o, e gz

PRAMANA © Printed in India ~ Vol. 40, No. 4,
— journal of April 1993
physics ' pp. 259-265
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_Abstract. A very simple way is presented of deriving the partial differential equations (the

master equations) satisfied by the probability density for certain kinds of diffusion processes
in one dimension, in which the driving term is a Gaussian white noise, or a dichotomic noise,
or a combination of the two. The method involves the use of certain ‘formulas of differentiation’

. to derive the equations obeyed by the characteristic functions of the processes concerned, and

thence the corresponding master equations. The examples presented cover a substantial number
of diffusion processes that occur in physical modelling, including some master equations derived
recently in the literature for generalizations of persistent diffusion.
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1. Introduction

A wide variety of physical problems involving the simultaneous action of deterministic
and random “orces’ is amenable to description by diffusion processes and their
generalizations. A very convenient way of studying such processes is to work with
the partial differential equations satisfied by the corresponding probability densities.
These equations (often called ‘master equations’) are linear, and are usually easier to
handle mathematically than the stochastic equations obeyed by the random processes
themselves. The latter may be driven by singular functions such as white noise, various
kinds of jump processes, etc., making it necessary to properly take into account subtle
technicalities of a mathematical nature. In contrast, given a partial differential
equation, one can generally identify readily the initial conditions and boundary
conditions under which the problem is well-posed, in the sense of possessing a unique,
physically meaningful solution in a suitable space of functions. There are many other
advantages to be gained by a master-equation approach—for instance, in the analysis
of the role of noise in bifurcations from one class of stable states to another [1] and
of noise-induced transitions in general [2], to name just one example. For a relatively
recent review of these and related applications, see West and Lindenberg [3].
There is an extensive literature on the derivation of master equations from the
corresponding stochastic differential equations—in particular, on the rigorous
derivation of the Fokker—Planck (or forward Kolmogorov) equation from the
“nonlinear” Langevin equation for a Markovian diffusion process. Much of this
literature involves the mathematics of probability theory and stochastic processes at
a fairly sophisticated level [3a—-6]. Treatments addressed to physicists are quite
numerous and relatively more accessible [7-9], but the clear identification of the
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essential inputs is often obscured in the interests of a reasonable degree of rigour
and generality. Moreover, as already mentioned, the discussion is generally restricted
to Markovian (mostly Fokker-Planck type) master equations. Given the ubiquitous
nature of the stochastic models under consideration, it seems to be worthwhile to
have a derivation of various master equations that is both pedagogically simple and

comprehensive. This is the purpose of this paper. From a formal point of view, our -

approach is actually subsumed under the general “characteristic functional technique”.
However, it turns out that the use of certain special properties of the driving noise
processes greatly simplifies the derivation of a large class of master equations.
Accordingly, we present a simple method of derivation of master equations for a
variety of processes driven by Gaussian white noise, or a dichotomic Markov noise,
or combinations of the two. These two processes represent, respectively, prototypical
continuous and discontinuous processes that are most frequently used as paradigms
of random noise. Our procedure therefore covers a substantial part of the diverse
class of diffusion processes that occur in physical modelling. In particular, we obtain
in a direct and unified manner several master equations that are more comprehensive
~ versions of equations derived earlier in different contexts [10,11], thereby helping
place these in proper perspective.

The method used is easily described. We consider one-dimensional driven processes

x(2) (xeR), with a (conditional) probability density P(x, t). The characteristic function
of x, defined as

(k1) = [ P(x, Dyexp(ikx)dx, | : (1)

may also be written as {expikx(t)), where {.--> stands for the average over the
realizations of the noise. If a formal solution for x(f) can be obtained by explicitly
integrating the corresponding stochastic differential equation, this solution may be
substituted in eq. (1) for ¢. “Formulas of differentiation” for the averages of functionals
of the noise then enable us to find the equation obeyed by ¢. Inversion of the Fourier
transform then leads to the master equation for P(x, ). We turn now to specific cases,
beginning with a quick illustration on a well-known example.

