
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 129, Number 9, Pages 2623–2632
S 0002-9939(01)05970-6
Article electronically published on March 15, 2001

ANALYTIC SETS AND THE BOUNDARY REGULARITY
OF CR MAPPINGS

SERGEY PINCHUK AND KAUSHAL VERMA

(Communicated by Steven R. Bell)

Abstract. It is shown that if a continuous CR mapping between smooth real
analytic hypersurfaces of finite type in Cn extends as an analytic set, then it
extends as a holomorphic mapping.

1. Introduction

The purpose of this article is to discuss the boundary regularity of continuous
CR mappings between smooth, real analytic hypersurfaces of finite type in Cn. We
are interested in obtaining a holomorphic extension under the assumption that the
graph of the mapping extends as an analytic set in a sense to be made precise later.
The main theorem is as follows:

Theorem 1.1. Let Ω,Ω′ ⊂⊂ Cn be domains and let M ⊂ Ω, M ′ ⊂ Ω′ be relatively
closed, smooth, real analytic hypersurfaces of finite type. Let f : M → M ′ be a
continuous CR mapping and suppose that 0 ∈ M, 0′ ∈ M ′ and f(0) = 0′. If f
extends as an analytic set near (0, 0′), then f extends holomorphically across 0.

As an application, we recover the following theorem which was proved for n = 2
by Diederich-Fornaess (see [DF2]).

Theorem 1.2. Let D,D′ be bounded, algebraic domains in Cn and f : D → D′ a
proper holomorphic mapping. Then f extends holomorphically across ∂D.

Theorem 1.1 may be considered as a version for continuous CR mappings of
results contained in the works of Bedford-Bell ([BB]) and Coupet-Pinchuk ([CP]).
Bedford-Bell consider the case when f : D → D′ is known to extend C∞ smoothly
up to ∂D and on the other hand, Coupet-Pinchuk prove a similar result in their
study of proper mappings between polynomial rigid domains. Other related results
may be found in [BBR], [BJT], [H], [P], [PT] and [V].

2. Preliminary notions and terminology

We will write z = (′z, zn) ∈ Cn−1 × C for a point z ∈ Cn. Let D,D′ be do-
mains in Cn. Let z, z′ denote the coordinates in D,D′ respectively. A holomorphic
correspondence is a complex analytic set A ⊂ D × D′ of pure dimension n with
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A∩ (D×∂D′) = ∅. In this situation π : A→ D, the natural projection, is a proper,
finite-to-one branched covering above D. A may also be regarded as the graph of
a multivalued mapping, say f̂ := π′ ◦ π−1 : D → D′, where π′ : A → D′ is the
natural projection. We shall henceforth make no distinction between the analytic
set and the associated multivalued mapping. If π′ : A → D′ is also proper, then
A is said to be a proper holomorphic correspondence. The simplest example of a
proper holomorphic correspondence is the graph of a proper mapping f : D → D′.
The term analytic will henceforth mean complex analytic unless stated otherwise.

After possibly shrinking Ω,Ω′ in the main theorem, let r(z, z), r′(z′, z′) be the
smooth, real analytic defining functions for M,M ′ in Ω,Ω′ respectively. We put
Ω+ := {z ∈ Ω : r > 0}, Ω− := {z′ ∈ Ω′ : r < 0} and similarly for Ω′+ and Ω′−. For
an open set U ⊂ Ω, U± will denote U ∩ Ω±. A similar convention will be followed
for the range space.

The theorem of J. M. Trepreau ([T]) shows that any continuous CR function
defined on M admits at least a one sided holomorphic extension. Therefore, we
may assume that after shrinking Ω, f as in the main theorem holomorphically
extends to, say Ω−. We shall still denote this extension to Ω− by f and this leads
us to consider the following general situation:

General Situation: Let Ω,Ω′ and M,M ′ be as in the main theorem. Let f :
Ω− ∪ M → Ω′ be a mapping which is holomorphic in Ω− and which extends
continuously up to M with f(M) ⊂ M ′. Suppose that 0 ∈ M, 0′ ∈ M ′, f(0) = 0′

and that f extends as an analytic set near (0, 0′).
We say that f as in the general situation extends as an analytic set near (0, 0′) if

there exist neighbourhoods U,U ′ of 0, 0′ respectively and an analytic set A ⊂ U×U ′
of pure dimension n with the following property: f(U−) ⊂ U ′ and Γf ∩(U−×U ′) ⊂
A. If the projection π : A → U is proper for a suitable choice of neighbourhoods,
then f is said to extend as a correspondence near (0, 0′).

