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Hyperbolic Automorphisms and
Holomorphic Motions inC?

GREGERY T. BuzZARD & KAUSHAL VERMA

1. Introduction

Holomorphic motions have been an important tool in the study of complex dynam-
ics in one variable. In this paper we provide one approach to using holomorphic
motions in the study of complex dynamics in two variables. To introduce these
ideas more fully, let\, be the disk of radius and center 0 in the plane, [Bt be

the Riemann sphere, and recall that a holomorphic motion of & setP! is a
functiona: A, x E — Psuchthat(0, z) = zforeach € E, a (A, -): E — P!

is injective for each fixed € A,, anda(-, z): A, — P is holomorphic for each
fixed z € E. For future reference, we note that this definition (as well as most re-
sults about holomorphic motions) applies equally well when the pararhager
allowed to vary in the complex polydisk: e A”.

One of the first uses of holomorphic motions in the study of complex dynamics
was in [MSS], where holomorphic motions were used to prove the density of
structurally stable maps within the family of polynomial map€aif degreel. In
general, amay : M — M, M a manifold, is structurally stable within a family
F of maps if there is some neighborhood ffsayl/ C F, such that any map in
U is conjugate tof via a homeomorphism ao¥/. Mafié-Sad-Sullivan [MSS] ob-
tained structural stability for polynomial maps by showing that (subject to certain
restrictions) the holomorphic motion defined naturally on the Julia set of a poly-
nomial map extends to give a conjugacy on alllfo nearby polynomial maps.
More precisely, they did this by starting with the canonical holomorphic motion
defined on hyperbolic periodic points and on periodic points satisfying a critical
orbit relation; by theiri-lemma, this holomorphic motion extends uniquely to a
holomorphic motion of the closure of the periodic points. The authors then con-
structed (by hand) certain holomorphic motions which give partial conjugacies
and which extend by iteration to give a holomorphic motion of a dense set of the
plane, which again extends uniquely to give a topological conjugacy on the whole
sphere.

Shortly after this work, Bers and Royden [BeR] used the notion of a harmonic
Beltrami coefficient (defined in Section 6) to show that, given any holomorphic
motion of a setF, there is a canonical extension of this motion to a holomorphic
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motion of the sphere, although with a restrictionite A,,3. The characteriza-
tion of this extension is that in any componehbf the complement of, the
Beltrami coefficientdw/9z)/(da/9z) is a harmonic Beltrami coefficient. Using
this result, McMullen and Sullivan [McS] proved the density of structurally stable
maps within the family of rational maps & of degreed as follows. As before,
given a family f, (A € A) with certain regularity properties, there is a canonical
holomorphic motion on the closure of the set consisting of periodic points and or-
bits of critical points. By the Bers—Royden result, this motion extends canonically
to a motiona;, of the entire sphere. Thef;jl oay o fo(z) defines a second holo-
morphic motion which agrees with the original motion on the periodic points and
critical orbits and which also has a harmonic Beltrami coefficient. By the unique-
ness of the Bers—Royden extension, this second holomorphic motion agrees with
the first, and hence;, is a global topological conjugacy.

Turning to higher dimensions, one natural family of maps with interesting dy-
namics inC? is the family of (generalized) Hénon maps: compositions of holo-
morphic diffeomorphisms of the forrfi(z, w) = (w, p(w) — az), wherep is a
polynomial of degre@ > 2 anda # 0. We note here that, for questions of struc-
tural stability, we will restrict ourselves to families of maps all having the same
degree. This corresponds, for example, to considering structural stability of qua-
dratic polynomials in one variable. With this restriction, the topology on Hénon
maps can be specified either in terms of the coefficients of the defining maps or in
terms of the compact-open topology applied to the map and its inverse. Section 2
provides a more detailed account of Hénon maps and hyperbolicity. For further
references, see the bibliography in [BuS].

There is an immediate generalization of holomorphic motions to two dimen-
sions: simply allow each pointe E to vary holomorphically withinC2. In fact,
by work of Jonsson [J], given a family, of hyperbolic HEnon maps, the sét
(which is the closure of the set of saddle periodic pointg,of/aries as a holomor-
phic motion in this sense. However, this generalization fails to have many of the
important properties of 1-variable holomorphic motions; in particular, given this
kind of holomorphic motion on a sét, there is in general no unique extension to
E and no canonical extension in the sense of Bers and Royden.

Our approach in this paper is to use the technique of McMullen and Sullivan to
construct holomorphic motions on dynamically defined 1-dimensional subsets of
C? and then show that these maps define homeomorphisms on the union of these
1-dimensional subsets. To be more preciseflbt a hyperbolic Hénon map, let
JT (resp.J ™) be the boundary of the set of points with bounded forward (resp.
backward) orbit, and lef = J* N J~. ThenJ* andJ~ are laminated by Rie-
mann surfaces; each of these Riemann surfaces is conformally equivalent to the
plane and is the stable or unstable manifold of a point.iGiven a 1-parameter
family f, of such maps, the points of intersection betwgenand J,* define a
holomorphic motion in each leaf, which extends canonically to the entire leaf by
the Bers—Royden theorem. As in [McS], this defines a conjugacy betyieem
a leaf of J;” and f; on a leaf of/,". However, since each leaf of; is dense in
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Jo©, itis not clear that the resulting conjugacy gives a homeomorphisig db

J,. To establish that this map is a homeomorphism, we use the notion of an affine
structure (see [G1l; G2; BS5]) to provide a coherent framework for discussing
holomorphic motions on the leaves of the lamination. We show that the affine
structure of/," varies holomorphically with. and that, suitably normalized, the
global parametrizing functions for the leavesgf converge locally uniformly
when approaching a limit leaf. With this, the continuity of the conjugacy follows
essentially from the uniqueness of the Bers—Royden extension.

The first main result of this paper is the following theorem, which is an ana-
log of the results of [MSS] and [McS], and which states that a hyperbolic Hénon
map restricted to U J~ is conjugate to nearby Hénon maps via a holomorphic
motion of each leaf of " U J .

TueoreM 1.1. Let f; be al-parameter family of hyperbolic Hénon maps depend-
ing holomorphically ori. € A". Then there exists > 0 and a map

WA x (JFUJg) — JTUJT
such that, defining,(p) = ¥(%, p), we have

(1) Yo(p) = p;

(2) v, is a homeomorphism for each fixgd

(3) W,(p) is holomorphic ink for each fixedp € J5" U Jg';
(4) W, maps each leaf of, (J5") to aleaf of/, (J,F); and
(5) W, fo= fi¥,onJy U Jg.

The first three properties are direct analogs of holomorphic motions in one vari-
able, while the fourth property shows that the map respects the dynamically de-
fined stable and unstable laminations.

In the study of the dynamics of polynomials in the plane, the polynomials with
connected Julia set play a special role. In [BS4], Bedford and Smillie defined the
notion of an unstably connected Hénon map, which is an analog of a polynomial
with a connected Julia set in one variable. They also showed that, given a hyper-
bolic Hénon map that is unstably connected, the laminatioitaéxtends to a lam-
ination of /T U U, whereU T is the set of points with unbounded forward orbits.
With this additional structure, we obtain a conjugacy as beforé oty U .

THEOREM 1.2. In addition to the hypotheses of Theorér, assume tha is
unstably connected. Then the conclusions of that theorem remain validAghen
andJ," are replaced by/;” U U4 andJ;" U U,", respectively.

In particular, whenyy is hyperbolic and unstably connected, this gives a canonical
conjugacy betweerfy and £, on all of C? except for the basins of any attracting
periodic points.

We are grateful to Curt McMullen for a helpful discussion on holomorphic
motions.
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2. Preliminaries

We recall some standard terminology and some known results, which are discussed
more fully in [BS1; BS2; BS5]. Friedland and Milnor [FrM] divided the poly-
nomial automorphisms @2 into two classes: elementary (which have relatively
simple dynamics) and nonelementary. For brevity, we will use the term “Hénon
map” to describe a nonelementary polynomial automorphisifi©ofSuch maps

can be characterized by having dynamical degree2, where the dynamical de-

gree of a polynomial automorphism @f is defined as in [BS2] by

d = lim (degf™)Y;

here degr” denotes the maximum of the degrees of the two (polynomial) compo-
nents off™".

