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Abstract. The invariant density of one-dimensional maps in the regime of fully-developed chaos
with uncorrelated additive noise is considered. Boundary conditions are shown to play a significant
role in determining the precise form of the invariant density, via the manner in which they handle
the spill-over, caused by the noise, of orbits beyond the interval. The known case of periodic
boundary conditions is briefly recapitulated. Analytic solutions for the invariant density that are
possible under certain conditions are presented with applications to specific well-known maps. The
case of ‘sticky’ boundaries is generalized to ‘re-injection at the nearest boundary’, and the exact
functional equations determining the invariant density are derived. Interesting boundary layer
effects are shown to occur, that lead to significant modifications of the invariant density
corresponding to the unperturbed (noise-free) case, even when the latter is a constant — as illustrated
by an application of the formalism to the noisy tent map. All our results are non-perturbative, and
hold good for any noise amplitude in the interval.
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1. Introduction

Random noise is almost inevitably present in systems of physical interest. Its effects on
the evolution of these systems in time have long been recognized as worthy of
investigation, and chaotic dynamics is no exception. From the earliest days of the modern
phase in the study of deterministic chaos, there has been interest in analyzing the
consequences of the inclusion of noise in chaotic flows and maps. The broad features of
the resulting dynamics are understood reasonably well (see [1]-[5] and references
therein). : .

In this paper, we re-examine the problem of one-dimensional, fully chaotic discrete
dynamics with additive noise, with the aim of highlighting an aspect that has not, in our
opinion, received the attention it deserves: the “spill-over” of the state variable beyond
its original domain (interval) caused by the additive noise — equivalently, the effect of
different boundary conditions. Studies of noisy maps have for the most part focussed on
the regimes preceding fully-developed chaos, where this spill-over is perhaps not so
significant, as the corresponding attractors do not comprise the entire interval. In contrast,
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we restrict our attention to the case of fully-developed chaos — in particular, the effec-t qf
specific boundary conditions on the invariant densities of noisy maps. In general, it is
found that different boundary conditions lead to significant differences in the form of the
invariant density. As the latter quantity is a central one in the statistical description of the

systems concerned, we are led to the conclusion that the conjunction of noise and
boundary conditions must be handled with care.

In §2, we recapitulate the formulation of the problem along the lines best suited for

what is to follow. In §3, we consider the case of periodic boundary conditions, the one
most frequently adopted in the literature [5]-[9]. After a brief summary of the form_alilsm
we point out instances where a complete solution is possible, provided certain conditions
are met. In §4, we introduce what we believe is a realistic boundary condition, namely,
re-injection at the nearest boundary, derive the exact integral equation obeyed by Fhe
invariant density, and analyze the structure of its solution. A numerical illustration
is provided for the case of the tent map. In § 5, we consider the generalized dimension D,
corresponding to the noisy maps investigated. Section 6 contains our concluding remarks.

2. Frobenius-Perron equation for a noisy map

Consider the one-dimensional map x,,; = f (%n), X0 € [a,b]. We assume that the map is
onto, i.e., we consider the case of ‘fully-developed’ chaos. Well-known examples include
the logistic map f(x) = 4x(1 —x) and the tent map f(x) = 1 — [2x— 1| in [0, 1], the
square-root cusp map f(x) = 1 — 2|x* in [-1, 1], and so on. The invariant density p°(x)
of the unperturbed map f is given by the Frobenius—Perron equation [10]

b
Px) = Pols®(x)] = / &y (x—FO))P ). | (2.1)

We assume that the operator Py is known explicitly (via the functional equation to which
(2.1) is reducible), as also the solution p° (x)

Now consider the noisy map

Xnt1 = f (%) + &, (2.2)

where (§,) =0, (&) = (2)6,w (uncorrelated noise). We want to find an exact
expression for the invariant density in this case, given the distribution g(£) of the noise.
Earlier treatments either ignore the complications due to the ‘spill-over’ of f(x,) + &, in
some realizations to values outside the interval [a, b], or else assume [5]-[9] that g(¢) is a
periodic function with fundamental interval [a,b]. (g(&) is generally taken to be a
Gaussian with zero mean, or an infinite sum of Gaussians to ensure periodicity.) Let us
denote by P the perturbed Frobenius-Perron operator (i.e., the one corresponding to the

noisy map), and by p(x) the corresponding invariant density, averaged over the
realizations of the additive noise. A formal expression for the kernel of the operator P is
well known, and is obtained as follows. From (2.