If f : D → D′ is a holomorphic mapping between domains D,D′ in Cn, Vf will
denote the analytic set in D described by the vanishing of the Jacobian Jf of f .

The techniques of Segre varieties will be useful and here are a few notions and
properties that are referred to in the proof of the main theorem: Let D be a domain
in Cn with 0 ∈ ∂D and suppose that ∂D is smooth, real analytic near the origin.
Let r(z, z) be the defining function of ∂D in a neighbourhood of the origin, say
U . If U is small enough the complexification r(z, w) of r is well defined by means
of a convergent power series in U × U . Note that r(z, w) is holomorphic in z and
antiholomorphic in w. For any w ∈ U , the associated Segre variety is defined as

Qw = {z ∈ U : r(z, w) = 0}.(2.1)

By the implicit function theoremQw can be written as a graph; more precisely, there
exists a function h(′z, w) holomorphic in the ′z variables and antiholomorphic in w
such that

Qw = {(′z, zn) ∈ U = ′U × Un : zn = h(′z, w)}.(2.2)

This is a closed, complex hypersurface in U which does not depend on the choice
of the defining function. For ζ ∈ Qw, the germ of Qw at ζ will be denoted by
ζQw. Let S := {Qw : w ∈ U} be the set of all Segre varieties and λ : w 7→ Qw the
so-called Segre map. We refer the reader to [DF1], [DW] for further properties of
Segre varieties and for a proof of the fact that S admits the structure of a finite
dimensional complex analytic set. Let Iw := {z : Qz = Qw} be the fibre of λ over

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



ANALYTIC SETS AND BOUNDARY REGULARITY OF CR MAPPINGS 2625

Qw. We say that D is essentially finite at 0 if I0 contains 0 as an isolated point. In
this case Iw, for all w close to 0, will be finite near 0. Furthermore λ will be a proper,
finite-to-one, antiholomorphic mapping from a suitably chosen neighbourhood of
the origin onto its image in S. We shall also have occasion to use the notion of
the reflected point which was introduced in [DP1]. Briefly, for a given system of
coordinates near 0, the reflection of a point w = (′w,wn) ∈ Cn−1×C , which is close
to 0, is defined to be that point which has coordinates (′w, κwn) and lies on Qw.
This is a real analytic diffeomorphism and it depends on the choice of a coordinate
system near 0. The reflected point will be denoted by κ(w). For w outside D,
the component of Qw ∩ D which contains κ(w) will be denoted by Qcw and will be
referred to as the canonical component of Qw ∩ D. Real analytic hypersurfaces of
finite type are essentially finite. Moreover, essentially finite hypersurfaces do not
contain germs of complex hypersurfaces.

Finally for all the notions and terminology introduced here, we simply add a
prime to consider the corresponding notions in the target space.

3. Analytic sets which extend Γf are correspondences

The proof of Theorem 1.1 consists of two steps: first, to show that the extending
analytic set A is a correspondence and then to apply the result of [DP2] which
shows that all extending correspondences are holomorphic mappings.

If A ⊂ U × U ′ is the extending analytic set in the general situation, we may
assume that A is irreducible without loss of generality. We begin by showing that
A has points lying over U+.

Proposition 3.1. In the general situation, let U1 ⊂⊂ U , U ′1 ⊂⊂ U ′ be arbitrarily
small neighbourhoods of 0, 0′ respectively. Then A ∩ (U+

1 × U ′1) 6= ∅.

