
Theoretical Computer Science 290 (2003) 1775–1797
www.elsevier.com/locate/tcs

On viewing block codes as %nite automata�

Priti Shankara ;∗, Amitava Dasguptaa , Kaustubh Deshmukhb ,
B. Sundar Rajanc

aDepartment of Computer Science and Automation, Indian Institute of Science,
Bangalore 560012, India

bDepartment of Computer Science and Engineering, University of Washington,
Seattle, WA, USA

cDepartment of Electrical Communication Engineering, Indian Institute of Science,
Bangalore 560012, India

Received 15 June 2000; received in revised form 11 September 2001; accepted 14 February 2002
Communicated by M. Nivat

Abstract

Block codes are viewed from a formal language theoretic perspective. It is shown that proper-
ties of trellises for subclasses of block codes called rectangular codes follow naturally from the
Myhill Nerode theorem. A technique termed subtrellis overlaying is introduced with the object
of reducing decoder complexity. Necessary and su:cient conditions for trellis overlaying are
derived from the representation of the block code as a group, partitioned into a subgroup and
its cosets. The conditions turn out to be simple constraints on coset leaders. It is seen that over-
layed trellises are tail-biting trellises for which decoding is generally more e:cient than that for
conventional trellises. Finally, a decoding algorithm for tail-biting trellises is described, and the
results of some simulations are presented. c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Block codes; Tail-biting trellis; Decoder complexity; Maximum likelihood decoding

1. Introduction

The areas of system theory, coding theory and automata theory have much in
common, but historically have developed largely independently. A recent book [13]

� The material in this paper was presented in part at STACS 2000, Lille, France.
∗ Corresponding author. Tel.: +91-812-36441.
E-mail addresses: priti@csa.iisc.ernet.in (P. Shankar), kaustubh@cs.washington.edu (K. Deshmukh),

bsrajan@ece.iisc.ernet.in (B.S. Rajan).

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(02)00083 -X

1776 P. Shankar et al. / Theoretical Computer Science 290 (2003) 1775–1797

elaborates some of the connections. In block coding, an information sequence of sym-
bols over a %nite alphabet is divided into message blocks of %xed length; each message
block consists of k information symbols. If q is the size of the %nite alphabet, there
are a total of qk distinct messages. Each message is encoded into a distinct code-
word of n (n¿k) symbols. There are thus qk codewords each of length n and this
set forms a block code of length n. A block code is typically used to correct er-
rors that occur in transmission over a communication channel. A subclass of block
codes, the linear block codes has been used extensively for error correction. Tradition-
ally such codes have been described algebraically, their algebraic properties playing
a key role in hard decision decoding algorithms. In hard decision algorithms, the sig-
nals received at the output of the channel are quantized into one of the q possible
transmitted values, and decoding is performed on a block of symbols of length n
representing the received codeword, possibly corrupted by some errors. By contrast,
soft decision decoding algorithms do not require quantization before decoding and are
known to provide signi%cant coding gains [4] when compared with hard decision de-
coding algorithms. That block codes have e:cient combinatorial descriptions in the
form of trellises was discovered in 1974 [1]. Two other early papers in this subject
were [26,16]. A landmark paper by Forney [6] in 1988 began an active period of
research on the trellis structure of block codes. It was realized that the well-known
Viterbi Algorithm [23] (which is actually a dynamic programming shortest path al-
gorithm) could be applied to soft decision decoding of block codes. Most studies on
the trellis structure of block codes con%ned their attention to linear codes for which it
was shown that unique minimal trellises exist [18]. Trellises have been studied from
the viewpoint of linear dynamical systems and also within an algebraic framework
[25,7,12,11]. An excellent description of the trellis structure of block codes appears
in [22].
The purpose of this paper is to look at trellises for block codes from a formal

language theoretic perspective. We %rst give alternate proofs of some known results
on trellises for block codes, which in our view, follow naturally from the Myhill–
Nerode theorem [10]. The purpose of viewing the results within this framework is
to lay the groundwork for a technique introduced here, termed subtrellis overlaying.
This essentially splits a single well structured %nite automaton representing the code
into several smaller automata, which are then overlayed, so that they share states.
The motivation for this is a reduction in the size of the trellis, in order to improve
the e:ciency of decoding. We view the block code as a group partitioned into a
subgroup and its cosets, and derive necessary and su:cient conditions for overlaying.
The conditions turn out to be simple constraints on the coset leaders. The trellises
obtained in this manner turn out to belong to the class of tail-biting trellises for block
codes, recently described in the literature [3]. Section 2 gives a brief review of block
codes and trellises; Section 3 views block codes as %nite state languages and derives the
conditions for overlaying; Section 4 describes the decoding algorithm and presents
the results of simulations on a code called the hexacode. Finally Section 5 concludes
the paper.

P. Shankar et al. / Theoretical Computer Science 290 (2003) 1775–1797 1777

Fig. 1. Generator matrix for a (4; 2) linear binary code.