2), it follows that the noise-averaged
density at time n evolves according to ‘

o1 = [ [ty 8e—6)-) ) 00 23)
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Invariant density of one-dimensional maps

This is an exact expression if the noise distribution is periodic, but imprecise if it is not,
precisely because the spill-over across the boundaries @ and b has been ignored (nor is it
immediately clear what the effects of this neglect will be). Formally performing the
integration over £ using the é-function, one gets for the invariant density the perturbed
Frobenius—Perron [3, 6, 10]

b
p(x) = Plp(x)] = / dy g(x — 1) P0Y)- (2.4)

Comparision with the noise-free case, (2.1), shows that the effect of the noise is to replace
the §-function kernel of Py with the noise distribution function g.

3. Periodic boundary conditions

3.1 Fourier expansion method

The convolution form of (2.4) suggests a solution in terms of a Fourier expansion, and
this is what has been done in earlier treatments [6, 7], taking g to be a periodic function of
its argument. As mentioned earlier, this is appropriate when periodic boundary conditions
are assumed. We may then write

8O =b—a) 3 Buexp (it), | 1)

n=—00

where k, = 2mn/(b — a). The inversion formula is

b
= [ dtal©)exp (ik). (32)
Expanding p(x) in a similar fashion, i.e.,
p€) =B —a)" > paexp(iknf), (3.3)

we obtain from (2.4) the relation

o0
pn = Z &n Snm P ' (3-4)

m=—0Q

where

b
Sm=(b-)" [ dyexp iy —a SO 3:5)

a
The effects of the noise are contained in {g, }. The noise-free case is recovered by setting

% = 1 for all n, corresponding to replacing g(£) by 6(¢). The normalization conditions on
g and p imply that

b b
/a g =Fo =1, / p(x)dx = Fo = 1. (3.6)
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Equation (3.4) can be written [6, 7] as the following inhomogeneous equation for g,

n # 0:

)
ﬁn:: gnSnO + Z gn Snmﬁm: (n 75 0) (37)

m=—00

where 3" is over non-zero integers m. In principle, iteration of (3.7) yields the formal
solution

=8 S0+ D BalbnSun S0+ Y S Balins Sum St S0+ -+ (3.8)
m m l

for pn, and hence for p(x). Rapid convergence of the iteration, at least in the fully chaotic
~ cases considered here, helps numerical calculations in specific instances [6, 7]. Clearly, it
is rather difficult to extract analytical information regarding the dependence of p(x) on
the parameters of the noise distribution from the formal solution, except under special
circumstances. To reconstruct p(x) in closed form, one must find P exactly and then sum
the Fourier series. In fact, this procedure is complicated enough even in the noise-free
case (g, = 1) — e.g., for the logistic map x,,,; = 4x,(1 — x) on [0, 1], Sy is expressible
[6] in terms of Fresnel integrals, but finding 7, explicitly and summing the Fourier series
hardly seems to be the easiest way to obtain the well-known result [11]

P°(x) = [mx(1 — x)]"2. However, there are two situations in which (3.4) (or (3.7)) can
be solved easily. These are considered below.

3.2 Sno = 0; application to the Bernoulli and tent maps

If the quantity

S0 =(b—a)” / b dyexp [—ik, £ (y)] ~ (3.9)

happens to vanish for every nonzero integer n, then (3.7) reduces to a set of homogeneous
equations for {g,}, n £ 0., The determinant of this set of equations will be nonzero in
general, so that only the trivial solution g, =0, n # 0, exists. This means that

px) = () = (b — o) (3.10)

in this case, for any (periodic

) noise distribution g(&). This is what happens for the
general Bernoulli map

= axy , 0<_1x,,_<_1/a
= { (ooty — 1) /(a ~ D, la<x,< 1, (3.11)

where & > 1. The same result hol
namely, the tent map in which the second se
X1 = (1 ~x,) /(e — 1) (For o = 2, these maps are th
symmetric tent map, respectively). Another example,
piecewise linear, is the antisymmetric square-root cusp

gas “{ 2 -1, O<x,<1. (3.12)

e usual Bernoulli map and the
involving a map that is not
map in [~1,1] given by
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Invariant density of one-dimensional maps

We find in this case

1
Som = (—1)" /0 dycos (my — 21y/3), | (3.13)

so that S,0=0. This leads, as before, to the constant normalized density
p(x) = p°(x) = 1/2 for both the unperturbed map and the noisy map. In general: under
periodic boundary conditions, additive white noise does not alter the unperturbed
invariant density p° when the latter is a constant. We shall see later that this conclusion
does not hold good if the boundary conditions are changed.

