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Hyperbolic Automorphisms and
Holomorphic Motions inC2
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1. Introduction

Holomorphic motions have been an important tool in the study of complex dynam-
ics in one variable. In this paper we provide one approach to using holomorphic
motions in the study of complex dynamics in two variables. To introduce these
ideas more fully, let1r be the disk of radiusr and center 0 in the plane, letP1 be
the Riemann sphere, and recall that a holomorphic motion of a setE ⊂ P1 is a
functionα : 1r×E→ P1 such thatα(0, z) = z for eachz∈E, α(λ, ·) : E→ P1

is injective for each fixedλ∈1r, andα(·, z) : 1r → P1 is holomorphic for each
fixed z ∈E. For future reference, we note that this definition (as well as most re-
sults about holomorphic motions) applies equally well when the parameterλ is
allowed to vary in the complex polydisk:λ∈1nr.

One of the first uses of holomorphic motions in the study of complex dynamics
was in [MSS], where holomorphic motions were used to prove the density of
structurally stable maps within the family of polynomial maps ofC of degreed. In
general, a mapf : M → M, M a manifold, is structurally stable within a family
F of maps if there is some neighborhood off, sayU ⊂ F, such that any map in
U is conjugate tof via a homeomorphism ofM. Mañé-Sad-Sullivan [MSS] ob-
tained structural stability for polynomial maps by showing that (subject to certain
restrictions) the holomorphic motion defined naturally on the Julia set of a poly-
nomial map extends to give a conjugacy on all ofC to nearby polynomial maps.
More precisely, they did this by starting with the canonical holomorphic motion
defined on hyperbolic periodic points and on periodic points satisfying a critical
orbit relation; by theirλ-lemma, this holomorphic motion extends uniquely to a
holomorphic motion of the closure of the periodic points. The authors then con-
structed (by hand) certain holomorphic motions which give partial conjugacies
and which extend by iteration to give a holomorphic motion of a dense set of the
plane, which again extends uniquely to give a topological conjugacy on the whole
sphere.

Shortly after this work, Bers and Royden [BeR] used the notion of a harmonic
Beltrami coefficient (defined in Section 6) to show that, given any holomorphic
motion of a setE, there is a canonical extension of this motion to a holomorphic
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motion of the sphere, although with a restriction toλ ∈ 1r/3. The characteriza-
tion of this extension is that in any componentS of the complement ofĒ, the
Beltrami coefficient(∂α/∂z̄)/(∂α/∂z) is a harmonic Beltrami coefficient. Using
this result, McMullen and Sullivan [McS] proved the density of structurally stable
maps within the family of rational maps ofP1 of degreed as follows. As before,
given a familyfλ (λ ∈1) with certain regularity properties, there is a canonical
holomorphic motion on the closure of the set consisting of periodic points and or-
bits of critical points. By the Bers–Royden result, this motion extends canonically
to a motionαλ of the entire sphere. Thenf −1

λ B αλ B f0(z) defines a second holo-
morphic motion which agrees with the original motion on the periodic points and
critical orbits and which also has a harmonic Beltrami coefficient. By the unique-
ness of the Bers–Royden extension, this second holomorphic motion agrees with
the first, and henceαλ is a global topological conjugacy.

Turning to higher dimensions, one natural family of maps with interesting dy-
namics inC2 is the family of (generalized) Hénon maps: compositions of holo-
morphic diffeomorphisms of the formf(z,w) = (w, p(w) − az), wherep is a
polynomial of degreed ≥ 2 anda 6= 0. We note here that, for questions of struc-
tural stability, we will restrict ourselves to families of maps all having the same
degree. This corresponds, for example, to considering structural stability of qua-
dratic polynomials in one variable. With this restriction, the topology on Hénon
maps can be specified either in terms of the coefficients of the defining maps or in
terms of the compact-open topology applied to the map and its inverse. Section 2
provides a more detailed account of Hénon maps and hyperbolicity. For further
references, see the bibliography in [BuS].

There is an immediate generalization of holomorphic motions to two dimen-
sions: simply allow each pointz ∈E to vary holomorphically withinC2. In fact,
by work of Jonsson [J], given a familyfλ of hyperbolic Hénon maps, the setJλ
(which is the closure of the set of saddle periodic points offλ) varies as a holomor-
phic motion in this sense. However, this generalization fails to have many of the
important properties of 1-variable holomorphic motions; in particular, given this
kind of holomorphic motion on a setE, there is in general no unique extension to
Ē and no canonical extension in the sense of Bers and Royden.

Our approach in this paper is to use the technique of McMullen and Sullivan to
construct holomorphic motions on dynamically defined 1-dimensional subsets of
C2 and then show that these maps define homeomorphisms on the union of these
1-dimensional subsets. To be more precise, letf be a hyperbolic Hénon map, let
J + (resp.J−) be the boundary of the set of points with bounded forward (resp.
backward) orbit, and letJ = J + ∩ J−. ThenJ + andJ− are laminated by Rie-
mann surfaces; each of these Riemann surfaces is conformally equivalent to the
plane and is the stable or unstable manifold of a point inJ. Given a 1-parameter
family fλ of such maps, the points of intersection betweenJ−λ andJ +λ define a
holomorphic motion in each leaf, which extends canonically to the entire leaf by
the Bers–Royden theorem. As in [McS], this defines a conjugacy betweenf0 on
a leaf ofJ +0 andfλ on a leaf ofJ +λ . However, since each leaf ofJ +0 is dense in
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J +0 , it is not clear that the resulting conjugacy gives a homeomorphism ofJ +0 to
J +λ . To establish that this map is a homeomorphism, we use the notion of an affine
structure (see [G1; G2; BS5]) to provide a coherent framework for discussing
holomorphic motions on the leaves of the lamination. We show that the affine
structure ofJ +λ varies holomorphically withλ and that, suitably normalized, the
global parametrizing functions for the leaves ofJ +λ converge locally uniformly
when approaching a limit leaf. With this, the continuity of the conjugacy follows
essentially from the uniqueness of the Bers–Royden extension.

The first main result of this paper is the following theorem, which is an ana-
log of the results of [MSS] and [McS], and which states that a hyperbolic Hénon
map restricted toJ + ∪ J− is conjugate to nearby Hénon maps via a holomorphic
motion of each leaf ofJ + ∪ J−.
Theorem1.1. Letfλ be a1-parameter family of hyperbolic Hénon maps depend-
ing holomorphically onλ∈1n. Then there existsr > 0 and a map

9 : 1nr × (J +0 ∪ J−0 )→ J +λ ∪ J−λ
such that, defining9λ(p) = 9(λ, p), we have:

(1) 90(p) = p;
(2) 9λ is a homeomorphism for each fixedλ;
(3) 9λ(p) is holomorphic inλ for each fixedp ∈ J +0 ∪ J−0 ;
(4) 9λ maps each leaf ofJ−0 (J +0 ) to a leaf ofJ−λ (J +λ ); and
(5) 9λf0 = fλ9λ onJ +0 ∪ J−0 .
The first three properties are direct analogs of holomorphic motions in one vari-
able, while the fourth property shows that the map respects the dynamically de-
fined stable and unstable laminations.

In the study of the dynamics of polynomials in the plane, the polynomials with
connected Julia set play a special role. In [BS4], Bedford and Smillie defined the
notion of an unstably connected Hénon map, which is an analog of a polynomial
with a connected Julia set in one variable. They also showed that, given a hyper-
bolic Hénon map that is unstably connected, the lamination ofJ + extends to a lam-
ination ofJ + ∪U+,whereU+ is the set of points with unbounded forward orbits.
With this additional structure, we obtain a conjugacy as before onJ + ∪ U+.
Theorem 1.2. In addition to the hypotheses of Theorem1.1, assume thatf0 is
unstably connected. Then the conclusions of that theorem remain valid whenJ +0
andJ +λ are replaced byJ +0 ∪ U+0 andJ +λ ∪ U+λ , respectively.

In particular, whenf0 is hyperbolic and unstably connected, this gives a canonical
conjugacy betweenf0 andfλ on all ofC2 except for the basins of any attracting
periodic points.

We are grateful to Curt McMullen for a helpful discussion on holomorphic
motions.
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2. Preliminaries

We recall some standard terminology and some known results, which are discussed
more fully in [BS1; BS2; BS5]. Friedland and Milnor [FrM] divided the poly-
nomial automorphisms ofC2 into two classes: elementary (which have relatively
simple dynamics) and nonelementary. For brevity, we will use the term “Hénon
map” to describe a nonelementary polynomial automorphism ofC2. Such maps
can be characterized by having dynamical degreed ≥ 2, where the dynamical de-
gree of a polynomial automorphism ofC2 is defined as in [BS2] by

d = lim
n→∞(degf n)1/n;

here degf n denotes the maximum of the degrees of the two (polynomial) compo-
nents off n.