Given a Hénon mayy, we let K*/K ~ denote the set of points B2 with
bounded forwargbackward orbits undey, and we let/* = 3K+ andJ =
J* N J~. Since detDF is constant oI 2, we may replace’ by f 1 if necessary
to obtain|detDf| < 1 From [BS1] and [BSZ2] it follows that, iff is hyperbolic
when restricted td, thenf is Axiom A; in this case, the nonwandering set consists
of the basic sef plus a finite sef of periodic sinks. The stable setafW+*(J), is
J*T = 0K, and the interior of ™ consists of the basins of the sinks. The unsta-
ble set of/, W*(J), is J~ \ S, and the interior oK ~ is empty. The set®¥*/*(J)
have dynamically defined Riemann surface laminatiang”, whose leaves con-
sist of stabl¢unstable manifolds of points ith. Each leaf of either lamination is
conformally equivalent t&C. Also, J has local product structure, which means
that there exist positivé ande such that, ifx, y € J with |x — y|| < &, then
W2 (x) and W/ (y) intersect in a unique point that is contained/inHere W} (x)
is the local stable manifold of defined agp : || f"(x) — f*(p)|l < & Vrn > 0},
with an analogous definition for the local unstable manifold. As usual, we will use
W4 (p) andW*(p) for the stable and unstable manifolds of a pgint

Note that, if f; is a 1-parameter family of Hénon maps depending holomor-
phically onx € A and if fy is hyperbolic, thenf; is also hyperbolic for alh
in some neighborhood of 0. Also, by [BS1fy is ©-stable, meaning that there
is a 1-parameter family of homeomorphismg: Jo — J, conjugatingfo|Jo to
falJi. Infact, by [J], for eaclp € Jo the maph — ¥, (p) is holomorphic in..
Hence there is a natural holomorphic motion definedg@rMoreover, by restrict-
ing the domain of. and possibly shrinking ande, we may assume that tldeand
¢ chosen for the local product structure énapply equally taJ; for eachi. For
the remainder of the paper, we ltandeg represent such a choice dande.

3. Unstable Connectivity and Critical Points

For Theorem 1.2, we need also the notion of an unstably connected Hénon map.
LetU+ = C2\ K be the set of points with unbounded forward orbit. Bedford
and Smillie [BS4] defined a Hénon map to be unstably connected with respect to a
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saddle poinp if some component oV “(p) N U * is simply connected. By [BS4,
Thm. 0.1], this is equivalent to the condition that, &y saddle periodic poing,
eachcomponent ofW“(p) N U™ is simply connected, and in this case they say
that f is unstably connectedBy [BS4, Thm. 0.2], the assumptiddetDf| < 1
implies thatf is unstably connected if and only.if is connected. As mentioned
earlier, if f is hyperbolic thery is Q-stable, so iff is hyperbolic with connected

J then all nearby Hénon maps are also hyperbolic with connect8dmmarizing
this argument, we have the following.

ProrosiTioN 3.1. Let f be a Hénon map of dynamical degegewith |detDf| <

1, and suppose that is hyperbolic and unstably connected. Then there is a neigh-
borhood/ of f in the space of Hénon maps of degtesuch that eacly € U/ is
hyperbolic and unstably connected.

As observed in [H] (see also [HO] and [BS1]), there is a plurisubharmonic func-
tion G* onC? defined by

.1
G*(p) = lim_—-log" /" ().

and this function is pluriharmonic obi * and satisfiesz ™ o f(p) = d - G*(p)
andG*(x, y) = log™|y|+ 0Q) for (x, y) e Vi = {|y| > R, |x| < |y|}, R large.
There is an analogous definition 6f~ with f~" in place of f/". SinceG™ is
pluriharmonic orJ *, it is locally the real part of a holomorphic function. In fact,
in [HO, Prop. 5.4] it is shown tha& ™ = Re log¢™) in VT, whereg™(x, y) =

y + O(1). Hence the level sets gft define a nondegenerate holomorphic folia-
tionG* defined inV *. SinceU * is the union of all backward images Bf" under

f, and sincef is a diffeomorphism, this foliation pulls back to give a holomorphic
foliation G+ onU*.

Finally, letyV* denote the lamination of ™ by stable manifolds af. We restate
here a proposition due to Bedford and Smillie to the effect that,iff hyperbolic
and unstably connected, then the foliatih and the laminationV* fit together
to form a lamination o/ T U U *.

ProrosiTioN 3.2 [BS4, Prop. 2.7]. If f is hyperbolic and unstably connected,
then there is a locally trivial lamination of + U U whose leaves are the leaves
of W*andg™.

For polynomials of one complex variable, there is a close connection between
connectivity of the Julia set and the behavior of critical points. In two variables,
Bedford and Smillie [BS3] defined the setwistable critical pointof a Hénon

map to be the union over poingse J of the set of critical points of the Green
function G restricted tow“( p) (actually the union over alp for which the un-
stable manifold exists, which is a set of fullmeasure, wherg is the unique
measure of maximal entropy). They showed also that such a critical point is ex-
actly a point of tangency between an unstable manifold of a poisitand a leaf

of the foliationG *.
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In casef is hyperbolic and unstably connected, there are no tangencies between
the leaves of the unstable $&t/(J) and the foliationg *; equivalently, for each
p € J, the setW"(p) N U™ contains no unstable critical points. This fact was
used in the proof of [BS5, Cor. A2] but was not stated explicity. Rather, Bedford
and Smillie showed in [BS4, Thm. 7.3] thitis unstably connected if and only if,
for .« almost every poinp, W“(p) N U contains no unstable critical points. For
completeness, we provide here a proof of the stronger result wiehyperbolic
and unstably connected.

ProrosiTiON 3.3. Let f be hyperbolic. Therf is unstably connected if and only
if, for each pointp € J, W%(p)NU ™ has no unstable critical points if and only if,
for each pointp € J, W*(p) is nowhere tangent to the leaves of the foliatiph.

Proof. From [BS4, Thm. 7.3],f is unstably connected if and only if, for al-
most every poinp, W*(p) N U™ contains no unstable critical points; by [BS3,
Prop. B.1], an unstable critical point #“(p) NU T is exactly a tangency between
W*(p) and a leaf of the foliatio; . Thus, we need prove only that jf is un-
stably connected then, for each poink J, W*(p) N U™ has no unstable critical
points.

That f is hyperbolic implies tha“(p) exists for eactp € J and that the un-
stable seW"(J) is a locally trivial lamination of/ —. Suppose there exisjse J
such thatv“(p) is tangent to a leaf @f *. Making a local biholomorphic change
of coordinates in a neighborhood of the point of tangency, we may assume that the
point of tangency is the origin ifz, w) coordinates, thaf* has leaves that are
complex lines parallel to the-axis, and thatv“( p) is locally the graph of a holo-
morphic functiorg — z*h(z) with 2(0) # 0 andk > 2. For any piece of a leaf of
WH(g) sufficiently near this graph, the derivative of the corresponding graph for
W' (q) will have a zero near the origin; hence there will be a tangency between
WH(g) andG ™. Since each leaf oW*(J) is dense in/~ [BS2] and since these
leaves form a locally trivial lamination, we see that there is a tangency between
W*(p) andG* for eachp € J.

Thus, if £ is hyperbolic then a tangency betwe®tt(p) andG* for onep €
J implies a tangency betweék“(q) andG* for all ¢ € J, and hence for a set of
full © measure; therefore, as already notgds not unstably connected. Taking
the contrapositive, if is unstably connected then, for egek J, there is no tan-
gency betweeV"(p) andG* and hence there are no unstable critical points on
W“(p) N U™*. As noted previously, this completes the proof. O

4. Holomorphic Families of Laminations

In this section we discuss some uniformization properties of Riemann surface lam-
inations and of holomorphic families of such laminations. Roughly, the main result
is that, given a holomorphic family of Riemann surface laminations in which each
leaf is conformally equivalent to the complex plane and given two holomorphic
transversals to these laminations, there is a natural way of parametrizing a given
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leaf by the plane so that the parametrization of this leaf varies holomorphically
with the family and so that the points of intersection of this leaf with the two trans-
versals are the images of 0 and 1 under the parametrization. Moreover, locally,
this parametrization can be done in such a way that the parametrization converges
locally uniformly when approaching a limit leaf. Precise definitions and results
are given shortly.

