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Mouse games

As any child of ten will tell you, to write an article on the Dirac delta function
(or on anything else, for that matter), one must first log into “Google” or
“Yahoo” or a similar search engine. A judicious combination of clicking,
cutting and pasting — and wvoild, an article of any desired length is ready in
an unbelievably short time!

Now this is not as simple as it sounds. It does require some finesse —
possessed, no doubt, by the average ten-year-old (but not necessarily by
older, less capable surfers). If one is naive enough to enter delta function in
Google and click on search, the magician takes only 0.16 seconds to produce a
staggering 1,100,000 possible references. Several lifetimes would not suffice to
check all of these out. To make the search more meaningful, we enter “delta
function” in quotes. This produces a less stupendous 58,600 references. As
even this is too much, we try Dirac delta function, to get 52,500 references
— not much of an improvement. Once again, “Dirac delta function” is much
better, because Google then locates only 12,100 references. “Dirac’s delta
function” brings this down to 872, while “the delta function of Dirac” yields
a comfortable (but not uniformly helpful) 19 references.

Motivated by a desire to include some interesting historical aspects in my
article, I continued this fascinating pastime by trying history of the Dirac
delta function, to be presented with 6,570 references to choose from. Spotting
my mistake, I promptly moved to “history of the Dirac delta function”, to
be told that there were just 2 references, a most satisfying conclusion to the
game. One of these was from Mathematica, and was as short and sweet as
befits this impatient age. It said (in its entirety): O. Heaviside (1893-95), G.
Kirchhoff (1891), P. A. M. Dirac (1926), L. Schwartz (1945). A true capsule
history — provided you already knew the history! The other reference I didn’t
pursue, as the computer “froze” at this juncture. After all, the system had
worked for nearly forty-five minutes without a hitch, and some such event
was long overdue. The message was clear: it was time to get down to real
work by shutting down the system and reverting to pencil and pad.

But what about the title of the article? Back to Google. Brief experi-
mentation showed that “All about the Dirac delta function” produced zero
references, so this title practically selected itself. Once this issue of Reso-



nance goes on-line, this article will be the sole reference, for the time being,
if you cared to search under “All about the Dirac delta function” — but do
note the all-important question mark in my title, added for the sake of truth
and honesty!

What the Dirac delta function looks like

Suppose f(z) is a function that is defined, say, for all values of the real
variable x, and that it is finite everywhere. Can we construct some sort
of filter or “selector” that, when operating on this function, singles out the
value of the function at any prescribed point x4?

A hint is provided by the discrete analogue of this question. Suppose
we have a sequence (ai,as,...) = {q;|j = 1,2,...}. How do we select a
particular member a; from the sequence? By summing over all members
of (i.e., scanning!) the sequence with a selector called the Kronecker delta,
denoted by d;; and defined as 6;; = 1if ¢ = j, and d,; = 0 if ¢ # j. It follows

immediately that
Z 5ij CLj =Q;. (1)
Jj=1

Further, we have the normalization }°; d;; = 1 for each value of 7, and also
the symmetry property 6;; = d;; . Reverting to the continuous case, we must
replace the summation over 7 by an integration over x. The role of the
specified index 7 is played by the specified point x;. The analogue of the
Kronecker delta is written like a function, retaining the same symbol ¢ for it.
(Presumably, this was Dirac’s reason for choosing this notation for the delta
function.) So we seek a “function” é(x — xy) such that

[ dwo(e —0) f() = flzo) 2

Exactly as in the discrete case of the Kronecker delta, we impose the nor-
malization and symmetry properties

/_O:odxd(x—xo)zl and O0(z —xo) =d(zo — ). (3)

The requirements in Egs. (2) and (3) may be taken to define the Dirac delta
function. The form of Eq. (2) suggests that §(z — z) is more like the kernel
of an integral operator than a conventional function. We will return to this
aspect subsequently.