2. Brownian motion, Ornstein-Uhlenbeck process

The most familiar stochastic equation one encounters in physics is of course the
Langevin equation for the velocity of a Brownian particle,

X(t) = —yx(t) + (2D)"2 (1), )
where y and D are positive constants. The noise n(¢)is a stationary Gaussian—Markov

process with zero mean and correlation n@n(t))=6@t—1t). x(t) is then the

Ornstein—Uhlenbeck process. Solving for x with the initial condition x(0) =0, the
characteristic function is given by

bk, t)= <6Xp (ik(ZD)” 2 Jt exp[—y(t—1)] n(t')dt’) > ()
0

As 7(t) is a Gaussian process with zero mean, all its cumulants beyond the second
cumulant vanish. It can then be shown that [7], for any sufficiently regular function
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f(t), we have the (well-known) identity

<‘3Xp th(t’)n(t’)dt'> = em( L thz(t’)dt’ > ‘ @)
0 ‘ 2 0

Hence from (3) we obtain
@ (k,t) = exp [ — (Dk?/2y)(1 — exp(— 2y1))], )

so that ¢, = — Dk? ¢ exp(— 2yt) (subscripts denote partial derivatives). To eliminate
the explicit t-dependence on the right, we note that ¢, = — (Dk/y)[1 —exp(—2yt)]19,
so that ¢, = — yk¢, — Dk?¢. Inverting the Fourier transform, we obtain

P,=y(xP),+DP,,, ©)

the standard Fokker—Planck equation for the O-U process. The limit y =0 yields
the conventional diffusion equation

P,=DP__ . (7)

for the Wiener process: the latter is “the integral of a d-correlated stationary
Gaussian—Markov process”, a physical example being the velocity of a Brownian
particle on time scales much larger than the velocity correlation time y~ L An even
more familiar example is of course the position x of a Brownian particle.

3. Persistent diffusion, linear dichotomic flow

We turn now to the case of persistent diffusion or a dichotomic flow [12, 11], specified
by the stochastic equation

X ()= £() | . ®)

where £(z) is a stationary dichotomic Markov process that jumps between two values
¢, and ¢, with mean rates v(c;—c;) =v,; where i,j = 1,2 [13]. The process x(t) thus
describes the position of a particle that moves freely on a line, the velocity of the
particle switching at random instants of time from the value ¢, to the value ¢,, and
vice versa. The mean value of the noise is

<f> = (V1262'+_V2161)/(2\7), I (9)

where 7= (v,, +v,,)/2 is the mean transition rate. As this is non-zero in general, we
are considering biased persistent diffusion: there is an overall drift in the position of
the particle. The correlation function of the noise is given by

02y = (& + 2T %) exp(— 271t~ 1) (o)

Since ¢ is not a white noise, x(z) is no longer a Markov process. Writing
t
F[{]= exp(ikj é(t’)dt’>, \ (11)
0 ‘ .
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the characteristic function of x is {(F) where the average is over the realizations of
& Hence

b= kCOFLED. | )

Using now the “formula of differentiation” [14]

0,CEMOF[E]) = &M D, F) + 27{< &Y (F) — (¢F)} (13)
for the average of such a functional of a dichotomic noise, we have, from (12),

b= — k> (L F)> — 29, + 27k (£ §. (14)
However, we note that since ¢ is a dichotomic variable, it satisfies the identity

&2 =(cy+ ¢;)¢ —cyca. (15)

Using this in (14) and invoking (12), we obtain a linear relation between ¢, ¢, and
¢, Inverting the Fourier-transform in this relation, we obtain the required master
equation for biased persistent diffusion:

Py+(cy+¢)P,+2VP,+(v,,¢, -f-'vz1 ¢;)P,+c,c, P =0. (16)

A number of special cases may be read off from this result. If (¢> =0, so that the
diffusion is unbiased, the dP/dx term does not appear. If ¢, = —c,, the mixed
_ derivative term P_ disappears. If ¢, = —c, and also V,, =V, =V, We recover the

well-known telegraph equation for the simplest version of persistent diffusion [15],
namely,

P,+2vP,—c*P_=0. 17)