We first recall the definition of a Riemann surface lamination of a topological
spaceX, following [BS4] (see also [C; G1; G2]). Ahart consists of an open set
U; C X, atopological spacg;, and a magp;: U; — C x ¥} thatis a homeomor-
phism onto its image. Amtlas consists of a collection of charts that covéfs
For fixedy € 1}, the set of points)j‘l(C x {y}) is called aplaque.For coordinate
charts(p;, U;, ;) and(p;, U;, ¥;) with U; N U; # @, thetransition functionis the
homeomorphism from; (U; NU;) to p;(U; N U;) defined byp;; = p; o pj_l. A Rie-
mann surface laminations, of a topological spac«’ is determined by an atlas
of charts that satisfy the following consistency condition: the transition functions
may be written in the formp;; = (g(z, ), A(y)), where the function — g(z, y)
is holomorphic for fixedy € ¥;. The condition on the transition functions gives a
consistency between the plaques definedjimnd those irU;. Thus, plaques fit
together to make global manifolds calledvesof the lamination, and each leaf
has the structure of a Riemann surface.

In the current setting, we are interested in the Riemann surface laminations of
JT andJ~ given by stable and unstable manifolds and in the laminatiali of
given by the foliatiorG ™. Since these leaves have a natural holomorphic structure
induced fromC?, we will require additionally that each mayp be holomorphic
on each plaque. With this additional requirement, we can view a laminati&n of
as locally the “graph” of a holomorphic motion, as follows. At a pgirg X, let
v be a vector inC? such that' = Cv is a complex line transverse to the plaque
throughp. After a biholomorphic change of coordinates, we may assumepthat
is the origin and that = (0, 1). Let V be a small neighborhood @f, and letE be
the set of points iV that lie onT. Then the plaques id near the origin define a
holomorphic motion with parameter In other words, there is a functianz, w)
defined fon(z, w) € A, x E that is holomorphic in for each fixedv € E such that
(0, w) = w, a(z, -) is injective for eachy, and a plaque of through the point
(0, w) is given by the set of point&, «(z, w)), z € A,. Moreover, there is a co-
herence property corresponding to the consistency requirement on the transition
functions given previously. In the current setting, the mép, w) = (z, a(z, w))
is @ homeomorphism from, x E to an open seU C X that is holomorphic
for each fixedw € E. Given a second point and givenH : A, x E — U with
unu # (), we have a transition functio® ~* o H, which can be written in the
form H o ﬁ(z, w) = (g(z, w), h(w)), where the map — g(z, w) is holomor-
phic for fixedw.

A holomorphic family of laminations is a generalization in which each plaque
varies holomorphically with some parameiee A”. For this purpose, we will
restrict ourselves to families of laminations of set<ifi and we will adopt the
holomorphic motion view of laminations. So we say tlfgt is a holomorphic
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family of laminations depending on the parameter A”. if, for each fixedx, £,

is a lamination of a seX; in C? such that each plaque is a Riemann surface as
before and such that each plaque depends holomorphicalyirothe following
sense. Again, for each poipte X, , there is a local biholomorphic change of co-
ordinates such that the image pfs the origin ands = (0, 1) is transverse to the
plagque ofL; , through the origin. LeE be the intersection df = Cv and a small
neighborhood op in X;,. Then we require > 0 and the existence of a func-
tionu(z, w, 1) defined omA, x E x A”(Ao) thatis holomorphic iriz, 1) for each
fixed w and such that (ay(0, w, o) = w, «(z, -, 1) is injective for each fixed
(z, 1), (b) the point(0, « (0, w, 1)) is contained inX; for eachx € A", and (c) for
eachi € A", the plaque oL, through(0, «(0, w, 1)) is given by the set of points
(z,a(z, w, 1)), z € A,. Thatis,« is a holomorphic motion of point® € E with
parametersz, A) € A, x AL (Ao).

We will need a coherence condition on families of laminations also. We can view
the family £, as sitting inC2 x A". Given a pointp € X; , and local change of co-
ordinates as before, we require that the niBp, w, A) = (z, a(z, w, A), A) be a
homeomorphism from, x E x A" (o) to an open s&t in | J, (X, x {1}). More-
over, given a second poifite X3, with H: A, x E x A”(A¢) — U, we require
that the transition functio® ~X o H can be written in the forntt 2o H(z, w, ) =
(g(z, w, A), h(w), 1), where, for fixedw, the map(z, ») — g(z, w, A) is holo-
morphic inz anda.

Observe that the sétz, a(z, w, 1), A) : z € A, A € Al(ro)}is an(n + D)-
dimensional holomorphic submanifold @f+2. Hence the plaque af; , through
p can be said to vary holomorphically withby viewing it as a slice of this sub-
manifold. We call this submanifold family of plaques associated wiih Each
plague in this family is associated with a unique leaf in the corresponding lami-
nationZ;, so we may speak also of the family of leaves associated witive
will see shortly that, in the cases of interest for Hénon maps, the family of leaves
throughp is biholomorphic toC x A”.

The following is an immediate consequence of the implicit function theorem
and the definitions already given. It says essentially that a point of transverse in-
tersection between a holomorphic family of curves and a holomorphic family of
plaques associated with a point varies holomorphically with the parameter.

Lemma 4.1. Let L, be a holomorphic family of laminations, I1& be the family
of plaques associated with a pointe Lo, and letF: A x A" — C? be holomor-
phic such thatF(0, 0) = p and such that, for each fixed F(-, A) is an injective
immersion that is transverse #®,. Then there exist an > 0 and a holomorphic
function p: A" — C?2 such thatp(0) = po and p(A) € P, N F(A, 1) for all
AEAL.

Note that if the pointp(1) does not escape out the boundary of the imagg of
or the boundary of a plaqug,, then by the monodromy theorep(1) may be
analytically continued to all of\”.
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5. Stable Manifolds and Affine Structures

Let £, be a 1-parameter family of hyperbolic H&non maps and recall from Sec-
tion 2 that there is a homeomorphisgn from Jg to J, which is holomorphic

in A and which conjugategy|Jo to f;|J,. Given a pointpg in Jo, let p, be its
image undety,, and letW*/“( p,) be the corresponding stable and unstable man-
ifolds. In this section we show that the stable (and unstable) manifolgds cén

be parametrized b{ in a way that depends holomorphically drand so that the
parametrizations of nearby leaves converge locally uniformly to the parametriza-
tion of the family of leaves through,; .

Let S, denote the set of sink orbits fgf, and let,” denote the lamination of
Ji\ S,.. Givenp e J;,-, write L,(p) for the leaf of the laminatio®V} contain-
ing p.

As in [G1; G2; BS5], we define an affine structure on a holomorphic ciirve
to be an atlas consisting of holomorphic diffeomorphismsrom open setdJ;
of L to open sets of such that theJ; coverL and they; o x;* are restrictions
of affine diffeomorphisms of to their domains of definition. For three distinct
pointsx, y, z in C, the ratio(x — y)/(x — z) is invariant under the group of affine
diffeomorphisms ofC. If x, y, z are distinct nearby points df;, then the ratio
(xj(x) = x; (M /(x;j(x) — x;(z)) depends only on the points y, z, not on the
particular coordinate chayt; whose domain contains y, z. Hence we may de-
note this function by(x — y)/(x — z), which is holomorphic inc, y, z and which
in fact is holomorphic as a map inf®' wheneverx, y, z are not all equal. An
affine structure on a simply connected Riemann surface is saiddorbpletdf it
is isomorphic taC with its canonical affine structure.

If fois hyperbolic, then for eachg € Jy there is an injective holomorphic map
from C to the unstable manifold oy, and this map defines a complete affine
structure on this unstable manifold. Moreover, the iteratef ofspect this affine
structure in the sense that the pull-back or push-forward of the affine structure
from one leaf to another agrees with the original affine structure on the new leaf.

Lete = gq be as chosen for the local product structure in Section 2, ang &x
Ji - Choose disjoint transversals, T» to the local unstable manifol&*(xo),
and letTs be any other transversal to this local unstable manifold xFoy,; near
xo, there are three poings (x) = ;N W' (x), j =1, 2, 3, andp, p, are distinct.

The ratio(py — p3)/(p1 — p2) is well-defined, independently of any particular
choice of complex affine coordinate “(x). To say that the affine structure is
continuousds to say that this ratio varies continuously withand [BS5, Prop. 5.1]
implies that the affine structure o* is continuous. In fact, the following theo-
rem of Ghys implies a stronger continuity property.