What can 6(x — zy) possibly look like? A naive way of answering this
question is as follows. Take a rectangular window of width 2¢ and height
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Figure 1: The window reduces to the delta function when € — 0

1/(2¢), so that the area of the window is unity. Place it with its bottom edge
on the x axis and slide it along this axis, as shown in Fig. 1. When the win-
dow is centred at the chosen point zg, the integral of f(z) multiplied by this
window function is simply (1/2¢) [5°7F dx f(z). This does not quite select
f(zo) alone, of course. But it will do so if we take the limit &€ — 0. In this
limit, the width of the window becomes vanishingly small. Simultaneously,
its height becomes arbitrarily large, so as to “capture” all of the ordinate
in the graph of f(z), no matter how large the value of f(z,) is. A possible

explicit form for the Dirac delta function é(x — z,) is therefore given by

| lim,01/(2), forzp—e<z<z9+6

0z — 20) = { 0, for all other x . (4)
This cannot be a stand-alone definition. If it is taken literally, then, formally,
d(z — zo) must be zero for all x # o, while it must be infinite for z = z,.
An explicit form such as Eq. (4) for the delta function must be interpreted
in the light of Eq. (2). The delta “function” is always to be understood as
something that makes sense when it occurs in an integral like Eq. (2), i.e.,
when it acts on ordinary functions like f(z) and an integration is carried out.
It is immediately clear that the so-called Dirac delta “function” cannot be a
function in the conventional sense. In particular, 6(x — zo) must be singular
(formally infinite) at = x, that is, at the point where its argument is zero.
Mathematically, an explicit form for the Dirac delta function is properly
given in terms of a sequence or family of conventional functions, rather than
the “window” representation in Eq. (4). It can then be arranged that, in a
suitable limit, the sequence approaches a quantity that has all the properties



desired of the delta function. An infinite number of such sequences may be
constructed. For instance, take a family of functions ¢.(z — o) parametrized
by a positive constant €, and with the following properties: each member of
the family (i) has a peak at xo, (ii) is symmetric about the point z,, and
(iii) has a definite integral from —oo to oo whose value is unity. Matters
are arranged such that, as the parameter € is made smaller and smaller, the
height of the peak in ¢.(z) increases while its width simultaneously decreases,
keeping the total area under the curve equal to unity. Then lim, o ¢ (z — )
represents the delta function §(z — zp) . Let us now write down the simplest
choices for such sequences. For ease of writing, let us set o = 0. One of the
simplest possibilities is the family of “Lorentzians”, given by
€

¢e(z) = . (5)
Then lim,_, ¢-(z) is a representation of the Dirac delta function §(x), with
the properties specified in Egs. (2) and (3). Some other popular choices for
¢-(z) are the following:
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It is instructive to sketch these functions schematically, and to check out
what happens as smaller and smaller values of £ are chosen. As an amusing
exercise, think up your own sequence of functions that leads to the delta
function as a limiting case.

What’s the point of all this? Before going on to answer this question,
it’s helpful to re-write the last of the functions in (6) as follows. If we put
e =1/L, we get

5(2) = tim D) Ly / dieits = 1 / Tdke*e.(7)
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This turns out to be perhaps the most useful way of representing the delta
function. Since |e?**| =1, it is obvious that the last integral in Eq. (7) is not
absolutely convergent. Nor is the integral well-defined in the ordinary sense,
because sin kz and cos kz do not have definite limits as k — +o00. These are
just further reminders of the fact that the delta function is not a conventional
function, as we have already emphasized. Those young readers who are
familiar with Fourier transforms will recognize that the last equation above
seems to suggest that the Fourier transform of the Dirac delta function is just
unity. This is indeed so. It suggests, too, that one way of defining “singular”
functions like the delta function might be via their Fourier transforms: for
example, we could define §(z) as the inverse Fourier transform of a constant
— in this case, just unity.