Proof. Let U1, U
′
1 be such that A ∩ (U1 × U ′1) ⊂ U−1 × U ′1. Since f is continuous,

we may shrink U1, U
′
1 so that f(U−1 ) ⊂ U ′1. Furthermore, there is an irreducible

component of A ∩ (U1 × U ′1) which contains Γf ∩ (U−1 × U ′1). We still denote this
irreducible component by A. Hence A 6⊂ (U1∩M)×U ′1. Let L be a complex line in
Cn which contains 0 and is transverse to M . Let Ã be an irreducible component of
A∩ ((U−1 ∩L)×U ′1) containing Γf ∩ ((U−1 ∩L)×U ′1). Then Ã has pure dimension 1
and it contains the point (0, 0′). Moreover Ã 6⊂ (U1∩M)×U ′1. Now two cases arise:
First, if Ã∩ ((U1 ∩M)×U ′1) is discrete, then we may apply the continuity principle
to conclude that (0, 0′) is in the envelope of holomorphy of U−1 × U ′1. Second, if
Ã∩ ((U1 ∩M)×U ′1) is not discrete, the finite type assumption on M shows that no
open subset of Ã can be contained in Ã∩ ((U1∩M)×U ′1). The strong disc theorem
in [Vl] shows that (0, 0′) is again in the envelope of holomorphy of U−1 × U ′1.

Given an arbitrary g ∈ O(U−1 ), we may regard g ∈ O(U−1 ×U ′1), i.e., independent
of the z′ variables. Then g extends to a neighbourhood of (0, 0′), and the uniqueness
theorem shows that the extension of g, say g̃, is also independent of the z′ variables.
Hence g is holomorphic near 0. In particular, f extends holomorphically across 0
and this finishes the proof of the proposition.

One consequence of this is the following:

Proposition 3.2. In the general situation, either f is constant or the Jacobian
determinant Jf 6≡ 0 in Ω−. Moreover f holomorphically extends across an open,
dense subset of M near 0.
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Proof. Let U,U ′ be neighbourhoods of 0, 0′ and A ⊂ U × U ′ be the extending
analytic set. Let π : A → U be the natural projection. Then there are points
z ∈ π(A) such that π−1(z) has 0 dimension. Indeed, if not, then π−1(z) is at least
1 dimensional for all z ∈ π(A) and hence by [L], p. 266, it follows that

dim A ≥ 1 + dim π(A)(3.1)

and so dim π(A) ≤ n − 1. This is a contradiction since π(A) contains Γf over
U−. For (z, z′) ∈ A, let (π−1(z))(z,z′) denote the germ of the analytic set π−1(z)
at (z, z′). Let

S := {(z, z′) ∈ A : π : A→ U is not locally biholomorphic near (z, z′)}.
(3.2)

Then S = S1 ∪ S2 where

S1 := {(z, z′) ∈ A : dim (π−1(z))(z,z′) ≥ 1}(3.3)

and

S2 := {(z, z′) ∈ A : π : A→ U is finite-to-one near (z, z′)}.(3.4)

By the theorem of Cartan-Remmert (see [L], p. 271), S1 is an analytic set in U×U ′
and moreover its dimension does not exceed n − 1. S2 is a constructible set (see
[L], p. 265) and since π : A→ U is locally proper at each point of A\S1, it follows
that S2 has dimension at most n−1. Hence A\S is path connected. Fix z ∈ U ∩M
arbitrarily and let z ∈ Uz ⊂⊂ U, f(z) ∈ U ′f(z) ⊂⊂ U ′ be neighbourhoods such that
f(U−z ) ⊂ U ′f(z). There is an irreducible component of A ∩ (Uz × U ′f(z)), which will
still be denoted by A and which contains Γf over U−z . Fix (w1, f(w1)) ∈ (Γf\S) ∩
(U−z ×U ′f(z)) and by Proposition 3.1, choose (w2, w

′
2) ∈ (A\S)∩ (U+

z ×U ′f(z)). Join
these points by a path γ ⊂ (A\S). Then π(γ) ∩M 6= ∅; say z0 ∈ π(γ) ∩M . Then
f can be analytically continued along π(γ) from w1 to z0. Hence z0 is a point of
holomorphic extendability for f . It follows from [BR] that either f is a constant or
Jf 6≡ 0 in Ω−. Furthermore since z was chosen arbitrarily on M , it follows that f
extends across an open, dense set of U ∩M .

Remark. Proposition 3.2 also holds if M is assumed to be only essentially finite.

Henceforth Σ will denote the points ofM across which f extends holomorphically.
In the general situation, the continuity of f implies that we can shrink the neigh-
bourhoods U,U ′ and arrange for the following two conditions to hold: f(U−) ⊂ U ′
and A, the extending analytic set is defined in a neighbourhood of U × U ′, i.e.,
there exists a neighbourhood of (0, 0′) of the form U0 × U ′0 with 0 ∈ U ⊂⊂ U0 and
0′ ∈ U ′ ⊂⊂ U ′0 such that A is a closed analytic set in U0 × U ′0. Without loss of
generality the Segre map λ′ : U ′ → S′ is proper onto its image. Define the Segre
correspondence:

Definition 3.1. A+ = {(w,w′) ∈ U+ × U ′ : f(Qcw) ⊂ Q′w′}.