2. Background

We give a very brief background on subclasses of block codes called linear codes.
Readers are referred to the classic texts [17,14,2].
Let Fq be the %eld with q elements. It is customary to de%ne linear codes algebraically

as follows:

De�nition 2.1. A linear block code C of length n over a %eld Fq is a k-dimensional
subspace of an n-dimensional vector space over the %eld Fq (such a code is called an
(n; k) code).

The most common algebraic representation of a linear block code is the generator
matrix G. A k × n matrix G where the rows of G are linearly independent and which
generate the subspace corresponding to C is called a generator matrix for C. Fig. 1
shows a generator matrix for a (4; 2) linear code over F2.
A general block code also has a combinatorial description in the form of a trel-

lis. We borrow from Kschischang et al. [12] the de%nition of a trellis for a block
code.

De�nition 2.2. A trellis for a block code C of length n, is an edge labeled directed
graph with a distinguished root vertex s, having in-degree 0 and a distinguished goal
vertex f having out-degree 0, with the following properties:
1. All vertices can be reached from the root.
2. The goal can be reached from all vertices.
3. The number of edges traversed in passing from the root to the goal along any path
is n.

4. The set of n-tuples obtained by “reading oK” the edge labels encountered in travers-
ing all paths from the root to the goal is C.

The length of a path (in edges) from the root to any vertex is unique and is some-
times called the time index of the vertex. One measure of the size of a trellis is
the total number of vertices in the trellis. It is well known that minimal trellises for
linear block codes are unique [18] and constructable from a generator matrix for the
code [12]. Such trellises are known to be biproper. Biproperness is the terminology
used by coding theorists to specify that the %nite state automaton whose transition
graph is the trellis, is deterministic, and so is the automaton obtained by reversing
all the edges in the trellis. In contrast, minimal trellises for non-linear codes are, in
general, neither unique, nor deterministic [12]. Fig. 2 shows a trellis for the linear code
in Fig. 1.

1778 P. Shankar et al. / Theoretical Computer Science 290 (2003) 1775–1797

0

0 0

011

1

1

1
0 0

1

S

S

S

S

S

S

S

S
0

1

2

3

4

6

7

9
S5

S8

Fig. 2. A trellis for the linear block code of Fig. 1 with S0 = s and S9 =f.

Willems [25] has given conditions under which an arbitrary block code (which he
refers to as a dynamical system) has a unique minimal realization. Forney and Trott [7]
have introduced projections that split codewords into two parts: a past and a future
with respect to any time index i; 06i6n.

De�nition 2.3. Let p be any path from the root to a vertex v, and l(p) the label
sequence along the path. Then de%ne:

P(v) = {l(p): p is a path from s to v}

F(v) = {l(p): p is a path from v to f}

to be, respectively, the past and future of v.

Then the code C associated with the trellis is P(f)=F(s). Let Vi be the set of
vertices at time index i. Then

C =
⋃
v∈Vi

P(v)F(v):

Thus C can be covered by a union of product form subsets at each time index. This
may be visualized by a structure called a Cartesian Map similar to a Karnaugh Map,
where codeword pasts are on one axis and codeword futures on another. The Cartesian
Maps in Fig. 3 show past–future relations for the code in Fig. 2 at time indices 1
and 2.
A past–future relation is said to be rectangular, if the corresponding Cartesian array

can be arranged by row and column permutations into a collection of non-overlapping
complete rectangles with no rows or columns in common. The past–future relations
depicted in Fig. 3 are thus rectangular.
Codes with the property that past–future relations at each time index are rectangular

are called rectangular codes, and properly include the class of linear codes. Such codes
are of interest because they correspond exactly to the class of codes that admit biproper
trellis representations [11,18]. Biproper trellises minimize a wide variety of struc-
tural complexity measures. McEliece [18] has de%ned a measure of Viterbi decoding

P. Shankar et al. / Theoretical Computer Science 290 (2003) 1775–1797 1779

0

1

000 110 001 111

00

01

10

11

1000 01 11

index = 1

index = 2

(a)

(b)

Fig. 3. Past future relationship of a code.

complexity in terms of the number of edges and vertices of a trellis, and has shown that
the biproper trellis is the “best” trellis using this measure, as well as other measures
based on the maximum number of states at any time index, and the total number of
states.

3. Viewing block codes as �nite state languages

We begin this section with proofs of equivalences that have been previously es-
tablished using techniques from linear dynamical systems [25] and algebraic coding
theory [18,7,12,11]. These equivalences naturally follow from a modi%cation of the
well known Myhill–Nerode theorem [10].