Some history

The Dirac delta function has quite a fascinating history. The book by Liitzen,
cited at the end of this article, is an excellent source of information. The delta
function seems to have made its first appearance in the early part of the 19!
century, in the works of Poisson (1815), Fourier (1822), and Cauchy (1823,
1827). Poisson and Cauchy essentially used arguments that implied that the
Lorentzian representation of the delta function, Eq. (5), had the “selector
property” stated in Eq. (2). Fourier, in his fundamental work Théorie Ana-
lytique de la Chaleur, showed (in connection with Fourier series expansions
of periodic functions) that the series 1/(27) + (1/7) >>0°, cos n(x — xy) had
precisely this sort of selector property, i.e., was a representation of §(z — x)
in the fundamental interval (z — xy) € [—m,7|. His arguments essentially
amount to the last of the representations in Eq. (6) for §(x). These early
works did not aim at mathematical rigour in the current sense of the term.
Subsequently, Kirchhoff (1882, 1891) and Heaviside (1893, 1899) gave the
first mathematical definitions (again non-rigorous, by modern standards) of
the delta function. Kirchhoff was concerned with the fundamental solution of
the three-dimensional wave equation, while Heaviside introduced the function
in his “Operational Calculus”. He pointed out that §(z) could be regarded as
the derivative of the Heaviside or unit “step function” 6(z), defined as unity
for x > 0 and zero for x < 0. After Heaviside, the delta function was freely
used — in particular, in connection with Laplace transforms, especially by
electrical engineers (e.g., Van der Pol, 1928). Dirac (1926, 1930) introduced
it in his classic and fundamental work on quantum mechanics, essentially as
the continuous analogue of the Kronecker delta. He also wrote down a list of
its important properties — much the same list that standard textbooks now
carry. Over and above Egs. (2) and (3), the delta function also satisfies

zo(z) =0, §'(—z)=-6"(x), zd'(z)=-6(z), d&(azx)=(1/]a])d(x)

(8)

where a is any real number, and so on. Again, these equations are to be

understood as valid when multiplied by suitable smooth functions and in-

tegrated over z. Dirac also listed the useful but not immediately obvious

property

d(x + x0) + 6(z — x0)

2|z

§(z* —23) = (9)
where x is any real number.

The use of the delta function became more and more common after the
appearance of Dirac’s work. Other singular functions also made their ap-
pearance, as early versions of quantum field theory began to take shape in



the works of physicists such as Jordan, Pauli and Heisenberg. Around the
same time, mathematicians began attempts to define such singular quanti-
ties in a rigorous manner. The delta function and other such singular objects
were recognized to be what are called generalized functions or distributions,
rather than functions in the conventional sense. The first rigorous theory was
given by Bochner in 1932. Soon afterwards, Sobolev (1935) gave the rigorous
definition of distributions as functionals, and the way had been paved for a
definitive mathematical theory. This was achieved by Schwartz (1945-50),
and comprehensively treated in his Théorie des Distributions, Vol. 1 (1950)
and Vol. 2 (1951). For lack of space, we will not go further into these aspects,
other than to repeat that we now have a completely rigorous mathematical
theory of distributions.

Why does the -function appear in physical problems?

We can now turn to the question of why the delta function appears so
naturally in physical problems. Consider, for example, the basic problem
of electrostatics: given a static charge density p(r) in free space, what is
the corresponding electrostatic potential ¢(r) at any arbitrary point r =
(z,y,2)? From Maxwell’s equations, we know that ¢ satisfies Poisson’s equa-
tion, namely,

V26(r) = —p(r)/eo (10)

where ¢ is the permittivity of the vacuum. What does one do in the case of
a point charge ¢ located at some point ro = (zo,%0,20)? A point charge is
an idealization in which a finite amount of charge ¢ is supposed to be packed
into zero volume. The charge density must therefore be infinite at the point
ro, and zero elsewhere. The delta function comes to our aid: we may write,
in this case,

p(r) =qd(z —x0) 6(y — yo) 0(2 — 20) = qé(?’)(r — 1), (11)

where the three-dimensional delta function §(® is short-hand for the product
of the three delta functions in the equation above. It is easy to verify that
this expression for p(r) has all the properties required of a point charge at
the point ry. This illustrates how (and why) the delta function frequently
appears as the right-hand side of fundamental equations of mathematical
physics. It turns out that it also appears as the singular part of fundamental
solutions to basic equations such as the wave equation.

It is worth noting that representations of “higher-dimensional” delta func-
tions like 6 are easily written down. For instance, the three-dimensional



counterpart of Eq. (7) above is just

1 o o o i(kiz z) — 1 ikr
= gl [ [ [t = L

(12)
The notation used in the final equation should be self-explanatory.