To begin with, it may happen that f(U−) intersects both U ′
± and hence in

the definition of A+ we have to allow w′ to be in all of U ′. Furthermore, A+ is
not an empty set as it contains the graph of the extension of f across Σ. Let
V + := π(A+) ⊂ U+.

Proposition 3.3. A+ is a closed analytic set in U+ × U ′ of pure dimension n.
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Proof. First, A+ is closed in U+ × U ′. Indeed, if (wν , w′ν) ∈ A+ are converging to
(w0, w

′
0) which is a limit point of A+ in U+ × U ′, then

f(Qcwν ) ⊂ Q′w′ν(3.5)

holds for all ν. The continuity of Segre varieties and of f shows that by passing to
the limit we still have

f(Qcw0
) ⊂ Q′w′0 .(3.6)

Thus A+ ⊂ U+ × U ′ is closed.
Now suppose that (w0, w

′
0) ∈ A+ is such that Qcw0

6⊂ Vf . By definition a point
(w,w′) in a neighbourhood of (w0, w

′
0) belongs to A+ if and only if

f(Qcw) ⊂ Q′w′.(3.7)

This is equivalent to the statement that

r(z, w) = 0 =⇒ r′(f(z), w′) = 0.(3.8)

Combining this with (2.2) we get that

r′(f(′z, h(′z, w)), w′) = 0 ∀ ′z.(3.9)

This is an infinite family of antiholomorphic functions in (w,w′) describing the set
A+. By [C], section 5.7, A+ is analytic near (w0, w

′
0).

Let E ⊂ V + be the set of those points w for which Qcw ⊂ Vf .

Claim. E is a locally finite set in U+.

Indeed, if there is a sequence wν → w0 ∈ E, then all the canonical components
Qcwν ⊂ Vf . However, Vf has only finitely many components in a fixed small ball
around the reflected point κ(w0) and hence infinitely many wν should have the
same Segre variety. This contradicts the finite type assumption on M . Thus so far
A+ ∩ ((U+\E)× U ′) is an analytic set in the domain (U+\E)× U ′.

Last, consider the fibre in A+ over an arbitrary w0 ∈ E. Let (w0, w
′
0) ∈ A+ be

such that w0 ∈ E. Choose a sequence (wν , w′ν) ∈ A+ ∩ ((U+\E)× U ′) converging
to (w0, w

′
0). By the definition of A+ and the continuity of Segre varieties we have

f(Qcw0
) ⊂ Q′w′0 .(3.10)

Fix an arbitrary x0 ∈ f(Qcw0
). Then the above equation shows that w′0 ∈ Q′x0

and
thus the entire fibre in A+ over w0 is at worst the entire Segre variety Q′x0

. Note
that the Hausdorff dimension of Q′x0

is 2n− 2. Now A+ has dimension n and since
E is locally finite, it follows by Shiffman’s theorem (see [C]) that A+ is analytic in
U+ × U ′.

Remark. The proof of the above proposition shows that the fibre in A+ over points
in V +\E is discrete.

Proposition 3.4. The projection π : A+ ∩ ((V +\E)× U ′)→ V +\E is proper.

Proof. Let K ⊂ V +\E be a compact set such that π−1(K) is not compact. Choose
a sequence (wν , w′ν) ∈ π−1(K) so that (wν , w′ν) → (w0, w

′
0) ∈ K × ∂U ′. Since

w0 ∈ V +, there is a point (w0, w̃0) ∈ A+. Then

f(Qcwν ) ⊂ Q′w′ν(3.11)

and passing to the limit we have

f(Qcw0
) ⊂ Q′w′0 .(3.12)
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This invariance property also holds for (w0, w̃0) and therefore

f(Qcw0
) ⊂ Q′w̃0

.(3.13)

Combining (3.12) and (3.13) and observing that w0 6∈ E, it follows that Q′w′0 = Q′w̃0
.