THEOREM 5.1 [G2]. Let £ be a Riemann surface lamination of a subXetf a
complex manifold such that each leaffis parabolic(conformally equivalent to

the plang. Then the affine structure on leaves is continuous in the following sense.
Let U be a chart of £ and, for eachi > 0O, let x;, y;, z; be a triple of distinct
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points inU that, for each fixed, are all three contained in the same plaque of
L. Suppose also thaty;, y;, z;) converges to distinct pointS o, Yoo, Zoo) in U.
Then the ratio(x; — y;)/(x; — z;) converges t@xoo — Yoo)/(Xoo — Zoo)-

In [G2], the laminated space is assumed to be compact. However, the compact-
ness is used only to deduce that the conformal type of each leaf is independent of
the Riemannian metric on the space. In the current setting, each leaf is parabolic
using the standard metric @?, so we may dispense with compactness.

We use the continuity of the affine structure to construct holomorphic parametri-
zations of leaves that converge locally uniformly when approaching a limit leaf.
The essential idea is to choose a limit leaf along with two transversals to this
leaf. Nearby leaves will also intersect these transversals, and we can choose
the parametrization of leaves by the plane so that the images of 0 and 1 lie on
these transversals. The continuity of the affine structure gives the local uniform
convergence almost immediately. Note that we take a very myopic view when
parametrizing leaves. In practice, one leaf will come back and accumulate on it-
self everywhere. For purposes of the parametrization, we work locally and regard
each plaque as part of a separate leaf with its own parametrization. Thus one leaf
may have many different parametrizations, any two of which differ by an affine
transformation.

For the following proposition, lef be a lamination of a closed subsebf C?
such that each ledf of £ is parabolic. Also, leU be a chart ofZ, and let/ =
7+ U {oo).

ProposITION 5.2. Letx;,y; e U fori e I withx; — xo andy; — vy (X0 #
Y=o) @nd such that, for eache I, x; and y; are contained in the same leaf
of £ and in the same plaque withi. Let¢,: C — L; be injective holomorphic
fori e I with ¢, (x;) — ¢-2(xe0) and ¢, (yi) — ¢ 1(yo). TheNg;, — ¢
uniformly on each compact subset©f

Proof. Let P; be the plaque of/ containingx;, y;. We will show first thatp; con-
verges tap,, uniformly on each compact subset@f'(P,) C C. By assumption
on U, there exists a biholomorphic change of coordinates suchPhas an open
set in thez-axis (C x {0}). By restricting to sufficiently large, we may assume
that the projectiorr;: P; — (C x {0}) is injective holomorphic for each(and
thatm,, = Id). Moreover,zrflzrOO converges to the identity uniformly on compact
subsets o, asi — oo (e.g., by ther-lemma of [MSS]).

Lety € . (Px) be asimple closed curve wify,, y. ¢ n;}(y), andletv, =
UiernX(y). ThenN, is compactand;, y; ¢ N, for i large. DefineR;(p) on P;
(iel)by
¢ (x) — ¢ (p)
¢ (x) — & ()

Sincex,, # y» and since the preimages of andy; converge (respectively) to
the preimages of ., andy,, we see that, for large R; is well-defined and holo-
morphic onP;. Moreover,R;( p) is precisely the ratio function applied to the triple

Ri(p) =
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(xi, yi, p). Viewing R;(p) = R(i, p) as a function on the compact ¥}, the
theorem of Ghys implies tha is continuous orV,, and hence uniformly contin-
uous. In particularg;* o 7, — ¢ 1o L uniformly ony, hence on the interior
of y by Cauchy’s formula, hence on each compact subsé&tof

Thus(m; o ¢;) ™ = (s © Poo) "+ uniformly on compact subsets af, (Pso).
Since 1, ¢ IS injective holomorphic, this implies that; o ¢; converges to
oo © $oo UNiformly on compact subsets @f1(P.) (e.g., by the integral for-
mula for the inverse of a holomorphic map). Sinqél o T CONverges to the
identity uniformly on compact subsets Bf,, this implies thaty; converges t@.,
uniformly on compact subsets ¢§01(Poo).

To complete the proof, lek C C be compact, and covef. (K) by finitely
many plaquesus 1, ..., Poom With Pog j N Po jy1 # P for j=1,...,m —1and
Px1 = Ps. The preceding construction implies tht converges tap., uni-
formly on compact subsets ¢§1(Poo,1). SinceP., 1 and P, 2 are open and have
nonempty intersection, we can apply the same argument to two new sequences of
points with limits in their intersection to conclude tht converges ta,, uni-
formly on compact subsets f (P 2). By induction, we obtain uniform con-
vergence on all oK. O

In dealing with families of Hénon maps, we will need a parametrized version of
the foregoing result. We begin with a definition.

DEerFINITION 5.3.  LetL; (A € A™) be a holomorphic family of laminations. We
say thatl, is leafwise trivialif, for each leafL,,, there exists some > 0 such
that the seZ = {(A, p) : A € A.(Lo), p € L,} is biholomorphic toA”. x C.

As an example of how a holomorphic family of leaves could fail to be trivial in
this sense, consideiPd bundle overA”; then remove a section ova that is not
holomorphic. Then each leaf is biholomorphig@obut the bundle is not biholo-
morphic toA" x C.

In the following theorem] = Z* U {0}, as before.

THEOREM 5.4. LetL; (A € A") be a leafwise trivial holomorphic family of lam-
inations. Letx;(A) andy;(A) (i € I') be holomorphic i with x; (1) # y;(A) for
eachi and A and such that, for all, y;(3) is contained in the plaque through
x;(1). Suppose also that;(A) converges ta (1) andy;(1) converges t0 (1)
uniformly on compact subsets af asi — oo. Let L; , be the leaf through
xi(A), and letg; ,: C — L, ; be injective holomorphic with, ,(0) = x;(») and
@i (D = yi(A).

Theng;(x, z) = ¢;.,(z) is holomorphic in(x, z), and ¢; converges t@, uni-
formly on compact subsets ¢f, 1) € C x A".

Proof. Sincel, is leafwise trivial, itis a locally trivial fibration ovef” and hence
is biholomorphic toA” x C by [W, Lemma 4.4]. Consequently, there exist in-
jective holomorphic map®; ,: C — L, such that®; ;(z) is holomorphic in
(A, z)e A" x C.
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Sincex;(1) andy;(A) are holomorphic in, we see tha¥;(1) := @f}x(xi(k))
andY;(A) = d);i(yi(k)) are holomorphic fromA”" to C; by the injeyctivity of
d; ;, we then haveX;(A) # Y;(1). Since injective maps from the plane to itself
are unique up to affine map, we see Wai(z) = <I>,»,A(X,-(A) +z(Y;(A) — X,-()»)))
is holomorphic in(x, z), as desired.

Finally, the uniform convergence ¢f to ¢, follows almost exactly as in the
proof of Proposition 5.2, using the functid , given by the formula foR; with
¢+ in place ofp; ™. O

Next, we show that the leaves of the dynamical laminations generated by a hyper-
bolic Hénon map are leafwise trivial holomorphic families of laminations.

TaeorEM 5.5. Let f; be a family of hyperbolic Hénon maps depending holo-
morphically oni € A", and letW,' be the lamination of/,” whose leaves are
the unstable manifolds of,. ThenW," is a leafwise trivial holomorphic family of
laminations; likewiselV; is a leafwise trivial holomorphic family of laminations.

Moreover, if eachf, is unstably connected and £, = W,) U g;, then L,
also is a leafwise trivial holomorphic family of laminations.

Proof. The proof of the (un)stable manifold theorem for hyperbolic sets as in
[SFLC, Chap. 6] relies on a contraction mapping argument applied to a Banach
space of bounded sections ovgr Starting with initial approximations to the un-
stable manifolds that vary holomorphically with the uniform convergence ob-
tained from the contraction implies that the unstable manifolds/fowill vary
holomorphically withi in the sense that the family of leaves associated with a point
varies holomorphically with.. Thus,£, is a holomorphic family of laminations.

For the leafwise triviality, [BS1, Thm. 5.4] implies that, fer, € J,,, we can
exhaustW*(x,,) by an increasing union of disks. Since the family of lealgs
associated withy; , varies holomorphically withk, the same argument implies
that there exist an > 0 and injective holomorphic mag$;: A x A% (Ao) — Z,
whereZ is the manifold of leaves associated with), as in Definition 5.3, such
that the image of{; is contained in the image @, and such that the union of
their images is all oZ. Because each leaf is conformally equivalen€to[FS]
implies thatZ is biholomorphic taC x A", so L, is leafwise trivial.