3.1. Bideterministic languages

Let � be a %nite alphabet, and L be a language over � accepted by a %nite state
automaton. Let LR be the language obtained by reversing all strings in L. We say
that a %nite state language is bideterministic if there exists a deterministic %nite state
automaton (dfa) M accepting L, such that a dfa for LR is obtained by simply reversing
all edges of M . Fig. 4 is an example of a bideterministic language. Fig. 5(a) displays the
minimal dfa for a language that is not bideterministic, (though this is not obvious at this
point), and Fig. 5(b) displays the minimal dfa for the reverse of the language accepted
by the dfa in Fig. 5(a). Bideterministic languages are a subclass of reversible languages
studied by Pin [19], where it is observed that a language is bideterministic if and only
if its minimal automaton is deterministic and codeterministic (the latter meaning that
no pair of transitions with the same label enter any state, and the automaton has a
unique %nal state). Kschischang [11], has de%ned a block code L (which, as we have
seen, is a restricted %nite state language) to be rectangular if it satis%es the following
property:

1780 P. Shankar et al. / Theoretical Computer Science 290 (2003) 1775–1797

start

0

0 0

0

1

1
1

Fig. 4. A deterministic %nite state automaton for L= {001; 111; 100}.

start start

00

1

0

0

1

1(a)
(b)

Fig. 5. The minimal deterministic %nite state automaton for (a) L represented by the regular expression
(0 + 1)0∗ and for (b) the reverse of the language speci%ed in (a).

Property: If x and y are pre%xes of L and (xz; yz; xz′)∈L then yz′ ∈L where z and
z′ are su:ces. (In other words, if x and y have a common continuation to a string in
L, then they share all continuations to L.)
When rectangularity is de%ned in this way, it makes sense even for in%nite lan-

guages including those that are not recognizable by %nite state automata. We restrict
our attention here to regular languages, and use the term 8nite state rectangular to
characterize a rectangular language accepted by a %nite state automaton. (It is easy to
check that when L is a block code, this description of rectangularity is the same as the
geometric description of the previous section.)
Let R be a binary relation on �∗. R is said to be right invariant whenever x R y⇒ xa

R ya; x; y∈�∗; ∀a∈�. We say that R is bi-invariant if in addition to the above
property, R also satis%es right-cancellation i.e xa R ya⇒ x R y, ∀a∈�.
We now prove the %rst theorem which is similar to the Myhill–Nerode theorem (see

[10, pp. 65–66]). This theorem is an alternate proof of Theorems 1, 2 and 3 in [11].
We use the quintuple M =(Q;�; �; q0; F) to de%ne a deterministic %nite automaton
where Q is the %nite set of states, � is the input alphabet, � is the transition function
mapping pairs in Q×� to Q, q0 is the initial state and F ⊆Q is the set of %nal
states.

P. Shankar et al. / Theoretical Computer Science 290 (2003) 1775–1797 1781

Theorem 3.1. The following are equivalent statements
(i) L is a bideterministic 8nite state language over �∗.
(ii) L is an equivalence class of a bi-invariant equivalence relation over �∗ of 8nite

index.
(iii) De8ne RL as follows: (x; y)∈RL i9 ∀z ∈�∗; [xz ∈L whenever yz ∈L]; (x; y) =∈RL

i9 ∀z ∈�∗ [xz ∈L⇒yz =∈L]. Then RL is a bi-invariant equivalence relation of
8nite index with a unique class corresponding to L.

(iv) L is a 8nite state rectangular language.

Proof. We only give those parts of the proof that are diKerent from the proof in [10]
of the Myhill–Nerode theorem.
(i)⇒ (ii): Let M =(Q;�; �; q0; F) be a reversible dfa accepting L. As in the proof of

the Myhill–Nerode theorem, de%ne RM ⊆�∗×�∗ as follows: (x; y)∈RM iK �(q0; x)=
�(q0; y). We need to show that RM is bi-invariant. Right invariance follows from the
fact that M is a dfa. Also M is bideterministic as it has a unique initial and %nal state
and is reversible. Since every state has at most one incoming transition on a given
symbol, xa RM ya⇒ x RM y ∀a∈�∗ and RM is right-cancellative as well. (We can
safely assume that each state of the automaton has a unique error state associated with
it, such that all unde%ned transitions out of that state are assumed to enter the error
state. Thus all states will have at most one incoming transition on an input symbol).
Then L is the equivalence class associated with the unique %nal state of M .

(ii)⇒ (iii): Let R be the equivalence relation de%ned by (ii). Since R is right invari-
ant (x; y)∈R⇒ (xz; yz)∈R ∀z ∈�∗. Hence xz ∈L⇔yz ∈L. Hence (x; y)∈RL. Assume
now that (x; y) =∈R. Let z be any string such that xz ∈L. If yz is also in L, then writing
z= a1a2 : : : an; ai ∈� and using the property of right cancellation repeatedly, we obtain
(x; y)∈R contradicting our assumption. Hence (x; y) =∈R⇒∀z such that xz ∈L; yz =∈L.
Thus (x; y) =∈RL. Hence R is exactly RL.
(iii)⇒ (iv): We can construct a dfa ML whose states correspond to the equivalence