This contradicts the properness of the Segre map λ′ : U ′ → λ′(U ′) ⊂ S′.

Definition 3.2. A− = {(w,w′) ∈ U− × U ′ : Q′w′ = Q′f(w)}.

Note that a point (w,w′) belongs to A− if and only if w′ ∈ λ′−1(λ′(f(w)). Since
the Segre map λ′ : U ′ → S′ is a proper, anti-holomorphic map onto its image in the
set of all Segre varieties S′, it follows that A− is a closed analytic set in U− × U ′
of pure dimension n. Moreover the projection

π : A− → U−(3.14)

is proper and A− contains Γf ∩ (U− × U ′). Also by the definition of A+, A− it
follows that they can be ‘glued’ together over points which belong to Σ. Thus
A∗ := A+ ∪A− is an analytic set in the domain Ũ × U ′ where Ũ := V + ∪Σ ∪ U−.

Proposition 3.5. The projection π : A∗ → Ũ is proper.

Proof. We first show that the projection π : A∗ ∩ ((Ũ\E)× U ′)→ Ũ\E is proper.
Indeed, let K ⊂ Ũ\E be a compact set such that π−1(K) is not compact. Choose
a sequence (wν , w′ν) ∈ π−1(K) converging to (w0, w

′
0) ∈ K × ∂U ′. By Proposition

3.4 and the remarks made after Definition 3.2, we may assume that w0 ∈ Σ. There
are two cases to be considered.

Case 1. (wν , w′ν) ∈ A+ after passing to a subsequence. Since w0 ∈ Σ it follows that
f(wν) (for large ν) and f(w0) are defined and (wν , f(wν)) → (w0, f(w0)). Then
the invariance property

f(Qcwν ) ⊂ Q′f(wν)(3.15)

holds for all ν. Also by the definition of A+

f(Qcwν ) ⊂ Q′w′ν(3.16)

and combining these equations it follows from the properness of f near w0 that
Q′f(wν) = Q′w′ν . Passing to the limit we get Q′f(w0) = Q′w′0

and this contradicts the
properness of the Segre map λ′ : U ′ → λ′(U ′) ⊂ S′.

Case 2. After passing to a subsequence (wν , w′ν) ∈ A−, i.e., wν ∈ U− ∪ Σ. In this
case by the definition of A−

Q′w′ν = Q′f(wν).(3.17)

Passing to the limit we get Q′f(w0) = Q′w′0
. Since w0 ∈ Σ, f(w0) ∈ U ′ and this again

contradicts the properness of the Segre map λ′.

The symmetric functions of the finitely many branches of the multivalued map-
ping π′ ◦ π−1 : Ũ\E → U ′ are bounded holomorphic functions in Ũ\E. Since E is
locally finite they extend holomorphically across E. Thus π′ ◦ π−1 : Ũ → U ′ is a
well defined correspondence whose graph coincides with A∗. Hence the projection
π : A∗ → Ũ is proper.

Using these observations we can show that:

Proposition 3.6. A∗ contains the set A\S.
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Proof. The definition of A∗ shows that it contains a component of A ∩ (Ũ × U ′).
Hence we may choose (p, p′) ∈ A∗ ∩ (A\S) and let (q, q′) ∈ A\S be an arbi-
trary point. Now dimS < n implies that dim(π−1(π(S))) < n and consequently
A\π−1(π(S)) is path connected. Thus we may join the chosen points by a path
γ : [0, 1]→ (A\π−1π(S))∪{(p, p′)}∪{(q, q′)} with γ(0) = (p, p′) and γ(1) = (q, q′).

Claim. π(γ) ∈ Ũ .

To prove this let

I ⊂ {t ∈ [0, 1] : π(γ) ∈ Ũ}(3.18)

be a connected component containing 0. It is clear that I is open. Note that for
t ∈ I, γ(t) ∈ A∗. Let us suppose that I = [0, t0) where t0 < 1. Then π(γ(t0)) ∈
U ∩ ∂Ũ . Since M\Σ ⊂ π(S) it follows that π(γ) does not intersect M\Σ. Thus the
only possibility is that π(γ(t0)) ∈ ∂Ũ ∩ U+. In this situation γ(t0) ∈ U+ × ∂U ′.
This is clearly a contradiction as γ lies in U × U ′.