Given a Hénon mapf, we letK+/K− denote the set of points inC2 with
bounded forward/backward orbits underf, and we letJ ± = ∂K± and J =
J + ∩ J−. Since detDF is constant onC2, we may replacef by f −1 if necessary
to obtain|detDf | ≤ 1. From [BS1] and [BS2] it follows that, iff is hyperbolic
when restricted toJ, thenf isAxiomA; in this case, the nonwandering set consists
of the basic setJ plus a finite setS of periodic sinks. The stable set ofJ, W s(J ), is
J + = ∂K+, and the interior ofK+ consists of the basins of the sinks. The unsta-
ble set ofJ, W u(J ), is J− \ S, and the interior ofK− is empty. The setsWs/u(J )

have dynamically defined Riemann surface laminationsW s/u, whose leaves con-
sist of stable/unstable manifolds of points inJ. Each leaf of either lamination is
conformally equivalent toC. Also, J has local product structure, which means
that there exist positiveδ andε such that, ifx, y ∈ J with ‖x − y‖ < δ, then
Ws
ε (x) andWu

ε (y) intersect in a unique point that is contained inJ. HereWs
ε (x)

is the local stable manifold ofx defined as{p : ‖f n(x)− f n(p)‖ < ε ∀n ≥ 0},
with an analogous definition for the local unstable manifold. As usual, we will use
Ws(p) andWu(p) for the stable and unstable manifolds of a pointp.

Note that, iffλ is a 1-parameter family of Hénon maps depending holomor-
phically onλ ∈ 1 and if f0 is hyperbolic, thenfλ is also hyperbolic for allλ
in some neighborhood of 0. Also, by [BS1],f0 is �-stable, meaning that there
is a 1-parameter family of homeomorphismsψλ : J0 → Jλ conjugatingf0|J0 to
fλ|Jλ. In fact, by [J], for eachp ∈ J0 the mapλ 7→ ψλ(p) is holomorphic inλ.
Hence there is a natural holomorphic motion defined onJ0. Moreover, by restrict-
ing the domain ofλ and possibly shrinkingδ andε, we may assume that theδ and
ε chosen for the local product structure onJ0 apply equally toJλ for eachλ. For
the remainder of the paper, we letδ0 andε0 represent such a choice ofδ andε.

3. Unstable Connectivity and Critical Points

For Theorem 1.2, we need also the notion of an unstably connected Hénon map.
Let U+ = C2 \ K+ be the set of points with unbounded forward orbit. Bedford
and Smillie [BS4] defined a Hénon map to be unstably connected with respect to a
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saddle pointp if some component ofWu(p)∩U+ is simply connected. By [BS4,
Thm. 0.1], this is equivalent to the condition that, foranysaddle periodic pointp,
eachcomponent ofWu(p) ∩ U+ is simply connected, and in this case they say
thatf is unstably connected.By [BS4, Thm. 0.2], the assumption|detDf | ≤ 1
implies thatf is unstably connected if and only ifJ is connected. As mentioned
earlier, iff is hyperbolic thenf is�-stable, so iff is hyperbolic with connected
J then all nearby Hénon maps are also hyperbolic with connectedJ. Summarizing
this argument, we have the following.

Proposition 3.1. Letf be a Hénon map of dynamical degreed,with |detDf | ≤
1, and suppose thatf is hyperbolic and unstably connected. Then there is a neigh-
borhoodU of f in the space of Hénon maps of degreed such that eachg ∈ U is
hyperbolic and unstably connected.

As observed in [H] (see also [HO] and [BS1]), there is a plurisubharmonic func-
tionG+ onC2 defined by

G+(p) = lim
n→∞

1

d n
log+‖f n(p)‖,

and this function is pluriharmonic onU+ and satisfiesG+ B f(p) = d · G+(p)
andG+(x, y) = log+|y|+O(1) for (x, y)∈V +R = {|y| > R, |x| < |y|}, R large.
There is an analogous definition ofG− with f −n in place off n. SinceG+ is
pluriharmonic onU+, it is locally the real part of a holomorphic function. In fact,
in [HO, Prop. 5.4] it is shown thatG+ = Re log(φ+) in V +, whereφ+(x, y) =
y + O(1). Hence the level sets ofφ+ define a nondegenerate holomorphic folia-
tionG+ defined inV +. SinceU+ is the union of all backward images ofV + under
f, and sincef is a diffeomorphism, this foliation pulls back to give a holomorphic
foliation G+ onU+.

Finally, letW s denote the lamination ofJ + by stable manifolds ofJ.We restate
here a proposition due to Bedford and Smillie to the effect that, iff is hyperbolic
and unstably connected, then the foliationG+ and the laminationW s fit together
to form a lamination ofJ + ∪ U+.
Proposition 3.2 [BS4, Prop. 2.7]. If f is hyperbolic and unstably connected,
then there is a locally trivial lamination ofJ + ∪ U+ whose leaves are the leaves
of W s andG+.
For polynomials of one complex variable, there is a close connection between
connectivity of the Julia set and the behavior of critical points. In two variables,
Bedford and Smillie [BS3] defined the set ofunstable critical pointsof a Hénon
map to be the union over pointsp ∈ J of the set of critical points of the Green
functionG+ restricted toWu(p) (actually the union over allp for which the un-
stable manifold exists, which is a set of fullµ-measure, whereµ is the unique
measure of maximal entropy). They showed also that such a critical point is ex-
actly a point of tangency between an unstable manifold of a point inJ and a leaf
of the foliationG+.
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In casef is hyperbolic and unstably connected, there are no tangencies between
the leaves of the unstable setWu(J ) and the foliationG+; equivalently, for each
p ∈ J, the setWu(p) ∩ U+ contains no unstable critical points. This fact was
used in the proof of [BS5, Cor. A2] but was not stated explicity. Rather, Bedford
and Smillie showed in [BS4, Thm. 7.3] thatf is unstably connected if and only if,
for µ almost every pointp, W u(p)∩U+ contains no unstable critical points. For
completeness, we provide here a proof of the stronger result whenf is hyperbolic
and unstably connected.

Proposition 3.3. Letf be hyperbolic. Thenf is unstably connected if and only
if, for each pointp ∈ J, W u(p)∩U+ has no unstable critical points if and only if,
for each pointp ∈ J, W u(p) is nowhere tangent to the leaves of the foliationG+.
Proof. From [BS4, Thm. 7.3],f is unstably connected if and only if, forµ al-
most every pointp, W u(p) ∩ U+ contains no unstable critical points; by [BS3,
Prop. B.1], an unstable critical point inWu(p)∩U+ is exactly a tangency between
Wu(p) and a leaf of the foliationG+. Thus, we need prove only that iff is un-
stably connected then, for each pointp ∈ J, W u(p)∩U+ has no unstable critical
points.

Thatf is hyperbolic implies thatWu(p) exists for eachp ∈ J and that the un-
stable setWu(J ) is a locally trivial lamination ofJ−. Suppose there existsp ∈ J
such thatWu(p) is tangent to a leaf ofG+. Making a local biholomorphic change
of coordinates in a neighborhood of the point of tangency, we may assume that the
point of tangency is the origin in(z, w) coordinates, thatG+ has leaves that are
complex lines parallel to thez-axis, and thatWu(p) is locally the graph of a holo-
morphic functionz 7→ zkh(z)with h(0) 6= 0 andk ≥ 2. For any piece of a leaf of
Wu(q) sufficiently near this graph, the derivative of the corresponding graph for
Wu(q) will have a zero near the origin; hence there will be a tangency between
Wu(q) andG+. Since each leaf ofWu(J ) is dense inJ− [BS2] and since these
leaves form a locally trivial lamination, we see that there is a tangency between
Wu(p) andG+ for eachp ∈ J.

Thus, iff is hyperbolic then a tangency betweenWu(p) andG+ for onep ∈
J implies a tangency betweenWu(q) andG+ for all q ∈ J, and hence for a set of
full µ measure; therefore, as already noted,f is not unstably connected. Taking
the contrapositive, iff is unstably connected then, for eachp ∈ J, there is no tan-
gency betweenWu(p) andG+ and hence there are no unstable critical points on
Wu(p) ∩ U+. As noted previously, this completes the proof.

4. Holomorphic Families of Laminations

In this section we discuss some uniformization properties of Riemann surface lam-
inations and of holomorphic families of such laminations. Roughly, the main result
is that, given a holomorphic family of Riemann surface laminations in which each
leaf is conformally equivalent to the complex plane and given two holomorphic
transversals to these laminations, there is a natural way of parametrizing a given
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leaf by the plane so that the parametrization of this leaf varies holomorphically
with the family and so that the points of intersection of this leaf with the two trans-
versals are the images of 0 and 1 under the parametrization. Moreover, locally,
this parametrization can be done in such a way that the parametrization converges
locally uniformly when approaching a limit leaf. Precise definitions and results
are given shortly.

We first recall the definition of a Riemann surface lamination of a topological
spaceX, following [BS4] (see also [C; G1; G2]). Achart consists of an open set
Uj ⊂ X, a topological spaceYj, and a mapρj : Uj → C× Yj that is a homeomor-
phism onto its image. Anatlas consists of a collection of charts that coversX.
For fixedy ∈ Yj, the set of pointsρ−1

j (C× {y}) is called aplaque.For coordinate
charts(ρi, Ui, Yi) and(ρj, Uj, Yj ) with Ui ∩Uj 6= ∅, thetransition functionis the
homeomorphism fromρj(Ui∩Uj) toρi(Ui∩Uj) defined byρij = ρi B ρ−1

j . A Rie-
mann surface lamination,L, of a topological spaceX is determined by an atlas
of charts that satisfy the following consistency condition: the transition functions
may be written in the formρij = (g(z, y), h(y)),where the functionz 7→ g(z, y)

is holomorphic for fixedy ∈ Yj . The condition on the transition functions gives a
consistency between the plaques defined inUj and those inUi. Thus, plaques fit
together to make global manifolds calledleavesof the lamination, and each leaf
has the structure of a Riemann surface.