classes of RL as in the proof of the Myhill–Nerode theorem. Let ML=(QL; �; �L; q0L; FL).
Denote by [x] the equivalence class containing x, and de%ne �L([x]; a)= [xa]. FL= {[x]:
x∈L}. We need to show that L is rectangular. Assume (xz; yz; xz′)∈L. Since RL has
a unique class corresponding to L (by de%nition), it follows that [xz] = [yz]. By right-
cancellation [x] = [y]. By right invariance [xz′] = [yz′] and hence yz′ ∈L, implying L
is rectangular.
(iv)⇒ (i): We need to show that L is bideterministic. Let M =(Q;�; �; q0; F) be the

minimal dfa for L. Assume that M is not codeterministic. Then it either has more than
one %nal state or there exists a state q of M and a∈� such that �(q1; a)=q; �(q2; a)=q;
q1 	= q2. Let the latter be the case. Let �(q0; x)= q1; �(q0; y)= q2. Since q1 and q2 are
distinguished in the minimal automaton, there exists a string z such that xz ∈L; yz =∈L.
Let �(q; v)∈L and av=w. We thus have xw∈L; yw∈L; xz ∈L but yz =∈L contra-
dicting the assumption that L is rectangular. Assume that M has more than one %nal
state. Let f1 and f2 be %nal states. Since M is minimal, there exists a distinguishing
string, say x such that �(f1; x)∈F but �(f2; x) =∈F . Since strings leading to f1 and f2
all share one continuation to a string in L namely �, L cannot be rectangular, as they

1782 P. Shankar et al. / Theoretical Computer Science 290 (2003) 1775–1797

s
0

s1

s2

s4 s5

3s

s1

s2

3s

s4 s5

(a) (b)

0
00 1

1 1

0
s

0
1 1

1
0 0

Fig. 6. Minimal trellises for (a) C1 = {0000; 0110} and (b) C2 = {1001; 1111}.

do not share all continuations. Since this contradicts our assumption we conclude that
L is bideterministic.

The results above do not require L to be %nite. Thus the results for block codes
in [11] are a special case of the above theorem.

3.2. Overlaying of subtrellises

We now restrict our attention to linear block codes. As we have mentioned earlier,
every linear code has a unique minimal biproper trellis, so this is our starting point.
Our object is to describe an operation which we term subtrellis overlaying, which
yields a smaller trellis. Reduction in the size of a trellis is a step in the direction of
reducing decoder complexity.
Let C be a linear (n; k) code with minimal trellis TC . A subtrellis of TC is a connected

subgraph of TC containing nodes at every time index i; 06i6n and all edges between
them. Partition the states of TC into n+ 1 groups, one for each time index. Let Si be
the set of states corresponding to time index i, and |Si| denote the cardinality of the
set Si. De%ne Smax = maxi(|Si|). The state-cardinalityy pro8le of the code is de%ned
as the sequence (|S0|; |S1|; : : : ; |Sn|). Minimization of Smax is often desirable and Smax
is referred to as the maximum state-cardinality. Our object here, is to partition the
code C into disjoint subcodes, and “overlay” the subtrellises corresponding to these
subcodes to get a reduced “shared” trellis. An example will illustrate the procedure.

Example 3.1. Let C be the linear (4,2) code de%ned by the generator matrix in Fig. 1.
C consists of the set of codewords {0000; 0110; 1001; 1111} and is described by the
minimal trellis in Fig. 2. The state-complexity pro%le of the code is (1; 2; 4; 2; 1). Now
partition C into subcodes C1 and C2 as follows:

C = C1 ∪ C2; C1 = {0000; 0110}; C2 = {1001; 1111};
with minimal trellises shown in Figs. 6(a) and (b), respectively.

The next step is the “overlaying” of the subtrellises as follows. There are as many
states as time index 1 and time index n as partitions of C. States (s2; s′2); (s3; s

′
3); (s1; s

′
1);

(s4; s′4) are superimposed to obtain the trellis in Fig. 7. Note that overlaying may
increase the state-cardinality at some time indices (other than 0 and n), and decrease
it at others. Codewords are represented by (si0; s

i
f) paths in the overlayed trellis, where

P. Shankar et al. / Theoretical Computer Science 290 (2003) 1775–1797 1783

s
0

s
0

s 2s 2 ,[]

3s3s ,][

s1 s1[,] s4 s4,[]

s5

s5

0 0 0 0

1 1
1 1

Fig. 7. Trellis obtained by overlaying trellis in Figs. 6(a) and (b).

0

0 0

0000
0

1 1

1 1

1 1
1 1

(a) (b)

Fig. 8. Minimal subtrellis for (a) C1 = {0000; 1001}(b) C2 = {0110; 1111}.

si0 and sif are the start and %nal states of subtrellis i. Thus paths from s0 to s5 and
from s′0 to s′5 represent codewords in the overlayed trellis of Fig. 6. Overlaying forces
subtrellises for subcodes to “share” states. Note that the shared trellis is also two way
proper, with Smax = 2 and state-cardinality pro%le (2; 1; 2; 1; 2).
Not all partitions of the code permit overlaying to obtain biproper trellises with a

reduced value of Smax. For instance, consider the following partition of the code.