3.3 Spym = £ -m, Sno = FS_no- application to the cusp map

There is another situation in which an explicit solution for p(x) is feasible in the above
approach, even if p°(x) is not a constant (i.e., Sno = 0). This occurs when (i) Sum is even
[odd] in the index m, (ii) Sno is odd [even] in the index ~, and further (iii) 8, = §-n,1.€., &n
is real (which happens when g(£) is symmetric about (b —a)/2). It is evident that if
conditions (i)~(iii) are satisfied, all terms beyond the first on the right-hand side of the
iterative solution (3.8) vanish identically. Moreover, 52 = S,,0 in this case (since the noise-
free case corresponds to g, = 1). We are therefore enabled to arrive at the solution

Pn = 8n'Sno = &n ﬁg . (3.14)
Therefore
o0
p(x) = (- a)-l Z 8n Sno €XP (iknx)- . (3.15)
n=—00

Inserting the definitions of g, and S, and using the relation

o0

(b—a)™ Z exp (iknz) = 6(2), ' (3.16)
we find the solution
b b , :
o) =6 [ (o€ [(aye© o) -0 (3.17)

A concrete example of the situation just described is provided by the symmetric square-
root cusp map .

Xop1 =1 -2, xel-1,1]. (3.18)

This map is of importance as a model of intermittent chaos, arising from the marginal
stability of the fixed point at the left boundary x = —1. This is reflected in its invariant
density [12]

) = (1-2)/2, | (3.19)
which shows how the probability is ‘piled up’ towards x = —1. We have in this case
1
Sum = (—=1)" / dy cos (mmy) exp (2mni /y), (3.20)
0
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(which may be compared with (3.13) corresponding to the case of the antisymmetric
counterpart (3.12) of the cusp map). Thus S,,, is even in m. Further,

Swo = (=1)"(imn) ™", (3.21)

which is odd in n. Therefore the conditions just discussed are met, and we have ,52 = S0,
for n # 0. Together with 53 = 1, this leads on summing the Fourier series to the recovery
of the known result (3.19) for the invariant density p°(x) of the unperturbed map. The
point we now make is that this form of the invariant density can undergo significant
modification in the presence of noise. For a symmetric noise distribution in [—1, 1] (so
that g, = g_,), using (3.6), (3.14) and (3.21) we get the exact result

1 & sin n7x
=_ E 13 . 3.22
p(x) 2+ n=1( ) g?‘l nr ( )

The ‘antisymmetry’ of p(x) about the value 1 is at once evident, as is the fact that
p(0) = 3. Further, if p(—1) = p(1), then each of these is also equal to §; else, their mean
value is equal to L. In order to exhibit analytically the form of the solution, let us consider
first the simple case of a rectangular or uniform noise, given by the density

1
_ _ 3.23
8(6) = 3-6n— l¢) (323)
{a) T ; T 3
25 . .
2| ]
15 - ]
©
-1)]
1 i
05 |
0 i
E 1 | N " { | N 2 3 —
-1 -0.5 0 0.5 1
£
Figure 1(a).

The rectangular (uniform) noise distribution g(&) = 2n)70(n — |8)),
for n= 0.2, ‘ v
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0
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Figure 1(b). The invariant density p(x) for the symmetric cusp map f(x) =1 — 2|x|%
in the presence of additive noise distributed as in figure 1(a), under periodic boundary

conditions. The dotted line depicts the invariant density (1 — x)/2 of the unperturbed
(noise-free) map.

in the fundamental interval [—1, 1], where 0 < 1 < 1. The amplitude of the noise is thus
limited by the parameter 7. Carrying out the calculations required, we arrive at the result

| ™+ (7t =], —1<x<-1+79
p(x) = { 31—+, ~1+n<x<1-n (3.24)
M-+ -1, 1-n<x<1.

The noise distribution (3.23) and the invariant density are shown in figures 1(a) and (b)
respectively. We note how the noise suppresses the effect of the marginally stable fixed
point of the map at x = —1. Equation (3.24) is an exact result (under the periodic
boundary conditions assumed) that is valid, in fact, for any value of the amplitude 7 of the
noise. As 7 — 1, p(x) tends to the uniform distribution p(x) = 1/2, as one might expect
under the circumstances.