Thus I = [0, 1] and this implies that π(γ) can be lifted to a path in A∗ starting
at (p, p′) and hence by the uniqueness theorem for analytic sets it follows that
(A\S) ⊂ A∗.

By the construction of A∗ it follows that for all (w,w′) ∈ (A\S)∩ (U+×U ′) the
invariance property

f(Qcw) ⊂ Q′w′(3.19)

holds. Since S is nowhere dense in A it follows that

f(Qcw) ⊂ Q′w′(3.20)

holds for all (w,w′) ∈ A ∩ (U+ × U ′).

Proposition 3.7. In the general situation, π′ : A → U ′ is proper for a suitable
choice of neighbourhoods U,U ′.

Proof. It will suffice to show that the analytic set σ := π′
−1(0′) is 0 dimensional.

Since σ is an analytic set in U×{0′} it can be regarded as an analytic set in U . If σ
is not discrete near 0 it has an irreducible component, say σ1, of positive dimension
containing 0. First, since M is of finite type, it follows that no open subset of σ1

is contained in M . Second, if σ1 ⊂ U− ×U ′ we may apply the strong disc theorem
in [Vl] to conclude that (0, 0′) is in the envelope of holomorphy of U− × U ′. As in
Proposition 3.1, it follows that f extends holomorphically across 0. Thus we may
assume that σ1 ∩ U+ 6= ∅. Then by (3.20), we can write

f(Qcw) ⊂ Q′0′(3.21)

for all w ∈ σ1 ∩ U+. Moreover the union of the canonical components of Qw for
w ∈ σ1 ∩ U+ contains an open set in U−. By Proposition 3.2 it is known that
Jf 6≡ 0, and hence by (3.20) and the finiteness of the Segre map λ : U → S, it
follows that σ1 ∩ U+ is a finite set. Thus σ is discrete and this shows that by
suitably shrinking U,U ′, the projection π′ : A→ U ′ is proper.

Since M ′ is of finite type, Trepreau’s theorem ([T]) shows that after shrinking
U ′, one or both of U ′±, say U ′+, has the property that all holomorphic functions
defined on U ′+ extend holomorphically to U ′. By the previous proposition, we may
choose neighbourhoods U,U ′ so that π : A → U ′ is proper and at the same time
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2630 SERGEY PINCHUK AND KAUSHAL VERMA

U ′
+ satisfies the above mentioned ‘extension’ property. By Proposition 3.2, choose

a ∈ U ∩M such that f extends biholomorphically near a and denote a′ := f(a).
Choose neighbourhoods a ∈ Ua, a′ ∈ U ′a′ so that

f : Ua → U ′a′(3.22)

is a biholomorphic mapping. Consider f−1 which is well defined in U ′
−
a′ and may

be considered as a locally holomorphic branch of Ĝ := π ◦ π′−1 : U ′ → U . This
germ of f−1 in U ′−a′ may be analytically continued along all paths in U ′− to give
an irreducible correspondence ĝ : U ′− → U . Note that the graph of ĝ is contained
in A. Furthermore, a different choice of a point of biholomorphic extendability for
f in U ∩ M may apriori give a different correspondence defined in U ′

− by this
process. Nevertheless it will suffice to work with ĝ as above. Note that ĝ extends
continuously to U ′ ∩M ′, but it is not known that the cluster set of U ′ ∩M ′ under
ĝ is contained in U ∩M .

The aim is to show the invariance property of Segre varieties under Ĝ. From
(3.21) it follows that

f−1(Q′f(z) ∩ U ′a′) = Qz ∩ Ua(3.23)

for all (z, f(z)) ∈ Ua×U ′a′ . Thus the invariance property holds near (a, a′) for some
branch of the correspondence ĝ. Now exactly the same arguments that were used
in Theorem 4.1 and Lemma 5.4 in [DP1] can be applied to show the following:

Proposition 3.8. For all (w,w′) ∈ A, the relation Ĝ(Q′w′) ⊂ Qw holds.