In the current setting, we are interested in the Riemann surface laminations of
J + andJ− given by stable and unstable manifolds and in the lamination ofU+
given by the foliationG+. Since these leaves have a natural holomorphic structure
induced fromC2, we will require additionally that each mapρj be holomorphic
on each plaque. With this additional requirement, we can view a lamination ofX

as locally the “graph” of a holomorphic motion, as follows. At a pointp ∈X, let
v be a vector inC2 such thatT = Cv is a complex line transverse to the plaque
throughp. After a biholomorphic change of coordinates, we may assume thatp

is the origin and thatv = (0,1). LetV be a small neighborhood ofp, and letE be
the set of points inV that lie onT . Then the plaques inL near the origin define a
holomorphic motion with parameterz. In other words, there is a functionα(z,w)
defined for(z, w)∈1ε×E that is holomorphic inz for each fixedw ∈E such that
α(0, w) = w, α(z, ·) is injective for eachz, and a plaque ofL through the point
(0, w) is given by the set of points(z, α(z,w)), z ∈1ε. Moreover, there is a co-
herence property corresponding to the consistency requirement on the transition
functions given previously. In the current setting, the mapH(z,w) = (z, α(z,w))
is a homeomorphism from1ε × E to an open setU ⊂ X that is holomorphic
for each fixedw ∈ E. Given a second point̂p and givenĤ : 1ε × Ê→ Û with
U ∩ Û 6= ∅, we have a transition functionH−1 B Ĥ, which can be written in the
formH−1 B Ĥ(z, w) = (g(z,w), h(w)), where the mapz 7→ g(z,w) is holomor-
phic for fixedw.

A holomorphic family of laminations is a generalization in which each plaque
varies holomorphically with some parameterλ ∈ 1nr. For this purpose, we will
restrict ourselves to families of laminations of sets inC2, and we will adopt the
holomorphic motion view of laminations. So we say thatLλ is a holomorphic
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family of laminations depending on the parameterλ∈1nr if, for each fixedλ, Lλ
is a lamination of a setXλ in C2 such that each plaque is a Riemann surface as
before and such that each plaque depends holomorphically onλ in the following
sense. Again, for each pointp ∈Xλ0 there is a local biholomorphic change of co-
ordinates such that the image ofp is the origin andv = (0,1) is transverse to the
plaque ofLλ0 through the origin. LetE be the intersection ofT = Cv and a small
neighborhood ofp in Xλ0. Then we requireε > 0 and the existence of a func-
tionα(z,w, λ) defined on1ε×E×1nε(λ0) that is holomorphic in(z, λ) for each
fixedw and such that (a)α(0, w, λ0) = w, α(z, ·, λ) is injective for each fixed
(z, λ), (b) the point(0, α(0, w, λ)) is contained inXλ for eachλ∈1nε, and (c) for
eachλ∈1nε, the plaque ofLλ through(0, α(0, w, λ)) is given by the set of points
(z, α(z,w, λ)), z ∈1ε. That is,α is a holomorphic motion of pointsw ∈E with
parameters(z, λ)∈1ε ×1nε(λ0).

We will need a coherence condition on families of laminations also. We can view
the familyLλ as sitting inC2×1nr. Given a pointp ∈Xλ0 and local change of co-
ordinates as before, we require that the mapH(z,w, λ) = (z, α(z,w, λ), λ) be a
homeomorphism from1ε×E×1nε(λ0) to an open setU in

⋃
λ(Xλ×{λ}). More-

over, given a second point̂p ∈Xλ̂0 with Ĥ : 1ε × Ê ×1nε(λ̂0)→ Û, we require
that the transition functionH−1 B Ĥ can be written in the formH−1BĤ(z, w, λ) =
(g(z,w, λ), h(w), λ), where, for fixedw, the map(z, λ) 7→ g(z,w, λ) is holo-
morphic inz andλ.

Observe that the set{(z, α(z,w, λ), λ) : z ∈ 1ε, λ ∈ 1nε(λ0)} is an(n + 1)-
dimensional holomorphic submanifold ofCn+2. Hence the plaque ofLλ0 through
p can be said to vary holomorphically withλ by viewing it as a slice of this sub-
manifold. We call this submanifold afamily of plaques associated withp. Each
plaque in this family is associated with a unique leaf in the corresponding lami-
nationLλ, so we may speak also of the family of leaves associated withp. We
will see shortly that, in the cases of interest for Hénon maps, the family of leaves
throughp is biholomorphic toC×1nr.

The following is an immediate consequence of the implicit function theorem
and the definitions already given. It says essentially that a point of transverse in-
tersection between a holomorphic family of curves and a holomorphic family of
plaques associated with a point varies holomorphically with the parameter.

Lemma 4.1. LetLλ be a holomorphic family of laminations, letPλ be the family
of plaques associated with a pointp ∈L0, and letF : 1×1n→ C2 be holomor-
phic such thatF(0,0) = p and such that, for each fixedλ, F(·, λ) is an injective
immersion that is transverse toPλ. Then there exist anε > 0 and a holomorphic
functionp : 1nε → C2 such thatp(0) = p0 andp(λ) ∈ Pλ ∩ F(1, λ) for all
λ∈1nε.

Note that if the pointp(λ) does not escape out the boundary of the image ofF

or the boundary of a plaquePλ, then by the monodromy theoremp(λ) may be
analytically continued to all of1n.
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5. Stable Manifolds and Affine Structures

Let fλ be a 1-parameter family of hyperbolic Hénon maps and recall from Sec-
tion 2 that there is a homeomorphismψλ from J0 to Jλ which is holomorphic
in λ and which conjugatesf0|J0 to fλ|Jλ. Given a pointp0 in J0, let pλ be its
image underψλ, and letWs/u(pλ) be the corresponding stable and unstable man-
ifolds. In this section we show that the stable (and unstable) manifolds ofpλ can
be parametrized byC in a way that depends holomorphically onλ and so that the
parametrizations of nearby leaves converge locally uniformly to the parametriza-
tion of the family of leaves throughpλ.

Let Sλ denote the set of sink orbits forfλ, and letW u
λ denote the lamination of

J−λ \ Sλ. Givenp ∈ J−λ , write Lλ(p) for the leaf of the laminationW u
λ contain-

ing p.
As in [G1; G2; BS5], we define an affine structure on a holomorphic curveL

to be an atlas consisting of holomorphic diffeomorphismsχj from open setsUj
of L to open sets ofC such that theUj coverL and theχj B χ−1

k are restrictions
of affine diffeomorphisms ofC to their domains of definition. For three distinct
pointsx, y, z in C, the ratio(x − y)/(x − z) is invariant under the group of affine
diffeomorphisms ofC. If x, y, z are distinct nearby points ofUj, then the ratio
(χj(x) − χj(y))/(χj(x) − χj(z)) depends only on the pointsx, y, z, not on the
particular coordinate chartχj whose domain containsx, y, z. Hence we may de-
note this function by(x − y)/(x − z), which is holomorphic inx, y, z and which
in fact is holomorphic as a map intoP1 wheneverx, y, z are not all equal. An
affine structure on a simply connected Riemann surface is said to becompleteif it
is isomorphic toC with its canonical affine structure.

If f0 is hyperbolic, then for eachp0 ∈ J0 there is an injective holomorphic map
from C to the unstable manifold ofp0, and this map defines a complete affine
structure on this unstable manifold. Moreover, the iterates off0 respect this affine
structure in the sense that the pull-back or push-forward of the affine structure
from one leaf to another agrees with the original affine structure on the new leaf.

Let ε = ε0 be as chosen for the local product structure in Section 2, and fixx0 ∈
J−0 . Choose disjoint transversalsT1, T2 to the local unstable manifoldWu

ε (x0),

and letT3 be any other transversal to this local unstable manifold. Forx ∈ J−0 near
x0, there are three pointspj(x) = Tj ∩Wu

ε (x), j = 1,2,3, andp1, p2 are distinct.
The ratio(p1− p3)/(p1− p2) is well-defined, independently of any particular
choice of complex affine coordinate onWu(x). To say that the affine structure is
continuousis to say that this ratio varies continuously withx, and [BS5, Prop. 5.1]
implies that the affine structure onW u is continuous. In fact, the following theo-
rem of Ghys implies a stronger continuity property.

Theorem 5.1 [G2]. Let L be a Riemann surface lamination of a subsetX of a
complex manifold such that each leaf ofL is parabolic(conformally equivalent to
the plane). Then the affine structure on leaves is continuous in the following sense.
Let U be a chart ofL and, for eachi ≥ 0, let xi, yi, zi be a triple of distinct
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points inU that, for each fixedi, are all three contained in the same plaque of
L. Suppose also that(xi, yi, zi) converges to distinct points(x∞, y∞, z∞) in U.
Then the ratio(xi − yi)/(xi − zi) converges to(x∞ − y∞)/(x∞ − z∞).
In [G2], the laminated space is assumed to be compact. However, the compact-
ness is used only to deduce that the conformal type of each leaf is independent of
the Riemannian metric on the space. In the current setting, each leaf is parabolic
using the standard metric onC2, so we may dispense with compactness.