The fact that p(x) (3.24) continues to remain piecewise linear is actually an artefact of
the uniform noise distribution (3.23). A smoother modification of the unperturbed density
(1 — x)/2, but one that retains the general features of p(x) as found above, is provided by
the one-parameter family of unimodal, normalized noise densities

.\ _ Bl(cos p§ — cos ) o
8(5, “) = 2(sinp, — [.LCOS[.L) ’ 5 € [_13 1]a (325)
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Figure 2(a). The noise distribution g(&;z) of (3.25) in the limiting cases
p=m (3.27) and y =0 (3.29). Also shown is the case u = /2, i.e., g(&n/2) =
(w/4) cos(n€/2).
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where 0 < 4 < 7. We then find the corresponding invariant density to be given by

p(x) = % [1 + (sgn x) AU (;cl’;L)l:_(ls;E)‘D sinp) (3.26)
Thus p(—1) = p(0) - p(1) = 1/2. In the limiting case y = 7, we have
g(&;m) = 5(1 + cosmg), (3:27)
the corresponding invariant density being
plx) = -;: (1 - Si‘:r’”‘) . (3.28)
The limit 4 = 0 is exceptional. It corresponds to the parabolic distribution
860 =3(1-¢Y, (3.29)
leading to the invariant density .
p(x) =3(1 —x) + =x(jx| — 23). (3.30) |

In this case, p(—1) and p(1) remain equal to 1 and 0 respectively. The noise distributions
of (3.27) and (3.29) are shown in figure 2(a), while the corresponding solutions for p(x)

s sy
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Figure 2(b). The corresponding invariant densities (3.26) for the noisy, symmetric
cusp map, given by (3.28) for s = 7 and by (3.30) for p = 0. Also shown is the case
p=n/2, for which p(x) = 1 (2 — x — cos(mx/2)) (x > 0) and p(x) = 1 (cos(mx/2) — x)
(x <0).

are depicted in figure 2(b). The ‘evening out’ effect of the noise is quite evident. It must
be borne in mind, though, that these results correspond to relatively large stochastic
perturbations of the original dynamics: the standard deviation of the noise for the
distribution (3.29) is 1/+/5 ~ 0.45, while that for (3.27) is \/(1/3) — (2/72) = 0.36. The
Lyapunov exponent A, which is equal to 1 /2 for the unperturbed map [12], is also altered
in the presence of noise: we have In |f/(x)] = —1 In [x|, so that the second term on the
right in eq. (3.22) does not contribute to A, being odd in x.

3.4 Functional equation under uniformly distributed noise

We present in brief a formalism that avoids Fourier series and leads to a functional
equation for the invariant density, for an onto map in the fundamental interval [a, b]
perturbed by additive noise £, under periodic boundary conditions. This may be a useful
approach in numerical calculations, especially in situations in which the noise is not just a
small perturbation. :

Returning to (2.3), we insert the factor 1= [ du §(u — f(y)) on the right-hand side:

)= [ [ay " bz —F0) — 5 — 1)) 8E) M0

Pramana - J. Phys., Vol. 48, No. 1, January 1997 (Part I
Special issue on “Nonlinearity & Chaos in the Physical Sciences” 117



14 Balakrishndn et al

= [o [ ayste—u-g0t0 [ awstu=16) m)
= [ at [ auste—u=6) o0 Palputa), (331)

using the definition of the unperturbed Frobenius—Perron operator Py. Therefore the
invariant density is given by

p(x) = / d¢ l bduﬁ(x—u—ﬁ) 8(8) Polp(u)]. (3.32)

For brevity, let us introduce the notation Polp(w)] = B(u). (Of course, p°(x) = p°(x)
_ itself). Thus

o) = [ at [ auste~u—g) el (3.33)

For the sake of definiteness (so as to be able to write all formulas explicitly), we consider
henceforth the case of uniformly distributed noise, as in (3.23), with 0 < n < (b —a) /2.
For periodic boundary conditions, the support of the §-function in (2.3) must be
(f) + &) mod(b — @), ie., the support of 6(x —u—¢) in (3.33) is u=(x—¢)
mod (b — a). Writing §™4(x — 4 — ¢) to keep track of this fact, we have

b
o) = 0™ [ agon e | ™ - ey (3.34)

Carrying out the integration over &, we find:

, -~

X+1) b
(277)_1 / due p(u) + f du ﬁ(u)] , fora<x<a+n,
L a : X—1+b—~a
[ px+n - :
px) = {(2n)™ / du ﬁ(u)], fora+n<x<b—n,
Lv X—n
. [ b x+n—(b—a)
)" dup(u)+/ dup(u)|, forb—n<x<b.
\ [ Je—n a
(3.35)

Equation (3.35) must be solved numerically to find p(x).