C = C1 ∪ C2; C1 = {0000; 1001}; C2 = {0110; 1111};
with minimal trellis T1 and T2 given in Figs. 8(a) and (b), respectively.
It turns out that there exists no overlaying of T1 and T2 with a smaller value of Smax

than that for the minimal trellis for C.
The small example above illustrates several points. Firstly, it is possible to get a trel-

lis with a smaller number of states to de%ne essentially the same code as the original
trellis, with the new trellis having several start and %nal states, and with a restricted
de%nition of acceptance. Secondly, the new trellis is obtained by the superposition of
smaller trellises so that some states are shared. Thirdly, not all decompositions of the
original trellis allow superposition to obtain a smaller trellis. The new trellises obtained
by this procedure belong to a class termed tail-biting trellises described in a recent
paper [3]. This class has assumed importance in view of the fact that trellises con-
structed in this manner can have low state complexity when compared with equivalent
conventional trellises. It has been shown [24] that the maximum of the number of
states in a tail-biting trellis at any time index could be as low as the square root of the
number of states in a conventional trellis at its midpoint. This lower bound however,
is not tight, and there are several examples where it is not attained.
Several questions arise in this context. We list two of these below.

1. How does one decide for a given coordinate ordering, whether there exists an over-
laying that achieves a given lower bound on the maximum state cardinality at any
time index, and in particular, the square root lower bound?

1784 P. Shankar et al. / Theoretical Computer Science 290 (2003) 1775–1797

2. Given that there exists an overlaying that achieves a given lower bound how does
one %nd it? That is, how does one decide which states to overlay at each time index?
While, to the best of our knowledge, there are no published algorithms to solve these

problems e:ciently, in the general case, there are several examples of constructions of
minimal tail-biting trellises for speci%c examples from generator matrices in speci%c
forms in [3], and some recent work on the construction of tail-biting trellises for special
subclasses of the linear codes [21,20].
In the next few paragraphs, we de%ne an object called an overlayed trellis and

examine the conditions under which it can be constructed so that it achieves certain
bounds.
Let C be a linear code over a %nite alphabet. (Actually a group code would su:ce,

but all our examples are drawn from the class of linear codes.) Let C0; C1; : : : ; Cl be
a partition of the code C, such that C0 is a subgroup of C under the operation of
componentwise addition over the structure that de%nes the alphabet set of the code
(usually a %eld or a ring), and C0; C1; : : : ; Cl are cosets of C0 in C. Let Ci=C0 + hi
where hi; 16hi6l are coset leaders, with Ci having minimal trellis Ti. C0 is chosen
so that the maximum state complexity is N (occurring at some time index, say, m),
where N divides M the maximum state complexity of the conventional trellis at that
time index. The codes C0; C1; : : : ; Cl are all disjoint subcodes whose union is C. Fur-
ther, the minimal trellises for C0; C1; : : : ; Cl are all structurally identical and two way
proper. (That they are structurally identical can be veri%ed by relabeling a path labeled
g1g2 : : : gn in C0 with g1 + hi1 ; g2 + hi2 : : : gn + hin in the trellis corresponding to C0 + h
where h= hi1hi2 : : : hin .) We therefore refer to T1; T2; : : : ; Tl as copies of T0.

De�nition 3.1. An overlayed biproper trellis is said to exist for C with respect to the
partition C0; C1; : : : ; Cl where Ci; 06i6l are subcodes as de%ned above, corresponding
to minimal trellises T0; T1; : : : ; Tl, respectively, with Smax(T0)=N , if it is possible to
construct a trellis Tv satisfying the following properties:
1. The trellis Tv has l + 1 start states labeled [s0; ∅; ∅; : : : ; ∅]; [∅; s1; ∅ : : : ∅] : : : [∅; ∅; : : : ;
∅; sl] where si is the start state for subtrellis Ti; 06i6l.

2. The trellis Tv has l + 1 %nal states labeled [f0; ∅; ∅; : : : ; ∅]; [∅; f1; ∅; : : : ; ∅]; : : : [∅;
∅; : : : ; ∅; fl], where fi is the %nal state for subtrellis Ti, 06i6l.

3. Each state of Tv has a label of the form [p0; p1; : : : ; pl] where pi is either ∅ or a
state of Ti; 06i6l. Each state of Ti appears in exactly one state of Tv.

4. There is a transition on symbol a from state labeled [p0; p1; : : : ; pl] to [q0; q1; : : : ; ql]
in Tv if and only if there is at least one sub-trellis Ti; 06i6l containing a transition
from pi to qi on symbol a, and for all non-∅ components pj, qj of the state of Tv,
there is a transition from pj to qj on input a in Tj. Also every state of Tv has at
most one incoming transition on a given symbol and at most one outgoing transition
on that symbol.