Finally, suppose; is unstably connected for all The functionG,'(p) is pluri-
harmonic in(x, p) by [BS1, Prop. 3.3] and hence is locally the real part of a func-
tion W that is holomorphic in(, p). Then the plaques of," are precisely the
level sets of¥’(A, -); hence these plaques vary holomorphically.inso £, is a
holomorphic family of laminations. The fact théj, is leafwise trivial in this case
follows as before, using the ideas in the proof of [HO, Thm. 7.2] to produce the
increasing sequence of biholomorphic images of bi-disks. O

Collecting the results of this section, we obtain the following result, which al-
lows us to parametrize leaves W, and W, holomorphically inA so that the
parametrizations converge locally uniformly when approaching a limit leaf. For
this proposition, let = ¢g be as chosen for local product structure. Moreover, if
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necessary we may shrink thiso that, at each point of,, the bi-disk of size 2
with axes parallel to the stable and unstable directions at this point defines a chart
for the stable and unstable laminations.

TaeorEM 5.6. Let f; be a family of hyperbolic Hénon maps depending holo-
morphically onk € A", Let p € Jo andg € JoN W (p) withq # p, and letp, =
¥,(p) andg, = ¥,(¢g). Then there exists @, : C — C?2, injective for each fixed

A and holomorphicinz, 1) e C x A", such thatg,(C) = W* (P2, $,(0) = p;,
and ¢,(1) = g,. Moreover, ifp/ € Jo with p/ — p and ifg/ € Jo N WS(p/)
with ¢/ — g and if ¢/ is the corresponding parametrization for eaghtheng;
converges t@;, uniformly on compact subsets 6f x A". There is an analogous
result for W(p;).

Proof. By Theorem 5.5V, is a leafwise trivial family of laminations. As a re-
sult, Theorem 5.4 applies to give, with the stated properties and shows that if
p; andgj converge uniformly on compacts g andg;, respectively, them;
converges uniformly on compacts ¢g. Hence it suffices to show the uniform
convergence op; anqu to p; andg;.

To do this, define holomorphic maps(x) = p; andi(1) = p;, wherep! =
¥,(p’). Note that, since we have restrictedidn the closed polydisk\", the
filtration argument in [BS1] implies that there exists some- 0 such that/; is
contained inAZR independently of.. In particular,h; is uniformly bounded byR,
independently of. and j. Note also that, for each fixex, v; is a homeomor-
phism; sincep’/ — p, we havey,(p/) — ¥, (p) for each fixedr. Hence{h;};
is a uniformly bounded sequence of holomorphic maps that converges pointwise
to h. Because the sequence is uniformly bounded it is also equicontinuous, and
this plus pointwise convergence implies uniform convergence. ]iibmanverges
uniformly on compacts t@; and likewise forqx, which (as noted previously) im-
plies the convergence @f to ¢;. O

We need an analogous parametrization for leavekah the unstably connected
case. Since/; is not defined outsidéy, we will have to work a bit harder. Our
next theorem will allow us to extend, to Uy N J; .

THEOREM 5.7. Let f; be a family of unstably connected hyperbolic Hénon maps
depending holomorphically one A*. Letp € (J;- UUS) N J; . LetL; be the
family of leaves ofj," UW;’ throughp, and letZ; be the family of leaves af/"
through p. Then there exists a unique map- p;, € C?, bounded and holomor-
phic inx € A", such thatpo = p and p; € L N L] for eachA

Moreover, |fp/ ey uUg)NJy and pl = p, thenpA converges t;,
uniformly onA”.

Proof. We first construcp; . For this purpose, ip € Jo thenp, = vy,(p) satisfies
the conclusions; hence we assume U,". Choose a chart containingfor the
family of laminationsg,", A € A", and letP," be the family of plaques through

Likewise, letP,” be the family of plaques afV) throughp. Sincefy is hyperbolic
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and unstably connected, Lemma 4.1 implies fhais defined uniquely fok near
0 as the intersection @*,” and P, .

Note that, by definition of the laminatia®, the functionG; (p,) is constant.
Note also that, sinck is restricted to the closed polydisk in the hypothesis of the
lemma, it follows from [BS1] that there exists & > 0 independent of such
thatJ,” is contained inA% NV~ and such that, for a given constantthe inter-
section ofA2 N V" with the level se{G; (x, y) = C} is contained ir{|y| < R’}
for someR’ > 0 independent of. Hence, replacing by the max ofR andR’,
we have thap;, is contained inAzR, and this will remain true if we continug;
within the intersection o, and the same level set 6f;".

We now continuep;, throughoutA”. Suppose thay is any closed curve from
[0,1] to A" and suppose that; is defined and holomorphic at each point
v([0,1)). Sincep,; is uniformly bounded, we can take a sequence[0, 1) with
t; increasing to 1 and such that, foy = y (#;), the pointsp;; converge to some
pointg. Letio = ¥ (D). Sincep; € J;_ for all » and since the union overe A" of
J;7 x {1} is closed as a subset 6f x A", we havey € J;. Also, sinceG;"(p;)
is a constanC > 0, we haveG,'(g) = C and hence € U;%. In particular,q is
the point of intersection of plagues of the corresponding laminations and hence
has an extensiog, as above foi in some neighborhood af.

Note that ifg; = p, at some poink in their set of common definition, then the
local unique extension in terms of intersecting plaques implies that they agree on
an open set and hence everywhere they are both defined.qT il be a con-
tinuation of p, once we show that they agree at one point.

In a neighborhood of;,,, let W,(x, y) be holomorphic in(x, x, y) with
ReW;(x,y) = G,f(x, y). Then the level sets o¥; define the laminatiorg,",
soW;,(ps,;) is a constanC independent of and hence is equal t;,(¢). In a
neighborhood of; and fori nearig, there is a fixed complex line independent
of A throughg such that the projection of the level 4dt; = C} to this line is
injective holomorphic. Moreover, the points of intersection/ofwith this level
set define a holomorphic motion via projection to this complex line. Bec&use
intersects the sét; = C} transversally for alk neari, we can choose a small
neighborhoodr of g and then restrick to a sufficiently small neighborhood of
Ao such that each point il that is a point of intersection betweé¢w, = C}
andJ;” has a continuation as such a point of intersection foi ali this small
neighborhood.

For j sufficiently large p;, is such a point of intersection, and the continuation
of p;, must agree with the extension pf, because, is defined as a point of in-
tersection. Henceg; has an extension toin a neighborhood aofy. Thenp; and
g, both project to the complex line chosen previously, and their images are points
in the holomorphic motion. Corollary 2 of [BeR] implies that, gives 0 small,
these points of the holomorphic motion are constrained to lie in a small neighbor-
hood ofq for ||» — Ag|| < r. From the injectivity of a holomorphic motion and the
compactness of this parameter range, these two points must be either identical for
all sucha or distinct with a positive lower bound on their closest approach. Since
ps,; converges tg by hypothesis, the two images must be identical.
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Henceg; agrees withp, for somex where both are defined. As noted before,
this implies that they agree on an open set and hepég a continuation op;,.
By the monodromy theorenp, extends to all ofA”.

Suppose now that/ converges tg as in the statement of the theorem. We
wish to show thatp] converges uniformly om\' to p,. However, since thq:;A
are uniformly bounded, the argument in the proof of Theorem 5.6 implies that we
need show only that; converges tg; for each fixedi.

Let P, and P, be the family of plaques throughfor A in some small neigh-
borhood of 0. The family of plaquds,"}, form a holomorphic manifold/ + of
dimension: + 1in C2 x A", so there is an open set in this ambient space and a
bounded holomorphic functioff + defined on this open set such thit" is pre-
cisely the zero set off + (and likewise forH~ andM ™).