It is evident that p(x) is continuous at all points in the interval
a+mnand b — 7. A convenient w

the derivative of p(x): we have

, including the points
ay of writing the functional equation (3.35) is in terms of

ﬁ(x+ﬂ)“ﬁ(x*7l+b—a): asx<a+"7:
2np'(x) = § plx+n) - px—1), a+n<x<b-n, (3.36)
Px—=m) —plx+n—b+a), b-n<x<b.
The discontinuity of p (x) aAtx=a+nandx=>b—nis given’ by

disc p'(a + 1) = —disc o' (b — n) = (2n)'[5(5) - p(a). (3.37)
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This relation may be verified for the cusp map using the solution (3.24) already found for
the invariant density.

4. Sticky boundaries: Re-injection at the nearest boundary

4.1 General equation for the invariant density

While periodic boundary conditions constitute a convenient way of ‘handling the spill-
over problem in a noisy map, other solutions are also possible [5]. These include
reflecting boundary conditions, or working in the infinite domain (—00,00) so that
natural boundary conditions can be employed. Yet another approach is to tailor the noise
distribution by making it state-dependent, such that the probability of an escape of the
dynamical variable out of the interval is zero. This means that the noise is actually
multiplicative rather than additive, with a density g(£, x) satisfying g(£,a) = g(§,b) =0.
One way of implementing this is to assume g(&,x) to be of the form [13]

o {80/ ;8 —x)d, x+E€ab]
8& )_{ 0, otherwise . (#1)

While it is conceivable that this and other such prescriptions might be justified on
physical grounds in certain instances, the very modelling of the stochastic forces on a

system by means of multiplicative noise may be quite inappropriate in others, particularly

if the noise arises from sources that are quite decoupled from the system dynamics.

A model that appears to be rather more plausible on physical grounds is provided by
‘sticky’ boundaries: once the dynamical system reaches a boundary value, it stays put at
that value, until the noise moves it away. More generally, instead of escape out of the
interval owing to the addition of noise to the evolution, we may assume re-injection at the
nearest boundary. This avoids the arbitrary clipping of the orbit of x, when f (xn) + & goes
out of [a, b by re-defining the noisy map as follows. Denoting f (%) + £ bY F (%, &), We
have

f(xn) +& ifa< F(xn;fn) <b,
Xnt1 = a if F(xn, &) < a, (4.2)
b if F(x,,&) > b.

Therefore if the representative point overshoots the boundary at a or at b, it is replaced

at that boundary, remaining trapped there until it is re-injected into the phase space

by the noisy map. (This is so even if a or b is a fixed point of the unperturbed map.)

The end points thus act as temporary traps that prevent any loss of ‘measure’ due to
overflow.

" As before, we are interested in the invariant density p(x), rather than the time-

dependent density p,(x). The counterpart of (2.3) for the map (4.2) is, in the limit n — oo,

b
p(x) = / at / 16(x — F(3,£))
8~ a)f(a— F(,8)) + (x — BE(, &) — Dleg®).  (43)

We note that the re-injection prescription in (4.2) leads, in general, to d-functions in the
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density with support at the boundary points. Hence p(x) is of the form
p(x) = ab(x — a) + B6(x — b) + pu(x), (4.4)

where o and [ are (dimensionless) constants, and p,(x) is the ‘regular’ part of the
invariant density. Substituting (4.4) in (4.3), we get the coupled equations

o= [a a0 [ao(a — F(a,8)) + B8(a — F(5,))
b
+ / dy 8(a — F(y, f))p*(y)], (4.5)
p=[aesto [ae(na, £) — b) + BO(F (b, ) — b)
| + [ &0r.0 - 0.0, (46)
pie) = [ azse) [aa(x — F(a,£)) + 6(x— F(b,2))

b
+ [ & - O, am(y)]. @7)