5. The maximum state cardinality (also called the maximum width) of the trellis Tv at
an arbitrary time index i; 16i6n− 1 is at most N .

6. The set of labels of paths from [∅; ∅; : : : ; sj; : : : ; ∅] to [∅; ∅; : : : ; fj; : : : ; ∅] is exactly
Cj; 06j6l.

P. Shankar et al. / Theoretical Computer Science 290 (2003) 1775–1797 1785

Let the state projection of state [p0; p1; : : : ; pi; : : : ; pl] into subcode index i be pi
if pi 	= ∅ and empty if pi= ∅. The subcode projection of Tv into subcode index i is
de%ned by the symbol |Tv|i and consists of the subtrellis of Tv obtained by retaining
all the non-∅ states in the state projection of the set of states into subcode index i
and the edges between them. An overlayed trellis satis%es the property of projection
consistency which stipulates that |Tv|i=Ti. Thus every subtrellis Tj is embedded in Tv
and can be obtained from it by a projection into the appropriate subcode index. We
note here that the conventional trellis is equivalent to an overlayed trellis with M=N =1.
To obtain the necessary and su:cient conditions for an overlayed trellis to exist,

critical use is made of the fact that C0 is a group and Ci; 16i6l are its cosets. For
simplicity of notation, we denote by G the subcode C0 and by T , the subtrellis T0.
Assume T has state cardinality pro%le (m0; m1; : : : ; mn), where mr =mt =N , and mi¡N
for all i¡r and i¿t. Thus r is the %rst time index at which the trellis attains maximum
state cardinality and t is the last time index. Note that it is not necessary that this cardi-
nality be retained between r and t, i.e., the state cardinality may drop between r and t.
Since each state of Tv is an M=N -tuple, whose state projections are states in individual
subtrellises, it makes sense to talk about a state in Ti corresponding to a state in Tv.
We now give a series of lemmas leading up to the main theorem which gives

the necessary and su:cient conditions for an overlayed trellis to exist for a given
decomposition of C into a subgroup and its cosets.

Lemma 3.1. If t is the last time index at which the sub-trellis for the group G attains
its maximum state cardinality, any state v of Tv at time index in the range 0 to t−1,
cannot have more outgoing edges than the corresponding state in T. Similarly, any
state v at time index in the range r + 1 to n in Tv cannot have more incoming edges
than the corresponding state in T.

Proof. Let v be a state at time index i; i¡t in Tv. Assume that (v; v′) in Tv is an
extra outgoing edge. Let Ta be a sub-trellis containing projected states of v and v′.
(Properties 3 and 4 guarantee that there is such a sub-trellis.) There will be a path
from state v in Tv to a state, say vt of Tv at time index t beginning with the extra edge.
Every state in Tv at time index t has a non-∅ projection to a state in Ta as both, the
overlayed trellis, as well as the sub-trellis have the same number of states at that time
index. Hence there is a path from the projection of vt into Ta to the terminal vertex
of Ta. This either gives an extra codeword in the coset represented by Ta as there is
an extra edge out of the projection of v in Ta, or an additional path for an existing
codeword, both of which are not possible. The case i¿r can be handled similarly.
Hence the lemma.

We say that subtrellises Ta and Tb share a state v of Tv at level i if v has non-∅ state
projections in both Ta and Tb at time index i.

Lemma 3.2. If the trellises Ta and Tb share a state, say v at level i6t then they share
states at all levels j such that i6j6t. Similarly, if they share a state v at level i¿r,
then they share states at all levels j such that r6j6i.

1786 P. Shankar et al. / Theoretical Computer Science 290 (2003) 1775–1797

Proof. Let v at time index i be a vertex shared between Ta and Tb. Assume there exists
a path in Tv from v to some state, say vt at time index t. By Lemma 3.1, all states
on this path cannot have more outgoing edges than the projected states in Ta and Tb.
Thus any edge in the path from v to vt must have corresponding edges in both Ta as
well as Tb. Since both v and vt have non-∅ projections in Ta and Tb, the whole path is
in Ta as well as Tb. Hence Ta and Tb share states at all levels j such that i6j6t. The
other case can be proved in a similar manner.

Lemma 3.3. If trellises Ta and Tb share a state at time index i, then they share all
states at time index i.

Proof. Case i= t: Obvious.
Case i¡t: From Lemma 3.2 there is a path from level i to level t which is common

to both Ta and Tb. Let ha and hb be codewords in Ta and Tb, respectively, which contain
this path as a subpath. Hence, Ta is the trellis for the coset Ca=G + ha and Tb the
trellis for Cb=G+ hb. Hence Tb is the trellis for the coset Ca − ha + hb. Since ha and
hb are identical from time index i to t, −ha + hb is 0 from time indices i to t. Thus
trellises Ta and Tb are the same from levels i to t. Hence Ta and Tb share all states at
level i.
Case i¿t: This case is similar to the case i¡t.