Forj sufficiently large and. in some small polydisiD" independent of, the
point p; is contained in the set wheré* are deflnedp{ is defined as the point
of intersection of two leaves of the stable and unstable laminations and so we see
that, for fixedj, Hi(pk) is either O for allx near O or never 0. Moreover, since
H* is bounded, the set of funct|orh$(A) H=(p)) is a normal family. Given
any subsequence bf, we can now extract a locally uniformly convergent subse-
quence; sincg’ = p} converges tg = p°, the limit function must have a zero
atA = 0 and hence must be identically O by Hurwitz’s theorem. Since this is true
for any initial subsequence, it follows thl@’f converges to 0 pointwise gs— oo
for eachx € D". Since th(—:hi are uniformly bounded, we have as before that the
convergence to 0 is unlform on compact sets. From the deﬁmtubﬁmh terms
of H*, this implies thatpA converges tg; uniformly for A in compact subsets
of D",

Finally, recall that the pointp{ are uniformly bounded and so form a normal
family. Given any subsequence and any further locally uniformly convergent sub-
sequence, the preceding argument implies that the limit function agreegwith
on some neighborhood of 0 and hence everywhere. Since this is true for any ini-
tial subsequence, the functiopg must converge pointwise tp, on all of A7,
and since they are uniformly bounded, we see that the convergence is uniform on
this compact set. O

CoroLLARY 5.8. Let f; be as in the previous theorem. Then the njap Jo —
J; extends to a mag;: (J U UG ) N Jy such thatyy is the identity,y; is a
homeomorphism for each fixédand ;. ( p) is holomorphic in. for each fixedp.

Proof. The theorem implies that, givep e (J; UUS )N J;, we can define
¥(p) = ps, and also that this extension is continuous and holomorphic in
Moreover, for any fixedvo, we can apply the theorem to obtaih , , taking
(JEU U;;) NJ,, to (J;-UU;H)NJ;". The uniqueness part of the theorem implies
thaty; 1 = v, 0. Thus,y; is injective with continuous inverse, as desired. O

We are now ready to give a version of Theorem 5.6 in the unstably connected case.
The proof is the same as the proof of Theorem 5.6, using the corollary to obtain
the homeomaorphisn; .
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TaEOREM 5.9. Let f; be a family of hyperbolic and unstably connected Hénon
maps depending holomorphically are A. Let Aq = (J;" U U ) N J; and let

p € Ag andg € A be in the same plaque OV UG* asp (p # ¢). Let p, and

g, be the points defined in the previous theorem. Then there exists @ —

C?, injective for each fixed. and holomorphic in(z, 1) € C x A", such that
$,(C) equals the leaf ofV} U G;© through p, with ¢,(0) = p, and ¢,(1) =

5. Moreover, ifp/ € Ag with p/ — p andg’ € A in the same plaque ag’
with ¢/ — g and if ¢/ is the corresponding parametrization for eaghtheng;
converges t@, uniformly on compact subsets 6f x A". There is an analogous
result for leaves oV}

6. Holomorphic Motions

We recall the following theorem, due to Bers and Royden, on the canonical ex-
tension of a holomorphic motion of a sEtc P! to a holomorphic motion oft™.
For more background, see [BeR].

THEOREM 6.1 [BeR]. Lett: A x E — P! be a holomorphic motion. Then
T restricted toAy,3 x E has a canonical extension to a holomorphic motion
t: A1z x P — PL This extension is characterized by the following property.
Let (%, z) be the Beltrami coefficient af— t (1, z) and letS be any component
of P1\ E, whereE is the closure o in PL Then

w(h, 2) = ps(2) 2P (x, 2) (6.1)

for z € S and 1 € Ayy3, whereps(z)|dz| is the hyperbolic metric ir$ and where
the functiom (%, z) is holomorphic inz € § and antiholomorphic ik € Ays.

This theorem is true also if the disk is replaced by the ball’in see [Su] or [Mi].

A Beltrami coefficient of the form in (6.1) is said to beharmonicBeltrami
coefficient. The hyperbolic metric is also known as the Poincaré metric and the
infinitesimal Kobayashi metric.

The parametrization of leaves given in the previous section gives us a way to
speak of a holomorphic motion on leaves.

DEFINITION 6.2. Letg: A" x C — C? be holomorphic and suppose that
¢, = ¢(X,-) is injective for each fixed. € A". Let Eg € ¢(0,C). Thenrt:

A" x Eq — C?is aholomorphic motiorof Eq on the family of leaves defined by
¢ if T,(Eg) = t(A, Ep) is contained in the leaf (A, C) for eachi and if¢;1rx¢o

is a standard holomorphic motion @of the setp, (Eo).

In particular, given a holomorphic motion on leaves, we can pull it back to a holo-
morphic motion in the plane, then apply the Bers—Royden extension, and push
forward to obtain an extended holomorphic motion on leaves. We will call this
extension the Bers—Royden extension also.
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We record here also a notion for the convergence of holomorphic motions on
leaves when approaching a limit leaf. Let= Z* U {c0}. In the following def-
inition, the Hausdorff metric on sets in the plane is defined with respect to the
spherical metric, denoted here #y on the Riemann sphere.

NotaTtion. With ¢ andz as in the previous definition, lét.[z;] denote the map
&, t.¢0 defined onpyt(Eo).

DEFINITION 6.3. For eachi € I, let ¢': A" x C — C? be holomorphic with

¢! = ¢' (%, ) injective for each fixed., and suppose that converges te> uni-
formly on compact sets. Lét’ C ¢'(0, C) foreachi € I, and letr’ : A" x E be

a holomorphic motion on the leaves definedidy Thent converges uniformly to

7°° means that the set = () X(E’) converge taA* in the Hausdorff metric

and that the corresponding holomorphic motions in the plane converge uniformly
on compacts: for each> 0 there exist > 0 andN > 0 such that, if > N and

A1 — A2l + dy(z1, 22) < 8 (z1 € A, z2 € A™), then

dy(pL[7] 1(z0), $°[753](22)) < .

The uniqueness of the Bers—Royden extension allows us to conclude that, given
a sequence of holomorphic motions on leaves converging as just described, the
extensions also converge in this sense.

PropoSITION 6.4. Let ¢’ and ¢ be as in Definition 6.3, and let’ denote the
Bers—Royden extension of. Thent’ converges uniformly t6>°.

Proof. ThatA° converges tat™ in the Hausdorff metric implies, for a given com-
pactk c C\ A*, thatK is also contained in the complement4ffor largei and
that the hyperbolic metric of the component of the complement’ afontaining
K converges uniformly oK to the hyperbolic metric of the complement 4.
Moreover, since eaci[z.] has a harmonic Beltrami coefficient, say(x, z) =
0i(2) 72 (x, z), and since|u; (1, 2) || pi(z)? is uniformly bounded fok € A" and

z € K, we see that the familj/; } is a normal family.

Hence there exists a subsequence bEonverging uniformly on each compact
subset ofA” x (C \ A*®) to ¥ (%, z). Moreover, from [BeR, Thm. 1], we have for
eachi that

lwi(A, Dlloe < 1Al

Hence this estimate holds also faK, z) = ps(z2)"?¥ (%, z), and the subse-
guence of holomorphic motions corresponding to the chosen subsequefite of
converges uniformly to a holomorphic motion with the harmonic Beltrami co-
efficient «. But this limit motion must agree withS°[77°] on A%, and since

this latter motion also has a harmonic Beltrami coefficient, the uniqueness of the
Bers—Royden extension implies that the limit motion must egddlzs°]. Since

any subsequence must have the same limit, we obtain pointwise convergence, and
[BeR, Cor. 2] implies equicontinuity of the sequence and hence uniform conver-
gence, as in the preceding definition. O
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We prove next that the natural motion & given by, is a holomorphic mo-
tion on leaves and that the motion on a sequence of leaves approaching a limit leaf
converge to the motion on the limit leaf.

THEOREM 6.5. Let f; be a family of hyperbolic HEnon maps depending holo-
morphically onx € A". Let £, be either of the laminationg/" or W. Letp €
Joandp, = ¥;(p), and letL; = L;(p) be the leaf ofL; throughp,. Let Eq =
Lo N Jo. Thenyr(r, -) = ¥;(-) is a holomorphic motion ofy on the family of
leaves{L;}.

Moreover, ifp/ € Jo converges tgp € Jo andL; = L;(p’) is the leaf through
p){, then the holomorphic motion dfé = Lo(p’) N Jo on the family of leaves
{L]} converges uniformly to the holomorphic motionffon the family of leaves
{L.}.