As before, in order to be specific, we shall take g(£) to be the amplitude-limited (uniform)
noise distribution of (3.23). Further, let us assume that the map f is a continuous,
unimodal, onto map, with f(y) increasing monotonically from y=a to y=y,, and
decreasing monotonically from y,, to b; f(a) = f(b) = a, f (ym) = b. (The modifications
required in other cases can be worked out) Let y12(z) denote the two roots of
f) =z€la,b. We have yi(a) =a, y(a)=b, ¥12(P) = Ym. Then, after some
simplification (the details are described in the Appendix), we arrive at the following
equations for a, § and p,(x):

1{a+n)
a=ﬁ+%{f: ! dy(a+7——f(y))p*(y)

b .
+ /y o~ dy(a+n—f())ps (y)}, (4.8)

1 y2(b—7)
B=ns |, B=5+10) ) (49)

tap | % [ w8160 90.0) (4.10)

In the last integral on the right, the factor 1 = f: du 6(u —f(y)) may be inserted as
before, to lead to

+ ﬂ min(b, x+7) V
pt= (%) O | ). (@
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Equations (4.8)—(4.10) represent the exact integral equations for the invariant density
under the prescription of “re-injection at the nearest boundary.” The over-all scale of
ps(x) is fixed by the normalization

a+ B+ /b px(x)dx = 1. (4.12)

We note that o > 3. Moreover, in addition to the 6-function spikes at the boundaries,
there occurs an extra boundary layer contribution on the left, in (a,a + 7). There is a
discontinuity in p(x) at x = a + 7, and a discontinuous change in slope at x = b — 7, with
the respective discontinuities given by

discp(a+mn) = — (a;ﬁ) , (4.13)
1 b
dise (b~ 1) = 5.(6)/(2m) = = 32 / | dupo) (4.14)

The Lyapunov exponent is also altered, in general:

b
A= aln | f/(a)| + Bl | £ (B)] + / pu(x)In | £/ ()] d. (4.15)

We illustrate the foregoing in the case of the tent map at fully-developed chaos.

4.2 Application to the tent map

The map concerned is f(x) =1—[2x—1|, x€[0,1]. Thus a=0, b= L, ym=13
y1(z) = z/2, y2(z) = 1 — (z/2). Further,

Polo)] = ) = 5 [o(3) +2(1-3)]

and the noise-free map has the constant invariant density p°(x) = 1. The noisy map has an
invariant density of the form

p(x) = ab(x) + B8(x — 1) + pu(x), (4.16)
where ' '
1 2 ' o
a=p+ ; { /0 dy(n—2y)p(v)+ /( ) dy (n—2+2y)p*(y)}, (4.17)
1+m)/2
ﬂ=§,—7/(;’/ dy(n— 29 = 1) p.), (418)
and
o min(1,x+7)
p = (D)o =i+ 5; [ wn0) 19)
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Figure 3(a-b). (Continued)
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Noisy tent map simulation with 7=0.2
Ky =0.11 . B,,=0.04

p.(x)
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X
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Figure 3. Numerical solution and comparision with simulation for the invariant
density p(x) = ab(x) + B6(1 — x) + p«(x) of the noisy tent map with noise amplitude
n=0.2. (a) Solution after 2 iterations, starting with the zeroth approximation
p«(x) = 1. The solution essentially stablizes (correct to 3 decimal places) in 3
iterations. (b) Solution after 10 iterations. (c) The result of a numerical simulation on
the noisy tent map with the re-injection prescription, (4.2). The result shown is an
average over 10 simulations of 10° iterations each, with a bin size of 1072,

‘Equation (4.19) yields the following, for x in different ranges:

a+ 1 | o2
0<x<n: pu(x) = 277'8+'2';7‘[/; dyps(y)

+ /1 1 dy p*(Y)], (4.20)

—(x+n)/2
1 (e4n)/2 1—(x—1)/2
n<x<l—n: plx) == / dyp*(y)+f dyp.() |
20 | J-n)/2 1-(xm)/2
(4.21)
1 [l-&-n)/2
1-n<x<1: plx) = g /( - dy pi(y). (4.22)
x-—n R

We note right away that p(x) =1 or even p,(x) = constant is not a selution, although
p°(x) = 1. Equations (4.17)—(4.22) must be solved numerically. The broad features of
the solution can be seen by adopting an iterative procedure: if we take p. (x) =1 in the
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zeroth approximation, we obtain the following as the first approximation (after
normalization):

3n ]

CHirw PTamy )
(1+35)/0+m), 0<x<n
pu(x) =< 1/(1+n), n<x<1-n (4.24)

G+E)/1+n), 1-p<x<1.