Lemma 3.4. If Ta and Tb share states at levels i − 1 and i, then their coset leaders
have the same symbol at level i.

Proof. Follows from Lemma 3.3.

We use the following terminology. If h is a codeword say h1h2 : : : hn, then for
i¡t, hi+1 : : : ht is called the tail of h at i; for i¿r, hr : : : hi is called the head of h
at level i.

Lemma 3.5. If Ta and Tb have common states at level i¡t, then there exist coset
leaders ha and hb of the cosets corresponding to Ta and Tb such that ha and hb have
the same tails at level i. Similarly, if i¿r there exist ha and hb such that they have
the same heads at level i.

Proof. Follows from Lemmas 3.2 and 3.4.

Now each of the M=N copies of T has mi states at level i, 06i6n. Since the
width of the overlayed trellis cannot exceed N for 16i6n− 1, at least (M=N 2)×mi

copies of trellis T must be overlayed at time index i. Thus there are at most N=mi (i.e.
(M=N)=((M=N 2×mi))) groups of trellises that are overlayed on one another at time
index i. From Lemma 3.5 we know that if S is a set of trellises that are overlayed
on one another at level i; i¡t, then the coset leaders corresponding to these trellises
have the same tails at level i. Similarly, if i¿r the coset leaders have the same heads

P. Shankar et al. / Theoretical Computer Science 290 (2003) 1775–1797 1787

at level i. This leads us to the main theorem which we will henceforth refer to as the
overlaying theorem.

Theorem 3.2. Let G be a subgroup of the group code C under componentwise addition
over the appropriate structure, with Smax(TC)=M , Smax(T)=N and let G have M=N
cosets with coset leaders h0; h1; : : : ; hM=N−1. Let t, r be the time indices de8ned earlier.
Then C has an overlayed proper trellis Tv with respect to the cosets of G if and only
if:
For all i in the range 16i6n − 1 there exist at most N=mi collections of coset

leaders such that
(i) If 16i¡t, then the coset leaders within a collection have the same tails at level i.
(ii) If r¡i¡n, the coset leaders within a collection have the same heads at

level i.

Proof. (only if) This follows from the argument preceding the statement of the theorem
in Section 3. (if) Assume that coset leaders satisfying the conditions above exist. Then
at each level, we overlay exactly those trellises whose coset leaders lie in the same
collection. Each time index i; 16i6n − 1 of Tv will have at most N=mi×mi states.
Since the tails are identical, the trellises from levels i to t are identical, and so also
for the heads. Hence the overlaying is possible.

Corollary 3.1. If M =N 2 and the conditions of the theorem are satis8ed, we obtain
a trellis which satis8es the square root lower bound.

The proof of Theorem 3.2 and Corollary 3.1 answer both the questions about over-
layed trellises posed earlier. However the problem of the existence of an e:cient
algorithm for the decomposition of a code into an appropriate subgroup and its cosets
remains open. A non-trivial example illustrating an overlayed trellis is displayed below.

3.3. Example illustrating an overlayed trellis

Example 3.2. We now present an example of an overlayed trellis for a non-trivial
code called the hexacode. The hexacode H6 is a (6; 3) code over the quaternary %eld
F4 = {0; 1; !; P!} [5]. The following matrix is a generator matrix for the hexacode

G =



11 11 00
00 11 11
10 01 ! P!


 :

The minimal trellis for this code has state-complexity pro%le (1; 4; 16; 64; 16; 4; 1).
The hexacode has total of 43 = 64 codewords. A tail-biting trellis has been con-

structed for the hexacode in [3] with state-complexity pro%le (8,8,8,8,8,8,8). We now
construct an overlayed trellis for H6 which is identical to the taibiting trellis of [3].
Figs. 9 and 10 indicate the eight subcodes C1; C2; : : : ; C8 of H6 and their corresponding
minimal biproper trellises. The overlayed trellis is displayed in Fig. 11.

1788 P. Shankar et al. / Theoretical Computer Science 290 (2003) 1775–1797

Fig. 9. Subtrellises for the subcodes C1; C2; C3 and C4 of H6.

P. Shankar et al. / Theoretical Computer Science 290 (2003) 1775–1797 1789

Fig. 10. Subtrellises for the subcodes C5; C6; C7 and C8 of H6.

1790 P. Shankar et al. / Theoretical Computer Science 290 (2003) 1775–1797

Fig. 11. The overlayed trellis for H6.

Choose coset leaders h0; h1; : : : ; h7 as follows:

h0 = (0; 0; 0; 0; 0; 0);

h1 = (1; P!;!; 0; 0; !);

h2 = (!;!; 0; 0; !; !);

h3 = (P!; 1; !; 0; !; 0);

h4 = (P!; 0; 0; P!;!; 1);

h5 = (!; P!;!; P!;!; P!);

h6 = (1; !; 0; P!; 0; P!);

h7 = (0; 1; !; P!; 0; 1):

Trellis T will be a member of an overlayed collection consisting of two trellises at
time index 1, four trellises at time index 2, eight trellises at time index 3, four trellises
at time index 4, two trellises at time index 5, and one at time index 6. Identifying each
trellis with its coset with G= h0, the list below consists of trellises in the collection
of which G is a member. The list consists of (time index, set of coset leaders) pairs.