We use the continuity of the affine structure to construct holomorphic parametri-
zations of leaves that converge locally uniformly when approaching a limit leaf.
The essential idea is to choose a limit leaf along with two transversals to this
leaf. Nearby leaves will also intersect these transversals, and we can choose
the parametrization of leaves by the plane so that the images of 0 and 1 lie on
these transversals. The continuity of the affine structure gives the local uniform
convergence almost immediately. Note that we take a very myopic view when
parametrizing leaves. In practice, one leaf will come back and accumulate on it-
self everywhere. For purposes of the parametrization, we work locally and regard
each plaque as part of a separate leaf with its own parametrization. Thus one leaf
may have many different parametrizations, any two of which differ by an affine
transformation.

For the following proposition, letL be a lamination of a closed subsetX of C2

such that each leafL of L is parabolic. Also, letU be a chart ofL, and letI =
Z+ ∪ {∞}.
Proposition 5.2. Let xi, yi ∈ U for i ∈ I with xi → x∞ andyi → y∞ (x∞ 6=
y∞) and such that, for eachi ∈ I, xi andyi are contained in the same leafLi
of L and in the same plaque withinU. Let φi : C→ Li be injective holomorphic
for i ∈ I with φ−1

i (xi) → φ−1∞ (x∞) and φ−1
i (yi) → φ−1∞ (y∞). Thenφi → φ∞

uniformly on each compact subset ofC.

Proof. LetPi be the plaque ofU containingxi, yi . We will show first thatφi con-
verges toφ∞ uniformly on each compact subset ofφ−1∞ (P∞) ⊂ C. By assumption
onU, there exists a biholomorphic change of coordinates such thatP∞ is an open
set in thez-axis(C × {0}). By restricting to sufficiently largei, we may assume
that the projectionπi : Pi → (C × {0}) is injective holomorphic for eachi (and
thatπ∞ = Id). Moreover,π−1

i π∞ converges to the identity uniformly on compact
subsets ofP∞ asi →∞ (e.g., by theλ-lemma of [MSS]).

Letγ ∈π∞(P∞) be a simple closed curve withx∞, y∞ /∈π−1∞ (γ ), and letNγ =
Ui∈I π−1

i (γ ). ThenNγ is compact andxi, yi /∈Nγ for i large. DefineRi(p) onPi
(i ∈ I ) by

Ri(p) = φ−1
i (xi)− φ−1

i (p)

φ−1
i (xi)− φ−1

i (yi)
.

Sincex∞ 6= y∞ and since the preimages ofxi andyi converge (respectively) to
the preimages ofx∞ andy∞, we see that, for largei, Ri is well-defined and holo-
morphic onPi. Moreover,Ri(p) is precisely the ratio function applied to the triple
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(xi, yi, p). Viewing Ri(p) = R(i, p) as a function on the compact setNγ , the
theorem of Ghys implies thatR is continuous onNγ and hence uniformly contin-
uous. In particular,φ−1

i B π−1
i → φ−1∞ B π−1∞ uniformly onγ, hence on the interior

of γ by Cauchy’s formula, hence on each compact subset ofP∞.
Thus(πi B φi)−1→ (π∞ B φ∞)−1 uniformly on compact subsets ofπ∞(P∞).

Sinceπ∞φ∞ is injective holomorphic, this implies thatπi B φi converges to
π∞ B φ∞ uniformly on compact subsets ofφ−1∞ (P∞) (e.g., by the integral for-
mula for the inverse of a holomorphic map). Sinceπ−1

i B π∞ converges to the
identity uniformly on compact subsets ofP∞, this implies thatφi converges toφ∞
uniformly on compact subsets ofφ−1∞ (P∞).

To complete the proof, letK ⊂ C be compact, and coverφ∞(K) by finitely
many plaquesP∞,1, . . . , P∞,m with P∞,j ∩ P∞,j+1 6= ∅ for j = 1, . . . , m− 1 and
P∞,1 = P∞. The preceding construction implies thatφi converges toφ∞ uni-
formly on compact subsets ofφ−1∞ (P∞,1). SinceP∞,1 andP∞,2 are open and have
nonempty intersection, we can apply the same argument to two new sequences of
points with limits in their intersection to conclude thatφi converges toφ∞ uni-
formly on compact subsets ofφ−1∞ (P∞,2). By induction, we obtain uniform con-
vergence on all ofK.

In dealing with families of Hénon maps, we will need a parametrized version of
the foregoing result. We begin with a definition.

Definition 5.3. LetLλ (λ ∈1n) be a holomorphic family of laminations. We
say thatLλ is leafwise trivial if, for each leafLλ0, there exists someε > 0 such
that the setZ := {(λ, p) : λ∈1nε(λ0), p ∈Lλ} is biholomorphic to1nε × C.
As an example of how a holomorphic family of leaves could fail to be trivial in
this sense, consider aP1 bundle over1n; then remove a section over1n that is not
holomorphic. Then each leaf is biholomorphic toC, but the bundle is not biholo-
morphic to1n × C.

In the following theorem,I = Z+ ∪ {∞}, as before.

Theorem 5.4. LetLλ (λ∈1n) be a leafwise trivial holomorphic family of lam-
inations. Letxi(λ) andyi(λ) (i ∈ I ) be holomorphic inλ with xi(λ) 6= yi(λ) for
eachi and λ and such that, for allλ, yi(λ) is contained in the plaque through
xi(λ). Suppose also thatxi(λ) converges tox∞(λ) andyi(λ) converges toy∞(λ)
uniformly on compact subsets of1n as i → ∞. Let Li,λ be the leaf through
xi(λ), and letφi,λ : C→ Li,λ be injective holomorphic withφi,λ(0) = xi(λ) and
φi,λ(1) = yi(λ).

Thenφi(λ, z) = φi,λ(z) is holomorphic in(λ, z), andφi converges toφ∞ uni-
formly on compact subsets of(z, λ)∈C×1n.
Proof. SinceLλ is leafwise trivial, it is a locally trivial fibration over1n and hence
is biholomorphic to1n × C by [W, Lemma 4.4]. Consequently, there exist in-
jective holomorphic maps8i,λ : C → Li,λ such that8i,λ(z) is holomorphic in
(λ, z)∈1n × C.
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Sincexi(λ) andyi(λ) are holomorphic inλ, we see thatXi(λ) := 8−1
i,λ(xi(λ))

andYi(λ) := 8−1
i,λ(yi(λ)) are holomorphic from1n to C; by the injectivity of

8i,λ, we then haveXi(λ) 6= Yi(λ). Since injective maps from the plane to itself
are unique up to affine map, we see thatφi,λ(z) = 8i,λ

(
Xi(λ)+ z(Yi(λ)−Xi(λ))

)
is holomorphic in(λ, z), as desired.

Finally, the uniform convergence ofφi to φ∞ follows almost exactly as in the
proof of Proposition 5.2, using the functionRi,λ given by the formula forRi with
φ−1
i,λ in place ofφ−1

i .

Next, we show that the leaves of the dynamical laminations generated by a hyper-
bolic Hénon map are leafwise trivial holomorphic families of laminations.

Theorem 5.5. Let fλ be a family of hyperbolic Hénon maps depending holo-
morphically onλ ∈ 1n, and letW u

λ be the lamination ofJ−λ whose leaves are
the unstable manifolds ofJλ. ThenW u

λ is a leafwise trivial holomorphic family of
laminations; likewise,W s

λ is a leafwise trivial holomorphic family of laminations.
Moreover, if eachfλ is unstably connected and ifLλ = W s

λ ∪ G+λ , thenLλ
also is a leafwise trivial holomorphic family of laminations.

Proof. The proof of the (un)stable manifold theorem for hyperbolic sets as in
[SFLC, Chap. 6] relies on a contraction mapping argument applied to a Banach
space of bounded sections overJλ. Starting with initial approximations to the un-
stable manifolds that vary holomorphically withλ, the uniform convergence ob-
tained from the contraction implies that the unstable manifolds forJλ will vary
holomorphically withλ in the sense that the family of leaves associated with a point
varies holomorphically withλ. Thus,Lλ is a holomorphic family of laminations.

For the leafwise triviality, [BS1, Thm. 5.4] implies that, forxλ0 ∈ Jλ0, we can
exhaustWu(xλ0 ) by an increasing union of disks. Since the family of leavesLλ
associated withxλ0 varies holomorphically withλ, the same argument implies
that there exist anε > 0 and injective holomorphic mapsHj : 1×1nε(λ0)→ Z,

whereZ is the manifold of leaves associated withxλ0 as in Definition 5.3, such
that the image ofHj is contained in the image ofHj+1 and such that the union of
their images is all ofZ. Because each leaf is conformally equivalent toC, [FS]
implies thatZ is biholomorphic toC×1nε, soLλ is leafwise trivial.

Finally, supposefλ is unstably connected for allλ. The functionG+λ (p) is pluri-
harmonic in(λ, p) by [BS1, Prop. 3.3] and hence is locally the real part of a func-
tion 9 that is holomorphic in(λ, p). Then the plaques ofG+λ are precisely the
level sets of9(λ, ·); hence these plaques vary holomorphically inλ, soLλ is a
holomorphic family of laminations. The fact thatLλ is leafwise trivial in this case
follows as before, using the ideas in the proof of [HO, Thm. 7.2] to produce the
increasing sequence of biholomorphic images of bi-disks.

Collecting the results of this section, we obtain the following result, which al-
lows us to parametrize leaves ofW u

λ andW s
λ holomorphically inλ so that the

parametrizations converge locally uniformly when approaching a limit leaf. For
this proposition, letε = ε0 be as chosen for local product structure. Moreover, if
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necessary we may shrink thisε so that, at each point ofJλ, the bi-disk of size 2ε
with axes parallel to the stable and unstable directions at this point defines a chart
for the stable and unstable laminations.