Successive iterations push the ‘plateau’ in p, (x) further to the right. The actual solution
does not have any interval in which p, (x) is a constant, but rather a range (n,1—mn)in
which its variation with x is gentle. It varies linearly in the ranges (0,7),
((L+n)/2,1—n) and (1 —n,n). Figures 3(a) and 3(b) show how the solution for
p«(x) stabilizes as the set (4.17)-(4.22) is solved iteratively, in the case 7 =0.2. The
discontinuity in p,(x) at x =7 =10.2 and that in pi(x) at x=1—-—n=0.8 are fllso
verified to satisfy (4.13) and (4.14) respectively. The foregoing form of the invariant
density has been completely verified by direct numerical simulations of noisy tent-map
dynamics with the prescription of re-injection at the nearest boundary as in (4.2), as
shown in figure 3(c). The Lyapunov exponent remains equal to In 2 in this case, by virtue

of the fact that | f'(x)| is a constant and the invariant density is normalized to unity
according to (4.12).

5. Generalized dimension D,

‘We have commented already on the manner in which the Lyapunov exponent \ is altered
(or remains unaltered) for the various noisy maps considered. In the same vein, we may

ask how the generalized dimension D, is altered by the addition of noise. This quantity is
defined as [11, 14]

N(e)

D;=1lim (g~1)""In (Z(Mj)q)/ln 6 (5.1)
=

where —00 < g < co. In the present context, N (€) =

(b — a)/¢, while the measure of the
Jth cell is given by

= o eplat (- Po) 52)
a+(j~1)e '
Therefore
N(e) N(e)
> ()" =Y oo+ - (53)
i= j=

As the sum on the right-hand side tends to
by the integrability or otherwise of p? (x)
of p(x) [14]. 1t is at once evident that

i) : [o(x)]?dx, the behaviour of D, is governed
, 1.e., by the nature of the zeros and singularities
Dy =Dy =1 in all cases in which the invariant
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density is a constant. A simple non-trivial case is once again provided by the symmetric
cusp map (3.18), for which p°(x) = (1 — x)/2 (3.19). Owing to the vanishing of p°(x) at
x =1, we have, for g > —1,

D, — lim (g — D'l Y me=1, (¢g>-1). (5.4)
€—
For ¢ < —1, on the other hand, we find
D, —1lim (¢~ 1)7'In¥/Ine=2g/(qg—1), (g<-1) (5.5)

since py & ep(—1 + (N —3)e) = €2/4, on setting a = —1,b=1, Ne=b—a=2. The
question is: how is this result affected by the addition of noise?

In §3.3, we have seen how the unperturbed density p°(x) = (1 —x)/2 is modified by
various kinds of noise distributions g(£) under periodic boundary conditions. For the
purpose at hand, the relevant point is that the noise generically eliminates the zero of the
density at x = 1, without introducing any fresh zeroes or singularities in the interval (cf.
(3.24) and (3.26) for p # 0). Therefore D, remains equal to 1 for all g, in contrast to the
noise-free case. The case u = 0, corresponding to the noise distribution (3.29), is an
exception: the corresponding density p(x) (3.30) continues to have a simple zero at x = 1,
so that D, is given by (5.4) and (5.5), as in the noise-free case. The question can be
analyzed for a general noise distribution g(¢) by examining the representation (3.22) for
p(x) in the vicinity of x = 1.

We turn now to the effect on D, of the other boundary condition considered in this
paper, namely, that of re-injection at the nearest boundary. Again, taking the tent map
f(x) =1—|2x — 1| in the unit interval as an illustration, we have an invariant density
p(x) of the form ad(x) + B6(1 — x) + p«(x) (cf. (4.16)). Breaking up the interval [0,1]
into N parts with Ne = 1, we now have

p=ep((j—3)e), 2<ji<(N-1), (5.6)
while

€

m=a+e(s), m=A+en(W-1)e) (57

As a, >0, this leads to

Inla? 4+ B9+ a1 V=1 a1
VRPN {CEY. b > (o L NS
[ Sd

Although p,(x) has a finite discontinuity at x =7 and cusps at x= (1 +n)/2 and
x = (1 —n) (we consider uniformly distributed noise with maximum amplitude 7), p{ (x)
has no zeros or infinities, and is integrable in [0, 1] for all finite ¢. Therefore, for g < 1 the
factor €7~ dominates, and D, = 1. On the other hand, this factor tends to zero for g > 1,
and D, = 0. For g = 1, we have