In the further limit v— o, c— o0 such that ¢?/(2v)—»D (a finite constant), the
dichotomic noise reduces to a Gaussian white noise, and the ordinary diffusion
equation (7) is obtained. Various other limits can be recovered as well—for instance,
if ¢; > 00, v,, — 00 such that the ratio ¢, /v,, = w is finite, the process x is driven by
white shot noise. The master equation (16) then yields the Markovian master equation

[10]
P+ [eg+wyy,(1+wd,)" TP, =0. (18)
Next, let us consider a linear dichotomic flow given by the stochastic equation
i(t)= —yx + (1) - 19

where y is a positive constant and &(f) is a dichotomic noise with the properties
already described. A master equation for P(x, ) that is an integro-differential equation
(in 1) is in fact already known [16] for the more general nonlinear dichotomic flow
%= f(x) + g(x)¢(t): This master equation is derived using the so-called “stochastic
Liouville equation method” [17]. Here, we merely point out that the linear case of
(19) can be easily treated by the method used to arrive at (16). Taking ¢, = —c, =c¢
and v, =v,, = v for simplicity, we obtain in this case the master equation

P, —2yxP +(2v—3y)P, + 2y(2y — v)xP,
+(*x* —c*)P_ +2y(y —v)P =0. (20)
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4. Combinations of white noise and dichotomic noise

Many physical applications entail forced diffusion of an interesting kind: while the
diffusion is going on, the velocity of the diffusing species switches randomly between
two or more values. Taylor dispersion is a classic example [18, 19, 7,20]. The simplest
instance of this situation is that of forced dichotomic diffusion, given by the stochastic
equation [21] ‘

%(t) = E(t) + (2D)'*n(t) 21)

where the dichotomic noise ¢ and the white noise 7 are independent random processes,
with properties as defined in the earlier sections. Since we can independently average
over the realizations of £ and 7, the characteristic function of x is given by

bk, 1) = <exp<ik f E(t')dt’) > exp(— Dk21), (22)

0

after the average over # is done. On going through the same steps as in the case of
the dichotomic flow, we get from (22) the following master equation:

P,—2DP_.,+(c, +¢2)P,+ 20P, + (v,,¢2 + ;1 €1) Py
+(cica—29D)P_,—D(cy +¢3) P + D*P,,..=0. (23)

This master equation is quite complicated, being of second order in time (a reflection
of the dichotomic noise &) and fourth order in space (essentially two different diffusion
processes interleaved). This kind of forced dichotomic diffusion can also be interpreted
in the following way: The diffusing particleis in the velocity state c; with an exponential
waiting time distribution exp(—v,;t), where i,j= 1,2. The probability density of a
displacement x in a single sojourn in the velocity state ¢; is the (normalized) displaced
Gaussian (4nDf)~*2exp[ — (x — ¢;t)*/(4Dt)], corresponding to ordinary diffusion in
a uniform field of force. As in (16) and (20), the master equations corresponding to
a variety of special cases can be read off from (23). For instance, when ¢; = —¢; =¢C
and v , =v,, = v, equation (23) simplifies to ‘

P,—2DP_ +2vP,+(c* —2WD)P, +D*P,,,, =0. (24)

xxt

This master equation has recently been obtained [11] as a generalization of that for
persistent diffusion, by first constructing (the Fourier-Laplace transform of) the
probability density P(x,t) with the help of the interpretation described above, and
working backwards to write down the differential equation obeyed by P. On the
other hand, our derivation identifies and starts with the appropriate simple-looking
stochastic equation to which it corresponds (namely, eq. (21)), and also places (24)
in the perspective of the more general (23). '

Finally, let us consider dichotomic diffusion, i.e., Brownian motion in which the
strength of the driving Gaussian white noise switches randomly between two values
according to an independent dichotomic Markov process. The corresponding
stochastic equation may be written as [21]

x(t) = @) E@On@), T>0) (25)

where ¢ and 7 have their usual meaning. The diffusion coefficient (and not the velocity,
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which is of course infinite in this case!) thus flips randomly between the two values
Dy =Tc? and D, =Tc. We now have