Theorem 5.6. Let fλ be a family of hyperbolic Hénon maps depending holo-
morphically onλ∈1n. Letp ∈ J0 andq ∈ J0 ∩Ws

ε (p) with q 6= p, and letpλ =
ψλ(p) andqλ = ψλ(q). Then there exists aφλ : C→ C2, injective for each fixed
λ and holomorphic in(z, λ) ∈C×1n, such thatφλ(C) = Ws(pλ), φλ(0) = pλ,
and φλ(1) = qλ. Moreover, ifpj ∈ J0 with pj → p and if qj ∈ J0 ∩ Ws

ε (p
j )

with qj → q and if φj is the corresponding parametrization for eachj, thenφjλ
converges toφλ uniformly on compact subsets ofC×1n. There is an analogous
result forWu(pλ).

Proof. By Theorem 5.5,W u
λ is a leafwise trivial family of laminations. As a re-

sult, Theorem 5.4 applies to giveφλ with the stated properties and shows that if
p
j

λ andqjλ converge uniformly on compacts topλ andqλ, respectively, thenφjλ
converges uniformly on compacts toφλ. Hence it suffices to show the uniform
convergence ofpjλ andqjλ to pλ andqλ.

To do this, define holomorphic mapshj(λ) = pjλ andh(λ) = pλ, wherepjλ =
ψλ(p

j ). Note that, since we have restricted toλ in the closed polydisk1n, the
filtration argument in [BS1] implies that there exists someR > 0 such thatJλ is
contained in12

R independently ofλ. In particular,hj is uniformly bounded byR,
independently ofλ andj. Note also that, for each fixedλ, ψλ is a homeomor-
phism; sincepj → p, we haveψλ(pj )→ ψλ(p) for each fixedλ. Hence{hj }j
is a uniformly bounded sequence of holomorphic maps that converges pointwise
to h. Because the sequence is uniformly bounded it is also equicontinuous, and
this plus pointwise convergence implies uniform convergence. Thusp

j

λ converges
uniformly on compacts topλ and likewise forqjλ ,which (as noted previously) im-
plies the convergence ofφjλ to φλ.

We need an analogous parametrization for leaves ofG+λ in the unstably connected
case. Sinceψλ is not defined outsideJ0, we will have to work a bit harder. Our
next theorem will allow us to extendψλ toU+0 ∩ J−0 .
Theorem 5.7. Letfλ be a family of unstably connected hyperbolic Hénon maps
depending holomorphically onλ ∈1n. Letp ∈ (J +0 ∪ U+0 ) ∩ J−0 . LetL+λ be the
family of leaves ofG+λ ∪W s

λ throughp, and letL−λ be the family of leaves ofW u
λ

throughp. Then there exists a unique mapλ→ pλ ∈C2, bounded and holomor-
phic inλ∈1n, such thatp0 = p andpλ ∈L−λ ∩ L+λ for eachλ.

Moreover, ifpj ∈ (J +0 ∪ U+0 ) ∩ J−0 andpj → p, thenpjλ converges topλ
uniformly on1n.

Proof. We first constructpλ. For this purpose, ifp ∈ J0 thenpλ = ψλ(p) satisfies
the conclusions; hence we assumep ∈ U+0 . Choose a chart containingp for the
family of laminationsG+λ , λ∈1nε, and letP +λ be the family of plaques throughp.
Likewise, letP−λ be the family of plaques ofW u

λ throughp. Sincef0 is hyperbolic
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and unstably connected, Lemma 4.1 implies thatpλ is defined uniquely forλ near
0 as the intersection ofP +λ andP−λ .

Note that, by definition of the laminationG+λ , the functionG+λ (pλ) is constant.
Note also that, sinceλ is restricted to the closed polydisk in the hypothesis of the
lemma, it follows from [BS1] that there exists anR > 0 independent ofλ such
thatJ−λ is contained in12

R ∩ V +R and such that, for a given constantC, the inter-
section of12

R ∩ V +R with the level set{G+λ (x, y) = C} is contained in{|y| < R ′ }
for someR ′ > 0 independent ofλ. Hence, replacingR by the max ofR andR ′,
we have thatpλ is contained in12

R, and this will remain true if we continuepλ
within the intersection ofJ−λ and the same level set ofG+λ .

We now continuepλ throughout1n. Suppose thatγ is any closed curve from
[0,1] to 1n and suppose thatpλ is defined and holomorphic at each pointλ ∈
γ ([0,1)). Sincepλ is uniformly bounded, we can take a sequencetj ∈ [0,1) with
tj increasing to 1 and such that, forλj = γ (tj ), the pointspλj converge to some
pointq. Letλ0 = γ (1). Sincepλ ∈ J−λ for all λ and since the union overλ∈1n of
J−λ × {λ} is closed as a subset ofC2 ×1n, we haveq ∈ J−λ0

. Also, sinceG+λ (pλ)
is a constantC > 0, we haveG+λ (q) = C and henceq ∈U+λ0

. In particular,q is
the point of intersection of plaques of the corresponding laminations and hence
has an extensionqλ as above forλ in some neighborhood ofλ0.

Note that ifqλ = pλ at some pointλ in their set of common definition, then the
local unique extension in terms of intersecting plaques implies that they agree on
an open set and hence everywhere they are both defined. Thusqλ will be a con-
tinuation ofpλ once we show that they agree at one point.

In a neighborhood ofqλ0, let 9λ(x, y) be holomorphic in(λ, x, y) with
Re9λ(x, y) = G+λ (x, y). Then the level sets of9λ define the laminationG+λ ,
so9λj (pλj ) is a constantC independent ofj and hence is equal to9λ0(q). In a
neighborhood ofq and forλ nearλ0, there is a fixed complex line independent
of λ throughq such that the projection of the level set{9λ = C} to this line is
injective holomorphic. Moreover, the points of intersection ofJ−λ with this level
set define a holomorphic motion via projection to this complex line. BecauseJ−λ
intersects the set{9λ = C} transversally for allλ nearλ, we can choose a small
neighborhoodY of q and then restrictλ to a sufficiently small neighborhood of
λ0 such that each point inY that is a point of intersection between{9λ = C}
andJ−λ has a continuation as such a point of intersection for allλ in this small
neighborhood.

Forj sufficiently large,pλj is such a point of intersection, and the continuation
of pλj must agree with the extension ofpλk becausepλ is defined as a point of in-
tersection. Hencepλ has an extension toλ in a neighborhood ofλ0. Thenpλ and
qλ both project to the complex line chosen previously, and their images are points
in the holomorphic motion. Corollary 2 of [BeR] implies that, givenr > 0 small,
these points of the holomorphic motion are constrained to lie in a small neighbor-
hood ofq for ‖λ−λ0‖ ≤ r. From the injectivity of a holomorphic motion and the
compactness of this parameter range, these two points must be either identical for
all suchλ or distinct with a positive lower bound on their closest approach. Since
pλj converges toq by hypothesis, the two images must be identical.
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Henceqλ agrees withpλ for someλ where both are defined. As noted before,
this implies that they agree on an open set and henceqλ is a continuation ofpλ.
By the monodromy theorem,pλ extends to all of1n.

Suppose now thatpj converges top as in the statement of the theorem. We
wish to show thatpjλ converges uniformly on1n to pλ. However, since thepjλ
are uniformly bounded, the argument in the proof of Theorem 5.6 implies that we
need show only thatpjλ converges topλ for each fixedλ.

Let P +λ andP−λ be the family of plaques throughp for λ in some small neigh-
borhood of 0. The family of plaques{P +λ }λ form a holomorphic manifoldM+ of
dimensionn + 1 in C2 ×1nε, so there is an open set in this ambient space and a
bounded holomorphic functionH + defined on this open set such thatM+ is pre-
cisely the zero set ofH + (and likewise forH− andM−).

For j sufficiently large andλ in some small polydiskDn independent ofj, the
pointpjλ is contained in the set whereH ± are defined;pjλ is defined as the point
of intersection of two leaves of the stable and unstable laminations and so we see
that, for fixedj, H ±(pjλ) is either 0 for allλ near 0 or never 0. Moreover, since
H ± is bounded, the set of functionsh±j (λ) = H ±(pjλ) is a normal family. Given
any subsequence ofh±j ,we can now extract a locally uniformly convergent subse-
quence; sincepj = pj0 converges top = p0, the limit function must have a zero
atλ = 0 and hence must be identically 0 by Hurwitz’s theorem. Since this is true
for any initial subsequence, it follows thath±j converges to 0 pointwise asj →∞
for eachλ∈Dn. Since theh±j are uniformly bounded, we have as before that the
convergence to 0 is uniform on compact sets. From the definition ofh±j in terms
of H ±, this implies thatpjλ converges topλ uniformly for λ in compact subsets
of Dn.

Finally, recall that the pointspjλ are uniformly bounded and so form a normal
family. Given any subsequence and any further locally uniformly convergent sub-
sequence, the preceding argument implies that the limit function agrees withpλ
on some neighborhood of 0 and hence everywhere. Since this is true for any ini-
tial subsequence, the functionspjλ must converge pointwise topλ on all of1n,
and since they are uniformly bounded, we see that the convergence is uniform on
this compact set.

Corollary 5.8. Letfλ be as in the previous theorem. Then the mapψλ : J0→
Jλ extends to a mapψλ : (J +0 ∪ U+0 ) ∩ J−0 such thatψ0 is the identity,ψλ is a
homeomorphism for each fixedλ, andψλ(p) is holomorphic inλ for each fixedp.

