicates the situation further. Taking the
30 ranges from ref. [[ (in particular sin?6s = (0.32 + 0.64) for atmospheric neutrino

mixing) and assuming again a 50% uncertainty on the sterile neutrino parameters gives that

0For other uses of sterile neutrinos in neutrino telescopes, see [Q]
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RN = (2.2 +10.8), RS = (0+0.13), Rey™> 'S5 5N80 — (911 2 9.0) and R, > 5% =
(0.06 = 4.0). The standard scenario predicts R, between 0.73 and 1.19, a range which
is covered by all decay scenarios except for SSN and SSI. The ratios are now overlapping
and except for the cases of measuring very small (R, < 0.06) or large ratios (R, > 9) no
possibility can be unambiguously identified. However, certain cases can be ruled out, for
instance scenarios SSI, SNSa and SISa for an observation of R., > 4. To fully disentangle
the different cases the mixing parameters the mixing matrix elements should be known
much more precisely.
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