N(e)
D, =lim (,Zl: iln ﬂ:j) / Ine. (5.9)
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Using (5.6) and (5.7), we find
N(e)
Dy = lim > " epu((j — He) In[ep, ((j — D)e)]/ Ine, (5.10)
=1

which reduces to

1 |
D1=/0 dx py(x). , (5.11)

Collecting these results and using (4.12), we have

1, qg<l1,
Dy={1l-a-8, g¢=1, (5.12)
0, qg>1.

The generalized dimensions of the attractor corresponding to the noisy tent map, under

the prescription of re-injection at the nearest boundary, are thus modified considerably in
comparision with the uniform value D, = 1 for the unperturbed case.

6. Concluding remarks

We have shown that the form of the invariant density for noisy one-dimensional maps in
the fully chaotic regime is quite sensitive to the boundary conditions imposed. The latter
are necessary to prevent the arbitrary omission or clipping of orbits that overflow the
interval when the noise is added. While it is Well known that very small amplitude noise
helps ‘smoothen’ the invariant density in general, our results are valid for arbitrary noise
amplitude, and show that the invariant density at fully developed chaos can differ
significantly from that in the noise-free case. The effect of a marginally stable fixed point -
can be diminished, as was shown in the case of the cusp map. On the other hand, an
initially uniform invariant density can develop considerable structure, as in the case of the
tent map with the re-injection prescription used in § 4: 5-function spikes occur at the end-
points of the interval, and the unstable fixed point at x = 0 is the source of an enhanced
boundary layer in its vicinity, as well. Similar effects occur in the case of other maps such
as the cusp map and the logistic map. Our results suggest that care must be exercised in
drawing conclusions from numerical studies on the aspects of chaotic dynamics

considered here, as the combination of external noise and boundary conditions can, and

do, lead to non-trivial and sizeable modifications of what one obtains in the absence of
noise. '

Appendix

We .beg%n with equations (4.5) to (4.7) for q, B and p,(x). Using the rectangular
distribution (3.23) for g(£) and setting f (@) =f(b) = a, (4.5) for a yields

bl b
a=fatf)+5 [ e [ ay8(a—£0) - ©) p0). | (A1)

Pramana - J. Phys., Vol. 48, No. 1, January 1997 (Part I)

126 Special issue on “Nonlinearity & Chaos in the Physical Sciences”




Invariant density of one-dimensional maps

The step function is non-zero only for f(y) + ¢ < a; since f(y) > a, this is possible only
for ¢ <0. Now the inequality f(y) <z where z € [a,b] implies that y € [a,y1(z)]U
[y2(z), b]. Therefore

0 y1(a—€) b . :
_a=%<a+ﬂ>+§;7 /_ndsu dypu(y) + / dy,,,,@)]. (A2)

2(a—¢€)

Changing variables to —¢ and interchanging the order of integration, we have

1 [olatn) n 1 rb 7
a=f+1 / dy p () / at+ 1 / dy pu(9) / d,  (A3)
NJa fiy)—a f(y)—a

1 Jyx(a+n)

where f; and f, are, respectively, the ascending and descending branches of f. Equation
(4.8) for o follows immediately. The appropriate branch of f(y) in the integrand of that
equation is automatically selected by the range of integration.

Similarly, (4.6) yields

: " b
b=o [ ndﬁ[(a+ﬂ)0(a—b+£)+ / dyﬂ(f(y)+£-b)p*(y)]- (Ad)

a

As 1) is certainly less than b — a, the first term on the right-hand side does not contribute
anything. The second term reduces to

1 [ y2(b~%) :
B=5-| & / dy p« (¥). (AS)
nJo y1(b—€)

Interchanging the order of integration,

1 Ym 7 y2(b-) Ui |
o [ wn [ ar [ wam) [ w49
M [ Iyie-n) b= (y) Im b—£0)

where the peak in f(y) occurs at y = y,,. Equation (4.9) for 3 follows immediately.
Finally, (4.7) becomes

b
p)=5 | :ds [<a+ Bpe-a-+ [ dl—10)- sm(y)]. (A7)

The first term in the integrand only contributes if x lies between a and a+ 7.
Equation (4.10) therefore follows. ‘
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