Proof. The theorem implies that, givenp ∈ (J +0 ∪ U+0 ) ∩ J−0 , we can define
ψλ(p) = pλ, and also that this extension is continuous and holomorphic inλ.

Moreover, for any fixedλ0, we can apply the theorem to obtainψλ0,λ taking
(J +λ0
∪U+λ0

)∩J−λ0
to (J +λ ∪U+λ )∩J−λ . The uniqueness part of the theorem implies

thatψ−1
λ = ψλ,0. Thus,ψλ is injective with continuous inverse, as desired.

We are now ready to give a version of Theorem 5.6 in the unstably connected case.
The proof is the same as the proof of Theorem 5.6, using the corollary to obtain
the homeomorphismψλ.
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Theorem 5.9. Let fλ be a family of hyperbolic and unstably connected Hénon
maps depending holomorphically onλ ∈1n. LetA0 = (J +0 ∪ U+0 ) ∩ J−0 and let
p ∈A0 andq ∈A0 be in the same plaque ofW s ∪ G+ asp (p 6= q). Letpλ and
qλ be the points defined in the previous theorem. Then there exists aφλ : C →
C2, injective for each fixedλ and holomorphic in(z, λ) ∈ C × 1n, such that
φλ(C) equals the leaf ofW s

λ ∪ G+λ throughpλ with φλ(0) = pλ and φλ(1) =
qλ. Moreover, ifpj ∈ A0 with pj → p andqj ∈ A0 in the same plaque aspj

with qj → q and if φj is the corresponding parametrization for eachj, thenφjλ
converges toφλ uniformly on compact subsets ofC×1n. There is an analogous
result for leaves ofW u

λ .

6. Holomorphic Motions

We recall the following theorem, due to Bers and Royden, on the canonical ex-
tension of a holomorphic motion of a setE ⊂ P1 to a holomorphic motion onP1.

For more background, see [BeR].

Theorem 6.1 [BeR]. Let τ : 1 × E → P1 be a holomorphic motion. Then
τ restricted to11/3 × E has a canonical extension to a holomorphic motion
τ : 11/3 × P1 → P1. This extension is characterized by the following property.
Letµ(λ, z) be the Beltrami coefficient ofz 7→ τ(λ, z) and letS be any component
of P1 \ Ê, whereÊ is the closure ofE in P1. Then

µ(λ, z) = ρS(z)−2ψ(λ, z) (6.1)

for z ∈ S andλ ∈11/3, whereρS(z)|dz| is the hyperbolic metric inS and where
the functionψ(λ, z) is holomorphic inz∈ S and antiholomorphic inλ∈11/3.

This theorem is true also if the disk is replaced by the ball inCn; see [Su] or [Mi].
A Beltrami coefficient of the form in (6.1) is said to be aharmonicBeltrami

coefficient. The hyperbolic metric is also known as the Poincaré metric and the
infinitesimal Kobayashi metric.

The parametrization of leaves given in the previous section gives us a way to
speak of a holomorphic motion on leaves.

Definition 6.2. Let φ : 1n × C → C2 be holomorphic and suppose that
φλ = φ(λ, ·) is injective for each fixedλ ∈ 1n. Let E0 ⊂ φ(0,C). Then τ :
1n ×E0→ C2 is aholomorphic motionof E0 on the family of leaves defined by
φ if τλ(E0) = τ(λ,E0) is contained in the leafφ(λ,C) for eachλ and ifφ−1

λ τλφ0

is a standard holomorphic motion inC of the setφ−1
0 (E0).

In particular, given a holomorphic motion on leaves, we can pull it back to a holo-
morphic motion in the plane, then apply the Bers–Royden extension, and push
forward to obtain an extended holomorphic motion on leaves. We will call this
extension the Bers–Royden extension also.
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We record here also a notion for the convergence of holomorphic motions on
leaves when approaching a limit leaf. LetI = Z+ ∪ {∞}. In the following def-
inition, the Hausdorff metric on sets in the plane is defined with respect to the
spherical metric, denoted here byds, on the Riemann sphere.

Notation. With φ andτ as in the previous definition, letφ∗[τλ] denote the map
φ−1
λ τλφ0 defined onφ−1

0 (E0).

Definition 6.3. For eachi ∈ I, let φi : 1n × C → C2 be holomorphic with
φiλ = φi(λ, ·) injective for each fixedλ, and suppose thatφi converges toφ∞ uni-
formly on compact sets. LetEi ⊂ φi(0,C) for eachi ∈ I, and letτ i : 1n×Ei be
a holomorphic motion on the leaves defined byφi. Thenτ i converges uniformly to
τ∞ means that the setsAi = (φi0)−1(Ei) converge toA∞ in the Hausdorff metric
and that the corresponding holomorphic motions in the plane converge uniformly
on compacts: for eachε > 0 there existδ > 0 andN > 0 such that, ifi > N and
‖λ1− λ2‖ + ds(z1, z2) < δ (z1 ∈Ai, z2 ∈A∞), then

ds(φ
i
∗[τ

i
λ1

](z1), φ
∞
∗ [τ∞λ2

](z2)) < ε.

The uniqueness of the Bers–Royden extension allows us to conclude that, given
a sequence of holomorphic motions on leaves converging as just described, the
extensions also converge in this sense.

Proposition 6.4. Let φi and τ i be as in Definition 6.3, and let̂τ i denote the
Bers–Royden extension ofτ i . Thenτ̂ i converges uniformly tôτ∞.

Proof. ThatA0 converges toA∞ in the Hausdorff metric implies, for a given com-
pactK ⊂ C \A∞, thatK is also contained in the complement ofAi for largei and
that the hyperbolic metric of the component of the complement ofAi containing
K converges uniformly onK to the hyperbolic metric of the complement ofA∞.
Moreover, since eachφi∗[τ̂ iλ] has a harmonic Beltrami coefficient, sayµi(λ, z) =
ρi(z)

−2ψi(λ, z), and since‖µi(λ, z)‖ρi(z)2 is uniformly bounded forλ∈1n and
z∈K, we see that the family{ψi} is a normal family.

Hence there exists a subsequence ofψi converging uniformly on each compact
subset of1n × (C \A∞) toψ(λ, z). Moreover, from [BeR, Thm. 1], we have for
eachi that

‖µi(λ, z)‖∞ < ‖λ‖.
Hence this estimate holds also forµ(λ, z) = ρ∞(z)−2ψ(λ, z), and the subse-
quence of holomorphic motions corresponding to the chosen subsequence ofψi

converges uniformly to a holomorphic motion with the harmonic Beltrami co-
efficientµ. But this limit motion must agree withφ∞∗ [τ̂∞λ ] on A∞, and since
this latter motion also has a harmonic Beltrami coefficient, the uniqueness of the
Bers–Royden extension implies that the limit motion must equalφ∞∗ [τ̂∞λ ]. Since
any subsequence must have the same limit, we obtain pointwise convergence, and
[BeR, Cor. 2] implies equicontinuity of the sequence and hence uniform conver-
gence, as in the preceding definition.
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We prove next that the natural motion ofJ0 given byψλ is a holomorphic mo-
tion on leaves and that the motion on a sequence of leaves approaching a limit leaf
converge to the motion on the limit leaf.

Theorem 6.5. Let fλ be a family of hyperbolic Hénon maps depending holo-
morphically onλ ∈1n. LetLλ be either of the laminationsW u

λ or W s
λ . Letp ∈

J0 andpλ = ψλ(p), and letLλ = Lλ(p) be the leaf ofLλ throughpλ. LetE0 =
L0 ∩ J0. Thenψ(λ, ·) = ψλ(·) is a holomorphic motion ofE0 on the family of
leaves{Lλ}.

Moreover, ifpj ∈ J0 converges top ∈ J0 andLjλ = Lλ(pj ) is the leaf through
p
j

λ , then the holomorphic motion ofEj

0 = L0(p
j ) ∩ J0 on the family of leaves

{Ljλ} converges uniformly to the holomorphic motion ofE0 on the family of leaves
{Lλ}.

Finally, the Bers–Royden extensions of the motions ofE
j

0 converge uniformly
to the Bers–Royden extensions of the motion ofE0.

Proof. Sinceψλ is a homeomorphism ofJ0 toJλ that conjugatesf0 tofλ, it follows
thatψλ mapsL0∩ J0 ontoLλ ∩ Jλ. Henceψλ(E0) is contained inLλ. Moreover,
Theorem 5.6 implies that there exist holomorphically varying parametrizations
φλ : C→ Lλ. Sinceψλ(q) is holomorphic inλ for each fixedq ∈ J0, we see that
φ∗[ψλ] is a holomorphic motion in the plane; henceψλ is a holomorphic motion
on the family of leaves throughp.

For the convergence result, assume without loss of generality thatLλ is the un-
stable lamination. For the remainder of this proof, letδ = δ0 andε = ε0 be the
constants chosen earlier from the definition of local product structure: ifaλ, bλ ∈
Jλ with ‖a − b‖ < δ, thenWs

ε (aλ) andWu
ε (bλ) intersect in a unique point con-

tained inJλ.
Theorem 5.6 implies that there exist functionsφjλ : C → Wu(p

j

λ) which are
holomorphic inz∈C and inλ∈1n and bijective for each fixedλ and which con-
verge locally uniformly to the mapφ∞λ parametrizingWu(pλ).