To avoid repetition we simply provide the following reasoning given in [DP1] as
to why such a statement should be true. Let U∗ := {ω : ω ∈ U} and similarly define
U ′
∗
, A∗. For ω ∈ U∗ let ρ(z, ω) := r(z, ω) and similarly define ρ′(z′, ω′). Consider

the analytic set

M := {((z, z′, ω, ω′) ∈ U × U ′ × U∗ × U ′∗ : (z, z′) ∈ A, (ω, ω′) ∈ A∗, ρ′(z′, ω′) = 0}.
(3.24)

Proposition 3.8 will follow if it can be shown that ρ(z, ω) vanishes on M. Now
some branch of ĝ, say g1, extends across a′ and thus for all z′ ∈ U ′a′ we may
write r(g1(z′), g1(z′)) = α′(z′, z′)r′(z′, z′). Here α′(z′, z′) is some non-vanishing
real analytic function. Complexification of this equation shows that

ρ(g1(z′), g∗1(ω′)) = α′(z, ω)ρ′(z′, ω′)(3.25)

where g∗1(ω′) := g1(ω′). Note that ρ(z, ω) vanishes on the open setM∩ (Ua×U ′a′×
U∗a ×U ′

∗
a′) and hence it would vanish everywhere onM if it can be shown thatM

is irreducible. This is done in Lemma 5.4 and Theorem 4.1 in [DP1].
Using this it can be shown that π : A → U is locally proper near (0, 0′). The

proof is exactly the same as that of Theorem 5.1 in [DP1].

Proposition 3.9. In the general situation, the natural projection π : A → U is
locally proper near (0, 0′).

This shows that in the general situation, both π and π′ are locally proper near
(0, 0′). Hence there are neighbourhoods 0 ∈ U1 ⊂⊂ U2 ⊂⊂ Ω and 0′ ∈ U ′1 ⊂⊂
U ′2 ⊂⊂ Ω′ so that A ⊂ U2×U ′2 and both π : A∩(U1×U ′1)→ U1, π′ : A∩(U2×U ′2)→
U ′2 are proper. The proof of Theorem 1.1 is not complete yet; we cannot apply the
result of [DP2] since it is not known that f(U−) ⊂ U ′−. Let F̂ := π′◦π−1 : U1 → U ′1
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which is a finite, multivalued mapping associated with A. Note that F̂ extends
f : U−1 → Ω′ as a correspondence. Then the proof of Theorem 4.1 in [DP1] shows
that:

Proposition 3.10. For all (w,w′) ∈ A ∩ (U1 × U ′1), the relation F̂ (Qw) ⊂ Q′w′
holds.

Thus the invariance property of Segre varieties holds for both F̂ and Ĝ. This
will allow us to show that:

Proposition 3.11. With neighbourhoods of 0, 0′ chosen as above F̂ (U1 ∩ M) ⊂
U ′1 ∩M ′ and Ĝ(U ′2 ∩M ′) ⊂ U2 ∩M .

Proof. To show that F̂ (U1 ∩M) ⊂ U ′1 ∩M ′, choose w0 ∈ U1 ∩M and w′0 ∈ F̂ (w0).
Then Proposition 3.10 shows that F̂ (Qw0) ⊂ Q′w′0 = Q′f(w0). However, f(w0) ∈M ′
and therefore w′0 ∈ U ′1 ∩M ′.

To show that Ĝ(U ′2 ∩M ′) ⊂ U2 ∩M , we use Proposition 3.7 according to which
π′ : A → U ′ is locally proper. Therefore f(M ∩ U) contains an open subset of 0′

in M ′. By shrinking U1, U
′
1, U2, U

′
2 it follows that for all z′ ∈ U ′2 ∩M ′ there exists

z ∈ Ĝ(z′) such that z ∈ U2 ∩M . Now for z̃ ∈ Ĝ(z′), z′ ∈ U ′2 ∩M ′, Proposition 3.8
shows that Ĝ(Q′z′) ⊂ Qz̃. By the observation made before there exists z ∈ Ĝ(z′)∩M
and hence Ĝ(Q′z′) ⊂ Qz. Thus Qz = Qz̃ and this shows that z̃ ∈M .

This shows that f(U−)∩M ′ = ∅ and by possibly interchanging the roles of U ′±

it follows that f : U− → U ′ is a proper mapping which extends as a correspondence.
By [DP2], it follows that f extends holomorphically across 0. This concludes the
proof of Theorem 1.1.

For the proof of Theorem 1.2, we see that by [BS] f is algebraic. Furthermore,
by [DF2] it is known that f also extends continuously up to ∂D. Then by Theorem
1.1 f extends holomorphically across ∂D.
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