Bk 1) = <exp (ik(zr)W f é(t’)n(t’)dt’)>
0

= <exp(—1’k"‘ fléz(t’)dt'>>, (26)
0

the final line following upon averaging over the Gaussian white noise # using (4).
this is permissible because the random variable ¢ is bounded and has only finite
discontinuities. We now express ¢2 as a linear function of & (cf. eq. (15)), use the
formula of differentiation (13) suitably to obtain ¢, in terms of ¢ and ¢,, and then

invert the Fourier transform, as before. The following master equation is obtained,

corresponding to the stochastic equation (25):
Py—=D;+D,)P,, +2VP,—(v;,D, +v,,D,)P,_+D,D,P 0, @7

where v=(v,, +,,)/2 as before. Some insight into the structure of this equation is
obtained by rewriting it in the form

xxxx

(6, — D, 82)(0, — D,82) P + 25(9, — D82)P =0, (28)
where D is the mean diffusion constant defined as
D=(,0,4v,,D,)/(v,, +v,,). (29)

Formulas of differentiation like that of (13) for dichotomic noise are derivable [14]
also for other exponentially correlated noise processes [22] driving the process x(t).
The procedure described above can then be used to obtain the corresponding master
equation obeyed by P(x,t) in such cases as well. Extensions to stochastic equations
with space-dependent coefficients [23] and non-Markovian continuous time random

walks with power-law waiting time distributions [24] are of considerable interest,
and are under investigation.

Acknowledgement
I am grateful to S Lakshmi Bala for helpful discussions.
References

[1] H Lemarchand and G Nicolis, J. Stat. Phys. 37, 609 (1984)

[2] W Horsthemke and R Lefever in Noise in nonlinear dynamical systems, edited by F Moss
and P V E McClintock (Cambridge, University Press, 1989)

[3] BJWestandK Lindenberg, in Simple models of equilibrium and nonequilibrium phenomena,
edited by J L Lebowitz (Elsevier, New York, 1987)

[3a] KItoand H P McKean, Diffusion processes and their sample paths (Academic, New York,
1965)

[4] II1Gikhmanand AV Skorohod, Stochastic differential equations (Springer—Verlag, Berlin,
1972)

[5] T T Soong, Random differential equations in science and engineering (New York, Academic,
1973)

[6] L Arnold, Stochastic differential equations (Wiley, New York, 1974)

264 Pramana - J. Phys., Vol. 40, No. 4, April 1993

x

o s\ i’



Simple derivation of master equations

[71 N G Van Kampen, Stochastic processes in physics and chemistry (North-Holland,
Amsterdam, 1981) ,

[8] C W Gardiner, H andbook of stochastic methods (Springer—Verlag, New York, 1983)
[9] H Risken, The F okker-Planck equation (Springer—Verlag, New York, 1984)

[10] C Van den Broeck, J. Stat. Phys. 31, 467 (1983) ‘

[11] J Masoliver, K Lindenberg and G H Weiss, Physica A157, 891 (1989)

' [12] V Balakrishnan and S Chaturvedi, Physica A148, 581 (1988)

[13] A T Barucha—Reid, Elements of the theory of Markov processes and their applications

(McGraw-Hill, New York, 1960) ‘

[14] V E Shapiro and VM Loginov, Physica A91, 563 (1978)

[15] M Kac, Rocky Mountain J. Math. 4, 497 (1974)

[16] K Kitahara, W Horsthemke and R Lefever, Phys. Lett. A70, 377 (1979)

[17] A Brissaud and U Frisch, J. Math. Phys. 15, 524 (1974)

[18] G I Taylor, Proc. R. Soc. London A219, 186 (1953)

[19] H Brenner, Phys. Chem. H ydrodyn. 1, 91 (1980)

[20] C Van den Broeck, Dissertation (Vrije Universiteit, Brussels, 1988)

[21] V Balakrishnan, C Van den Broeck and P Hanggi, Phys. Rev. A38, 4213 (1988)

[22] F X Barcons and L Garrido, Physica A117, 212 (1983)

[23] J Masoliver and G H Weiss, Physica A183, 537 (1992) ‘

[24] M Araujo, S Havlin, G H Weiss and H E Stanley, Phys. Rev. A43, 5207 (1991)

Pramana — J. Phys., Vol. 40, No. 4, April 1993 265