With these parametrizations, the first part of this proof implies that the holo-
morphic motion on the family of leaves throughpj is defined on the setAj =
(φ

j

0)
−1(J0 ∩ Wu(pj )) and is given by the pull-backτ jλ = φ

j
∗ [ψλ]. The setA∞

andτ∞λ are defined similarly, usingp andφ.
ChooseR > 0 and letK = 1R ⊂ C. Since we are using the spherical metric

to define the Hausdorff metric, the proposition will be established once we show
thatAj ∩K converges toA∞ ∩K in the Hausdorff metric and thatτ jλ = φj∗ [ψλ]
converges uniformly on(z, λ)∈ (K ∩ Ej)×1n to τ∞λ .

Sinceφ∞λ (K) is contained inWu(pλ), it follows that, for largen, f −nλ (φ∞λ (K))
is contained inWu

δ (f
−n
λ (pλ)). Hence, for largej, f −nλ (φ

j

λ(K)) is also withinδ of
f −nλ (pλ). It suffices to prove the convergence result nearf −nλ (pλ) and then apply
f nλ ; for clarity, we drop thef −nλ for the remainder of the proof.

Choose distinct pointsa andb inWu
ε (p)∩J0 so that each ofaλ andbλ is of dis-

tance no more thanδ/2 frompλ for anyλ. Then, for largej, W u
ε (p

j

λ) andWs
ε (aλ)

intersect in a unique point ofJλ, and likewise forbλ.
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Using a local biholomorphic change of variables from a neighborhood of
Wu
δ (pλ) to the unit bidisk{|u| < 1, |v| < 1} (with the change of variables de-

pending holomorphically onλ), we may assume thatWu
δ (pλ) is1× {0} and that

Ws
δ (aλ) andWs

δ (bλ) are{0} ×1 and{1/2} ×1, respectively. Then, for eachq ∈
J0 ∩Wu

δ (p0) and for given values ofλ ∈ 1n andv ∈ 1, we associate the point
given by taking the intersection ofWs

ε (qλ) with1×{v} and then projecting to the
u-coordinate. This defines a holomorphic motion of the pointq with parameters
λ andv.

Figure 1 The holomorphic motionq(λ, v) and the projectionHj

λ

We can view this holomorphic motion as a lamination with leaves defined by
{qλ,v : v ∈ 1} as in Figure 1, and the holonomy map associated with the leaves
of this lamination gives a projectionHj

λ fromWu
δ (pλ) ∩ Jλ toWu

δ (p
j

λ) ∩ Jλ. As
j tends to∞, thev-coordinate ofWu

δ (p
j

λ) converges uniformly to 0. Hence the

estimate in [BeR, Cor. 2] implies thatHj

λ (and(Hj

λ)
−1) converges to the identity

uniformly in q andλ. In particular, this establishes the convergence ofEj ∩ K
toE∞ ∩K in the Hausdorff metric. Moreover, givenq ∈ J0 ∩Wu(p

j

0), we have
ψλ(q) = Hj

λψλ(H
j

0)
−1(q). Hence

τ
j

λ = (φjλ )−1H
j

λψλ[(φ
j

0)
−1H

j

0]−1,

whereψλ is restricted toWu
δ (pλ). The right-hand side converges uniformly to

(φ∞λ )
−1ψλ(φ

∞
0 )
−1= τ∞λ ,

as desired.
Finally, the convergence of the Bers–Royden extensions follows from Proposi-

tion 6.4.

We next prove an analogous result in the unstably connected case.
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Proposition 6.6. Letfλ be as in Proposition 6.5 and assume also that eachfλ is
unstably connected. LetLλ be the laminationW s

λ ∪G+λ . Letp ∈ (J +0 ∪U+0 )∩J−0
andpλ = ψλ(p), and letLλ = Lλ(p) be the leaf ofLλ throughpλ. LetE0 =
L0 ∩ J−0 . Thenψ(λ, ·) = ψλ(·) is a holomorphic motion ofE0 on the family of
leaves{Lλ}.

Moreover, ifpj ∈ (J +0 ∪ U+0 ) ∩ J−0 converges top in the same set, then the
holomorphic motion ofEj

0 = L0(p
j ) ∩ J−0 on the family of leaves{Lλ(pj )} con-

verges uniformly to the holomorphic motion ofE0 on the family of leaves{Lλ},
and the Bers–Royden extensions of the motions ofE

j

0 converge uniformly to the
Bers–Royden extension of the motion ofE0.

Proof. Sincefλ is unstably connected, we can use Corollary 5.8 to obtain the ho-
meomorphismψλ and then use Theorem 5.9 in place of Theorem 5.6 in the proof
of the previous theorem to obtain the holomorphic motion ofE0.

For the convergence result, ifp ∈ J0 then the proof is the same as that of the
previous theorem, so we assume thatp ∈U+0 ∩ J−0 . In this case, proof of the pre-
vious theorem still applies except for the existence ofδ andε. However, instead of
applyingf −n for some largen, we now applyf n. Since leaves of the lamination
of U+0 are super-stable manifolds (as shown in [BS3]), it follows that, for largen

andj, f nλ (φ
j

λ(K)) is again contained in a small neighborhood off nλ (pλ); the dis-
cussion ofG+ after Proposition 3.1 implies that these images ofK will be nearly
horizontal disks. A simple calculation implies that the local unstable manifolds of
points inJ−λ nearpλ are nearly vertical disks. Hence again there are unique points
of intersection between local stable and unstable leaves, so the remainder of the
proof of the previous theorem applies without change.

7. Proof of Main Theorems

Proof of Theorem1.1. Choosep0 ∈ J0 and letpλ = ψλ(p0). We will first con-
struct the map9λ on the setWu(p0). Toward this end, letφλ : C→ Wu(pλ) be
a parametrization obtained by Theorem 5.6; that is,φλ is holomorphic in(λ, z),
with φλ(0) = pλ andφλ(1) = ψλ(q0) for someq0 ∈ Wu(p0) \ {p0}. Let E0 =
J0 ∩Wu(p0), and define a holomorphic motion ofA0 = φ−1

0 (E0) by

αλ = φ−1
λ ψλφ0 = φ∗[ψλ].

By the theorem of Bers and Royden,α extends canonically to a holomorphic mo-
tion α̂λ of C with a harmonic Beltrami coefficient.

We define9λ : Wu(p0)→ Wu(pλ) by9λ = φλα̂λφ−1
0 . Note that onE0, 9λ =

ψλ. Moreover,9λ is independent of the choice ofφλ. To see this, suppose that
γ : 1n×C→ Wu(pλ) is holomorphic in(λ, z), and letB0 andβλ be the analogs
of A0 andαλ with γ in place ofφ. Thenφ−1

λ γλ : C→ C is affine linear and holo-
morphic inλ, sayφ−1

λ γλ(z) = Qλ(z) or γλ(z) = φλQλ(z). Hence

βλ(z) = Q−1
λ φ
−1
λ ψλφ0Q0(z) = Q−1

λ αλQ
−1
0 (z).

SinceQλ is affine linear, the canonical extension ofβλ is β̂λ = Q−1
λ α̂λQ0(z).

Using this with the expression forγλ just given and canceling terms, we obtain
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γλβ̂λγ
−1
0 (p) = 9λ(p) for eachp ∈ Wu(p0). That is,9λ is independent of the

choice of parametrization.
Hence we may apply the foregoing construction to eachp0 ∈ J0 to obtain

9λ : J−0 \ S0 → J−λ \ Sλ satisfying properties (1), (3), and (4) of the theorem,
whereSλ is the set of sink orbits forfλ. The same construction applies to give
9λ onJ +0 , and we can define9λ onS0 by using the implicit function theorem to
follow the sink orbits.

As in [McS], we can use the uniqueness of the Bers–Royden extension to show
that9λ conjugatesf0 onWu(p0) to fλ onWu(pλ). To do this, letα̂λ be the holo-
morphic motion ofC induced as before byψλ onWu(p0) and letβ̂λ be the motion
induced byψλ onWu(f0(p0)), whereWu(fλ(pλ)) is parametrized byγλ. (Note
thatβ andγ are different from the maps of the same name in the preceding sec-
tion.) We obtain the following diagram, with the left and right portions commuting
as indicated.

C

///

φ0 //

α̂λ

��

Wu(p0)
f0 //

ψλÃ9λ
��

Wu(f0(p0))

ψλÃ9λ
��

C
γ0oo

β̂λ

��
///

C
φλ // Wu(pλ)

fλ // Wu(fλ(pλ)) C
γλoo

Note thatγ−1
λ fλφλ is a biholomorphic map ofC to itself and hence is equal to some

affine linear mapQλ depending holomorphically onλ. As a result,Qλα̂λQ
−1
0 is

a holomorphic motion ofC. Moreover, sinceQλ is an affine linear map, the Bel-
trami coefficient of this new holomorphic motion is simply a constant times the
Beltrami coefficient ofα̂λ, so the new holomorphic motion has a harmonic Bel-
trami coefficient.

Furthermore,ψλ = fλψλf
−1
0 on J0 implies thatψλ = fλφλαλφ

−1
0 f
−1
0 on

Wu(f0(p0))∩J0, and henceQλαλQ
−1
0 = γ−1

λ ψλγ0 on the same set. But alsoβλ=
γ−1
λ ψλγ0 by construction and so, by the uniqueness of the extension of this motion

to a motion with harmonic Beltrami coefficient, we see thatβ̂λ = Qλα̂λQ
−1
0 .