Finally, the Bers—Royden extensions of the motionEéotonverge uniformly
to the Bers—Royden extensions of the motioAgf

Proof. Sincey; isahomeomorphism of to J; that conjugategy to f3, it follows
thaty, mapsLo N JoontoL; N J,. Hencey;,(Ey) is contained in_,. Moreover,
Theorem 5.6 implies that there exist holomorphically varying parametrizations
¢, C — L,. Sincey,(q) is holomorphic ik for each fixed; € Jo, we see that
¢.[V¥;] is a holomorphic motion in the plane; henge is a holomorphic motion

on the family of leaves througp.

For the convergence result, assume without loss of generality thiatthe un-
stable lamination. For the remainder of this proof,det §o ande = ¢¢ be the
constants chosen earlier from the definition of local product structusg; #;

Ji with |la — b|| < &, thenW}(a,) and W' (b,) intersect in a unique point con-
tained inJ,. ' .

Theorem 5.6 implies that there exist functiops: C — W*“(p;) which are
holomorphic inz € C and inA € A" and bijective for each fixed and which con-
verge locally uniformly to the magps° parametrizingv*(p;).

With these parametrizations, the first part of this proof implies that the holo-
morphic motion on the family of leaves through is defined on the set/ =
(98)"X(Jo N W*(p’)) and is given by the pull-back! = ¢/[v;]. The setA®
andz;® are defined similarly, using and¢.

ChooseR > 0 and letk = A; c C. Since we are using the spherical metric
to define the Hausdorff metric, the proposition will be established once we show
thatA/ N K converges td>® N K in the Hausdorff metric and tha;_’ ¢*[¢X]
converges uniformly oKz, 1) € (K N E/) x A" to e,

Sinceg* (K) is contained irlV*(p;), it follows that, for large:, f, "(¢°(K))
is contained inW;*(f,”"(ps)). Hence, for largg, f, " (¢](K)) is also withins of
fi7"(py). It suffices to prove the convergence result ngat(p,) and then apply
£, for clarity, we drop thef, " for the remainder of the proof.

Choose distinct points andb in W/ (p) N Jo so that each af;, andb, is of dis-
tance no more thady 2 from p; for anyi. Then, for largej, W*(p;) andW(a;)
intersect in a unique point of,, and likewise forb;,.
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Using a local biholomorphic change of variables from a neighborhood of
Wy'(p;) to the unit bidisk{|z| < 1, |v| < 1} (with the change of variables de-
pending holomorphically oh), we may assume thak;'(p,) is A x {0} and that
Wyi(ay) andWy'(b;) are{0} x A and{1/2} x A, respectively. Then, for eache
Jo N Wy*(po) and for given values of € A* andv € A, we associate the point
given by taking the intersection & (¢,) with A x {v} and then projecting to the
u-coordinate. This defines a holomorphic motion of the pgimtith parameters
A andv.

A x {v} qrv

H{(q,\)

Wi (p))

Figure 1 The holomorphic motiog (1, v) and the projectiod—l{

We can view this holomorphic motion as a lamination with leaves defined by
{g,,» : v € A} as in Figure 1, and the holonomy map associated with the leaves
of this lamination gives a projectioH{ from W*(p,) N J, to Wg‘(p{) NJ,. As
j tends toco, the v-coordinate ofWj(p;) converges uniformly to 0. Hence the
estimate in [BeR, Cor. 2] implies tha{,{ (and(H,{)‘l) converges to the identity
uniformly in ¢ and. In particular, this establishes the convergenc& 6in K
to E* N K in the Hausdorff metric. Moreover, givene Jo N W*(p}). we have
V:(q) = Hjy,.(H{) (). Hence

) = () H{ Y l(@d) HY
wherey, is restricted to¥y'( p,). The right-hand side converges uniformly to

(@) (o) =1,

as desired.
Finally, the convergence of the Bers—Royden extensions follows from Proposi-
tion 6.4. 0

We next prove an analogous result in the unstably connected case.
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ProrosITION 6.6. Let f; be asin Proposition 6.5 and assume also that edls
unstably connected. L&Y, be the laminationV; UG,". Letp € (J§ WU )N Jy
and p, = ¥(p), and letL, = L;,(p) be the leaf ofL; throughp;. Let Eq =
LoN Jy. Theny(a, -) = y,(-) is a holomorphic motion o on the family of
leaves{L;}.

Moreover, if p/ € (J§" U UG ) N Jy converges tg in the same set, then the
holomorphic motion o} = Lo(p’) N J5 on the family of leave&L;(p/)} con-
verges uniformly to the holomorphic motion 8§ on the family of leave$L, },
and the Bers—Royden extensions of the motior&)afonverge uniformly to the
Bers—Royden extension of the motiorEgf

Proof. Sincef; is unstably connected, we can use Corollary 5.8 to obtain the ho-
meomorphismy; and then use Theorem 5.9 in place of Theorem 5.6 in the proof
of the previous theorem to obtain the holomorphic motiotk gf

For the convergence result, jif € Jo then the proof is the same as that of the
previous theorem, so we assume that Uy N J; . In this case, proof of the pre-
vious theorem still applies except for the existenc& afde. However, instead of
applying f =" for some large:, we now applyf”. Since leaves of the lamination
of Uy are super-stable manifolds (as shown in [BS3)), it follows that, for large
andj, f'(¢;(K)) is again contained in a small neighborhoodfdt p;); the dis-
cussion ofG* after Proposition 3.1 implies that these image&oivill be nearly
horizontal disks. A simple calculation implies that the local unstable manifolds of
pointsinJ,” nearp, are nearly vertical disks. Hence again there are unique points
of intersection between local stable and unstable leaves, so the remainder of the
proof of the previous theorem applies without change. O

7. Proof of Main Theorems

Proof of Theoreni.1l. Choosepg € Jo and letp; = ¥i(po). We will first con-
struct the mapb, on the setW*(po). Toward this end, lep, : C — W"(p;,) be
a parametrization obtained by Theorem 5.6; thapjsis holomorphic in(%, z),

with ¢,(0) = p, and¢; (1) = ¥(qo) for somego € W"(po) \ {po}. Let Eo =
Jo N W*(po), and define a holomorphic motion dfy = ¢51(Eo) by

. = ¢, Wado = ¢ulV].
By the theorem of Bers and Roydenextends canonically to a holomorphic mo-
tion &; of C with a harmonic Beltrami coefficient.

We defined; : W*(po) — WH(p;) by W, = ¢,a;¢,". Note that onE, ¥, =
¥,. Moreover, W, is independent of the choice @f. To see this, suppose that
y: A" x C — WH*(p,) is holomorphic in(A, z), and letBy andg;, be the analogs
of Ag anda; with y in place ofp. Theng; 'y, : C — Cis affine linear and holo-
morphic ik, saye; 'y;(z) = 0x(2) O ¥4(z) = ¢, 0:(2). Hence

Br(2) = 0,2 0000(2) = 077, 05 (2).

Since Q;. is affine linear, the canonical extension gf is 8, = Ql‘l&x 00(2).
Using this with the expression for, just given and canceling terms, we obtain
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y,\ﬁ,\yo‘l(p) = W, (p) for eachp € W*(pp). That is, ¥, is independent of the
choice of parametrization.

Hence we may apply the foregoing construction to epghe Jy to obtain
v, Jy \ So — J, \ S, satisfying properties (1), (3), and (4) of the theorem,
whereS, is the set of sink orbits foi;,. The same construction applies to give
¥, on JJ, and we can defin&; on Sy by using the implicit function theorem to
follow the sink orbits.

As in [McS], we can use the uniqueness of the Bers—Royden extension to show
thatW, conjugatesfo on W*(pg) to f, on W*(p,). To do this, lety; be the holo-
morphic motion ofC induced as before by, on W*(po) and Ietf?x be the motion
induced byyr;, on W*(fo(po)), whereW*( fi(p,)) is parametrized by, . (Note
that 8 andy are different from the maps of the same name in the preceding sec-
tion.) We obtain the following diagram, with the left and right portions commuting
as indicated.

¢ f
C —2> WH(po) —> W"(fo(po)) <—C

i&)\ /1] l‘//AW‘I’A \L%\W‘I’A 11/ lﬁA

C " W)~ W) <= C
Note thaty;lf,\qb;\ is a biholomorphic map df to itself and hence is equal to some
affine linear mapQ; depending holomorphically oh. As a result,0;a; le is
a holomorphic motion of. Moreover, since);, is an affine linear map, the Bel-
trami coefficient of this new holomorphic motion is simply a constant times the
Beltrami coefficient ofx,, so the new holomorphic motion has a harmonic Bel-
trami coefficient.