We have mentioned earlier that Poisson was responsible for what was per-
haps the first recognizable use of the Dirac delta function. Poisson and Dirac
seem to be linked in more ways than one. The most profound of these links
is this: Dirac showed that Poisson brackets in classical dynamics become the
commutators of the corresponding operators in quantum mechanics, multi-
plied by the constant factor 27 /ih where h stands for Planck’s constant. It
is therefore appropriate to end this short account with another fascinating
link between the names of Dirac and Poisson. There is a very useful and
remarkable result in Fourier analysis called the Poisson summation formula.
In its simplest form, this says that if f(k) is the Fourier transform of f(z),
then

> fln)= Y f(2mn). (13)
A very elegant and simple way of deriving this formula makes use of the
so-called “Dirac comb” : an array of Dirac delta functions located at the
integers. It can be shown that

o0

i S(x—n)= > e, (14)

n=—oo n=—oo

i.e., the Dirac comb is identically equal to a sum of exponentials! The latter
can be reduced to the expression 1 + 2Y{°cos (2nnz). The cosines in the
sum “interfere destructively” with each other, leaving behind just the sharp
d-function spikes at integer values of x. With the help of Eq. (14), the
Poisson summation formula is established quite easily. We have thus come
full circle, moving from Poisson to Dirac and returning to Poisson with the
help of Dirac.
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Box

Why did Dirac need the delta function?

The delta function appeared in Dirac’s work on quantum mechanics in an
avatar somewhat different from the ones mentioned in the text.

Consider ordinary three-dimensional (Euclidean) space. This is a linear
vector space (LVS). Any vector in it can be expanded uniquely as a linear
combination of the three unit vectors i, j and k. This is because these three
vectors are linearly independent of each other, and they span the space: i.e.,
they form a basis in the LVS. Moreover, i-i=1,i-j = 0, etc. Using the
superior notation e; = i, e, = j and e; = k, all these relations can be
compressed into e; - €; = d;; (3,5 = 1,2 or 3), in terms of the Kronecker
delta. That is, the set {e; |i = 1,2,3} is an orthonormal basis. This can be
generalized to any n-dimensional LVS: an orthonormal basis {e;} satisfying
e -e; =0, ({,7=1,2,...,n) can always be chosen in it.

What happens if the dimensionality n — oo? Some subtleties arise.
But the preceding discussion goes through, provided care is taken to ensure
that certain desirable properties survive — e.g., the vectors in the LVS must
have finite magnitudes, and the triangle inequality must be satisfied by the
magnitude of the resultant of two vectors. Function spaces provide simple
examples of such infinite-dimensional LVS’s — for instance, the space of all
square-integrable functions of z in some interval [a,b]. Naturally, the ba-
sis is then an infinite set of suitable functions. A common example is the
set of Legendre polynomials { Py(x)} where z € [—1,1] and £ = 0,1,... ad
inf. The notion of the dot product of two vectors must also be generalized
appropriately. We do not go into this detail here.

But a new possibility arises when the dimensionality of an LVS is infinite.
It may have a basis that is itself uncountably infinite, i.e., a so-called contin-
uous basis. Instead of a set {e;} where i is a discrete index, we have a set
{e(&)} where ¢ is a continuous variable, taking values in some range. (For
simplicity we continue to use the symbol e for the basis elements of the LVS,
even when these may be functions or other objects.) Omitting several tech-
nical details, the orthonormality condition for a continuous basis formally
reads e(§) - e(¢’) = §(£ — &') . That is, the Dirac delta function replaces the
Kronecker delta.

This is the context in which Dirac required the delta function. In quantum
mechanics, a system is described by its so-called state vector. This is an
element of a certain LVS called the Hilbert space of the system. The classical
dynamical observables of the system are replaced by operators that act on
the elements of its Hilbert space. It turns out to be convenient to choose the



eigenstates of (a subset of) these physical operators as the possible basis sets
in the Hilbert space. Moreover, the system gets into these eigenstates when
measurements of the corresponding physical observables are made. Certain
fundamental operators such as the position operator or linear momentum
operator of a particle moving in a given force field turn out to have continuous
sets of eigenvalues. Their eigenstates then constitute continuous basis sets,
with the orthonormality condition as given by the last equation above.

An example is provided by the case of a particle moving in one dimension
under the influence of a constant force. Its energy E can then be shown
to have a continuous set of possible values. The state e(E) of the particle
corresponding to a definite value F of its total energy is a member of a
continuous basis set of states, satisfying e(E) - e(E') =6(E — E').
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