Sinceα̂λ = φ−1
λ 9λφ0 andβ̂λ = γ−1

λ 9λγ0, we have

γ−1
λ 9λγ0 = Qλφ

−1
λ 9λφ0Q0;

usingQλ = γ−1
λ fλφλ and canceling common factors, we obtain9λ = fλ9λf −1

0 .

The argument just given applies to anyp0 ∈ J0, sofλ = 9λf09
−1
λ onJ−0 \ S0.

Finally, the extension of9λ to S0 using the implicit function theorem respects the
dynamics on the sink orbits and therefore9λ conjugatesf0 to fλ on all of J−0 .
Applying this tof −1

λ gives9λ onJ−0 ∪ J +0 satisfying properties (1), (3), (4), and
(5) of the theorem.

Note that9λ is bijective, since it is bijective on each leaf and since there is a
1-to-1 correspondence between leaves. We need to check that9λ is continuous
with continuous inverse, but it suffices to show that it is continuous and proper (as
a map from a subset ofC2 intoC2) since then we can use a 1-point compactifica-
tion to get a continuous 1-to-1 map on a compact set, which automatically has a
continuous inverse.
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To show continuity, letqj be a sequence of points inJ−0 converging to a point
q∞ in J−0 , and suppose first thatq∞ is not a sink. We want to show that9λ(qj )
converges to9λ(q∞). Letp∞ ∈ J0 so thatq∞ is in the unstable manifold ofp∞ for
f0, and likewise letpj ∈ J0 so thatqj is in the unstable manifold ofpj . Dropping
to a subsequence if necessary, we may assume thatpj converges top∞.

Theorem 6.5 implies that the holomorphic motion ofWu(pj ) ∩ J0 converges
uniformly to the holomorphic motion ofWu(p∞) ∩ J0 and also that the Bers–
Royden extensions of the former motions converge to the Bers–Royden extension
of the latter. Since9λ is precisely the Bers–Royden extension of these motions,
it follows at once that9λ(qj ) converges to9λ(q∞).

We claim next thatp0 ∈ J−0 is in the basin of attraction of a sink orbit if and only
if 9λ(p0) is in the basin of attraction of a sink orbit for eachλ. First,p0 ∈ J−0 is
in J +0 precisely when9λ(p0)∈ J +λ , since9 is injective and is a homeomorphism
of J0 to Jλ. SinceJ +0 is the boundary of all basins of attraction of sink orbits of
f0, we may assume either thatp0 is in the basin of a sink or thatp0 is in the set of
points with unbounded forward orbit. We can then write1n as the disjoint union
of the setA of λ such that9λ(p0) is in the basin of some sink and the setB of λ
such that9λ(p0) has unbounded forward orbit. Note that, if9λ(p0) is attracted
to a sink offλ, then some small closed neighborhood is attracted to this sink; for
all sufficiently small perturbations offλ, this closed neighborhood will still be in
the basin of some sink. Since9λ(p0) is holomorphic inλ, it follows that the set
A is open and likewise that the setB is open. Since1n is connected, only one of
these two sets can be nonempty, and since the point 0 is in one of them, the claim
follows. This argument can be refined by further decomposing the setA into dis-
joint setsAi of λ such that9λ(p0) is contained in the basin of attraction of9λ(qj )
for each sinkqj of f0. The conclusion in this case is thatp0 is in the basin of
attraction ofqj0 if and only if, for allλ, 9λ(p0) is in the basin of attraction ofqjλ .

To continue the proof of continuity, ifq∞ is a sink then we may assume with-
out loss of generality that eachqj is contained in the basin of attraction ofq∞
but is not equal toq∞. LetU be a small neighborhood ofJ0 in J−0 , and letN =
f0(U) \ U. ThenN is compact and disjoint fromJ0, and for eachj there exists
nj such thatf

−nj
0 (qj )∈N. Moreover, sinceq∞ is a sink, it follows thatnj →∞.

Let

K = {f −nj0 (qj ) : j ≥ 1}.
ThenK is a compact set contained in the intersection ofN and the basin ofq∞.
The previous paragraph implies that9λ(K) is contained in the basin of attraction
of q∞λ for all λ. Hence, for fixedλ, 9λ(K) is a compact set in the basin ofq∞λ ;
sincenj →∞,we see thatf

nj
λ 9λ(K) converges uniformly toq∞λ . Since9λ(qj )∈

f
nj
λ 9λ(K), we have9λ(qj ) converging toq∞λ = 9λ(q∞). Thus9λ is continuous

on all ofJ−0 .
For properness, supposepj0 ∈ J−0 with ‖pj0‖ → ∞ but‖9λ(pj0)‖ ≤ C for some

large constantC and fixedλ. SinceJ0 is a bounded set, and since anypj0 that is
in K+0 must be inJ0, we may assume without loss of generality that eachp

j

0 is
in the complement ofK+0 . By the claim made previously,pjλ = 9λ(pjλ) is in the
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complement ofK+λ . After dropping to a subsequence, we can find a sequencenj
increasing to∞ such thatqj0 = f −nj0 (p

j

0) converges to a pointq∞0 in J−0 \K+0 .
Let qjλ = 9λ(qj0 ). The conjugacy property of9 implies thatqjλ = f −njλ (p

j

λ). Let
Aj = f −njλ

(
(J−λ \ (intK+λ )) ∩ 12

C

)
. Then eachAj is compact,Aj+1 ⊂ Aj, and

q
j

λ ∈Anj for eachj. Moreover, the continuity of9λ implies thatq∞λ is the limit of
the sequenceqjλ , so

q∞λ ∈
⋂
m>0

⋃
j≥m
{qjλ } ⊂

⋂
m>0

Anm.

However, the intersection of allAj is preciselyJλ, soq∞λ must be inJλ. But this
is a contradiction because9λ is injective,9λ is a homeomorphism fromJ0 to Jλ,
andq∞0 is not inJ0. It follows that9λ must be proper and hence is a homeomor-
phism ofJ−0 to J−λ .

Applying this proof tof −1
λ yields a conjugacy off0|J +0 to fλ|J +λ that agrees

with the previously constructed map onJ0, so we get the map9λ defined on
J +0 ∪ J−0 , as desired. This completes the proof of Theorem1.1.

Proof of Theorem 1.2.In the case whenf0 is unstably connected and hyperbolic,
Proposition 3.1 implies thatfλ is also unstably connected forλ near 0. Moreover,
the previous construction applies to give9 onJ +0 ∪J−0 ; by replacing Theorem 5.6
with Theorem 5.9 and Theorem 6.5 with Theorem 6.6, the previous proof applies
to show that9 is continuous.

For the properness, the previous proof does not apply directly, although it still
implies that9 is proper onJ +0 ∪ J−0 . To finish the proof, suppose thatpj0 is a se-
quence of points inU+0 with ‖pj0‖ → ∞. In this case, eitherG+0 (p

j

0)→∞ or
G−0 (p

j

0)→∞, and we suppose for now that the former applies. Note that the leaf
of the lamination throughpj0, which is a level set ofG+0 , is biholomorphic to the
plane. Observe also thatG−0 is subharmonic on this leaf and is nonnegative, non-
constant, and harmonic outside of the zero set; hence it must equal 0 somewhere.
By definition ofG−0 , a zero of this function is precisely a point ofJ−0 . Hence
there exists a pointqj0 in J−0 on the leaf throughpj0. ThenG+0 (q

j

0) = G+0 (pj0), and
since9λ is a homeomorphism onJ−0 , we must haveG+λ (9λ(q

j

0))→∞. Since
9λ takes level sets ofG+0 to level sets ofG+λ , we haveG+λ (9λ(p

j

0))→∞ and so
‖9λ(pj0)‖ → ∞.

Next, supposeG−0 (p
j

0)→∞ butG+0 (p
j

0) < C and‖9λ(pj0)‖ < C for some
constantC. Again we can chooseqj0 in J−0 on the leaf throughpj0. Since the set of
points inJ−0 withG+0 < C is bounded, we can drop to a convergent subsequence to
obtainqj0 converging toq∞0 ∈ J−0 . See Figure 2. The continuity of9λ implies that
q
j

λ = 9λ(qj0) converges toq∞λ = 9λ(q∞0 ). Moreover,pjλ = 9λ(pj0) is contained
in the same leaf asqjλ , and dropping to a further subsequence, we may assume that
p
j

λ converges to a pointp∞λ in U+λ ∪ J +λ in the same leaf asq∞λ . Since9λ is a ho-
meomorphism onJ−0 , a neighborhoodY of q∞0 in J−0 maps onto a neighborhood
of q∞λ in J−λ . Since9λ maps each leaf of the lamination ofJ +0 ∪ U+0 bijectively
to a leaf of the lamination ofJ +λ ∪ U+λ , the image of the leaves through points
in Y contains a neighborhood inJ +λ ∪ U+λ of the pointp∞λ . Theorem 6.6 implies



564 Gregery T. Buzzard & Kaushal Verma

Figure 2 Corresponding points under the map9λ

that9λ converges uniformly when approaching a limit leaf. Together, these facts
imply that9λ maps a small neighborhood inJ +0 ∪ U+0 of p∞0 to a neighborhood
of p∞λ in J +λ ∪ U+λ . In particular, this image includespjλ for all largej, so the
preimage, the small neighborhood, includesp

j

0 for all largej, which contradicts
‖pj0‖ → ∞.
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