Furthermore,yr, = fis fo - on Jo implies thaty, = figraipg™fo ™ on
W“(fo(po))NJo, and henced; o, Qg* = y; ;.o on the same set. Butalgg =
y;lm yo by construction and so, by the uniqueness of the extension of this motion
to a motion with harmonic Beltrami coefficient, we see that= 0,4&; le.

Sinced, = ¢; W, ¢ andB; = y; W, 0, we have

Vi W0 = 0505 WidoQo;

usingQ; = y; “f.¢: and canceling common factors, we obtdin= f,¥,

The argument just given applies to apy< Jo, SO f5, = \IJAfo\IJ,\‘l onJy \ So.
Finally, the extension o¥/; to So using the implicit function theorem respects the
dynamics on the sink orbits and therefobg conjugatesf, to f; on all of J; .
Applying this to £, givesW, on J, U J; satisfying properties (1), (3), (4), and
(5) of the theorem.

Note thatW, is bijective, since it is bijective on each leaf and since there is a
1-to-1 correspondence between leaves. We need to checWhatcontinuous
with continuous inverse, but it suffices to show that it is continuous and proper (as
a map from a subset @? into C?) since then we can use a 1-point compactifica-
tion to get a continuous 1-to-1 map on a compact set, which automatically has a
continuous inverse.
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To show continuity, lety/ be a sequence of points iy converging to a point
g™ in Jy , and suppose first thaf® is not a sink. We want to show that,(¢/)
convergestd; (¢*°). Let p* € Jp sothay ™ is in the unstable manifold gf* for
fo, and likewise letp’ € Jo so thatg’ is in the unstable manifold gf/. Dropping
to a subsequence if necessary, we may assumethainverges tp>.

Theorem 6.5 implies that the holomorphic motionVéf ( p/) N Jo converges
uniformly to the holomorphic motion oW “(p>) N Jo and also that the Bers—
Royden extensions of the former motions converge to the Bers—Royden extension
of the latter. Sincel;, is precisely the Bers—Royden extension of these motions,
it follows at once thatV; (¢7) converges tab, (g™).

We claim next thapo € J; is in the basin of attraction of a sink orbit if and only
if W,(po) is in the basin of attraction of a sink orbit for eachFirst, pg € J; is
in Jg precisely whenl;(po) € J,", sinceV is injective and is a homeomorphism
of Jg to J;. SinceJo+ is the boundary of all basins of attraction of sink orbits of
fo, we may assume either thag is in the basin of a sink or thaty is in the set of
points with unbounded forward orbit. We can then weteas the disjoint union
of the setA of A such that¥,( po) is in the basin of some sink and the #&bf A
such thaty, ( po) has unbounded forward orbit. Note thatWif( po) is attracted
to a sink of f;, then some small closed neighborhood is attracted to this sink; for
all sufficiently small perturbations of;, this closed neighborhood will still be in
the basin of some sink. Sind& ( po) is holomorphic ink, it follows that the set
A is open and likewise that the sBtis open. Since\" is connected, only one of
these two sets can be nonempty, and since the point O is in one of them, the claim
follows. This argument can be refined by further decomposing the s&b dis-
joint setsA; of A such thaW,( po) is contained in the basin of attraction®f(g/)
for each sinkg/ of f,. The conclusion in this case is thag is in the basin of
attraction ofqé if and only if, for all A, W;(po) is in the basin of attraction @f{.

To continue the proof of continuity, > is a sink then we may assume with-
out loss of generality that eaeh is contained in the basin of attraction @¥
but is not equal tg*°. Let U be a small neighborhood d§ in J;, , and letN =
fo(U)\ U. ThenN is compact and disjoint frordp, and for eachy there exists
n; such thatfo_"j(q-/') € N. Moreover, sincg™ is a sink, it follows that;; — oo.

Let

K =1{f;"(¢):j=1.

ThenKkK is a compact set contained in the intersectiowvadnd the basin of*°.
The previous paragraph implies thit(K) is contained in the basin of attraction
of g5 for all ». Hence, for fixedh, W, (K) is a compact set in the basin @f;
sincen; — oo, we see thay,” W, (K ) converges uniformly tg:°. Sincew;(q’) €

2 (K), we havew, (¢/) converging ta;® = W,(¢>). ThusW; is continuous
onallof J5 . A A '

For properness, suppogg € J, With || p{|l — oo but||W,(p))|l < C for some
large constan€ and fixedx. SinceJy is a bounded set, and since aﬁé/that is
in Kg” must be inJo, we may assume without loss of generality that eaghs
in the complement oK ;. By the claim made previously; = W;(p;]) is in the
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complement ofk ;. After dropping to a subsequence, we can find a sequgnce

mcreasmg too such thay) = 1, "’(po) converges to a poinfg® in J; \ K.

Letg] = W;(g). The conjugacy property ob implies thatg] = £, "(pj). Let
] = f, (U7 \(intK;H)n AZ. 2). Then eachd; is compact,A;+1 C A;, and

qi € A,, for eachj. Moreover, the continuity o, implies thaiz;* is the limit of

the sequencg;, so
a2 e Ut () An-

m>0 j>m m=>0

However, the intersection of al; is preciselyJ,, sog® must be inJ,. But this
is a contradiction becaugk, is injective,¥; is a homeomorphism fronk, to J; ,
andgg® is not in Jo. It follows thatW, must be proper and hence is a homeomor-
phism ofJj to J, .

Applying this proof tof[l yields a conjugacy offo|J;" to fi|J;F that agrees
with the previously constructed map ofg, so we get the mapy, defined on
Jo U Jg, as desired. This completes the proof of Theofien O

Proof of Theorem 1.2In the case wheify is unstably connected and hyperbolic,
Proposition 3.1 implies thaf, is also unstably connected fomear 0. Moreover,

the previous construction applies to giveon J,~ U J;; ; by replacing Theorem 5.6
with Theorem 5.9 and Theorem 6.5 with Theorem 6.6, the previous proof applies
to show that¥ is continuous.

For the properness, the previous proof does not apply directly, although it still
implies that¥ is proper on/,” U J; . To finish the proof, suppose thaf is a se-
quence of points i/ with | p{[| — co. In this case, eitheGJ(pg) — oo or
Gy (p§) — oo, and we suppose for now that the former applies. Note that the leaf
of the lamination througlp], which is a level set 06, is biholomorphic to the
plane. Observe also that; is subharmonic on this leaf and is nonnegative, non-
constant, and harmonic outside of the zero set; hence it must equal 0 somewhere.
By definition of G, a zero of this function is precisely a point df . Hence
there exists a poinf in J; on the leaf througfpy). ThenGg(qO) Gg(p§), and
sinceW, is a homeomorphism o#, , we must haveG*(\IJA(qo)) — 00. Since
U, takes level sets afi{ to level sets ofG,, we haveG; (W,(p§)) — oo and so
1. (p)Il — oo.

Next, suppose&s, (po) — oo but Gg(po) <C and||\1’/\(p0)|| < C for some
constanC. Again we can choosg, in J; on the leaf througlp{. Since the set of
points inJo‘ with G§ < Cis bounded, we can drop to a convergent subsequence to
obtainqo converging ta;§° € J; . See Figure 2. The continuity df, implies that
q; = Vi(qp) converges t@° = W;(q5°). Moreover,p] = W,(pj) is contained
in the same leaf aqu’ and dropping to a further subsequence, we may assume that
pi converges to a point™ in U," U J,* in the same leaf ag*. SinceV, is a ho-
meomorphism ory;, , a neighborhood of ¢5° in J; maps onto a neighborhood
of ¢ in J,~. Sincew; maps each leaf of the lamination &f U U bijectively
to a leaf of the lamination of," U U,", the image of the leaves through points
in Y contains a neighborhood in" U Ut of the pointpy®. Theorem 6.6 implies



564 GREGERY T. BuzZARD & KAUSHAL VERMA

Figure 2 Corresponding points under the mép

thatW; converges uniformly when approaching a limit leaf. Together, these facts
imply that W, maps a small neighborhood if§” U Uy of p§° to a neighborhood

of p°in J;-U U, . In particular, this image includes; for all large j, so the
preimage, the small neighborhood, incluggsfor all large j, which contradicts

I poll = oo. U
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