P. Shankar et al. / Theoretical Computer Science 290 (2003) 1775–1797 1791

(0; {h0}); (1; {h0; h4}); (2; {h0; h2; h4; h6}); (3; {h0; h1; h2; h3; h4; h5; h6; h7}); (4; {h0; h1; h2;
h3}); (5; {h0; h1}); (6; {h0}).

3.4. Alternate formulation of the overlaying condition

We now formulate the conditions for overlaying automata represented by
trellises, in terms of the equivalence relations of the Myhill–Nerode theorem. We
de%ne two sequences of equivalence relations on the set of equivalence relations
of the Myhill–Nerode theorem for each subcode and show that the overlaying
condition is just a condition on the indices of these sequences of equivalence
relations.
Let R1; R2; : : : ; Rl be the equivalence relations of the Myhill–Nerode theorem

for the subcodes C0; C1; : : : ; Cl, respectively. Let R be the set {R1; R2; : : : ; Rl}.
We de%ne sequences of equivalence relations Sit ; 06i¡t and Qrj ; r¡j6n as
follows:
Sit⊆R×R. (Ra; Rb)∈Sit if[for x; y; x′; y′; pre%xes of C with lengths i, 16i6t

and for all z ∈F∗
q , with 16length(z)6(t − i), such that xz; yz; x′z; y′z are pre%xes of

C, (xRay) and (x′Rby′)⇔ (xzRayz) and (x′zRby′z)]
Qrj ⊆R×R. (Ra; Rb)∈Qrj if for x; y; x′; y′ pre%xes of C with lengths j, r6j6n−1,

for all z ∈F∗
q , with 16length(z)6((n−1)−j), and such that xz; yz; x′z; y′z are pre%xes

of C, (xzRayz) and (x′zRby′z)⇔ (xRay) and (x′Rbz).
The overlaying theorem can be reformulated in terms of equivalence relations as

follows:

Theorem 3.3. Let G be a subgroup of the code C under componentwise addition
over the appropriate structure, with Smax(TC)=M and Smax(T)=N , with G having
M=N = l cosets, C0 =G;C1; : : : ; Cl. Let t; r be the time indices de8ned earlier. Then C
has an overlayed biproper trellis Tv with respect to the subcodes C0; C1; : : : ; Cl if and
only if
1. The index of Sit is at most N=mi, 16i6t.
2. The index of Qrj is at most N=mi, r6j6(n− 1),

where (m0; m1; m2; : : : ; mn) is the (length, state—complexity) pro8le of the trellis T
for G.

Proof. That the theorem is true follows from the following observations:
1. The states for the subtrellis of each subcode Ca are identi%ed with the equivalence
classes of equivalence relation Ra

2. Two equivalence relations Ra and Rb are put into the same class of Sit if there exist
coset leaders for Ca and Cb which have the same tails at level i.

3. Two equivalence relations Ra and Rb are put into the same class of Qrj if there
exist coset leaders for the subgroups Ca and Cb which have the same heads at
level j.

4. The condition on the index of the equivalence relations follows from the overlaying
theorem.

1792 P. Shankar et al. / Theoretical Computer Science 290 (2003) 1775–1797

4. Decoding

Decoding refers to the process of forming an estimate of the transmitted codeword
x from a possibly garbled received version y. The received vector y consists of a
sequence of n real numbers, where n is the length of the code. Maximum likelihood
soft decision decoding, implies the minimization of the probability of decoding to an
incorrect codeword when all the codewords have equal probability of being transmitted.
The soft decision decoding algorithm can be viewed as a shortest path algorithm on
the trellis for the code. Based on the received vector, a cost l(u; v) can be associated
with an edge from node u to node v. The well-known Viterbi decoding algorithm [23]
is essentially a dynamic programming algorithm, used to compute a shortest path from
the source to the goal node.

4.1. The Viterbi decoding algorithm

For purposes of this discussion, we assume that the cost is a non-negative number.
Since the trellis is a regular layered graph, the algorithm proceeds level by level,
computing a survivor at each node; this is a shortest path to the node from the source.
For each branch b, leaving a node at level i, the algorithm updates the survivor at that
node by adding the cost of the branch to the value of the survivor. For each node at
level i + 1, it compares the values of the path cost for each branch entering the node
and chooses the one with minimum value. There will thus be only one survivor at the
goal vertex, and this corresponds to the decoded codeword. For an overlayed trellis we
are interested only in paths that go from si to fi; 06i6l.

4.2. The A∗ algorithm

The A∗ algorithm is well known in the literature on arti%cial intelligence [9] and
is a modi%cation of the Dijkstra shortest path algorithm. That the A∗ algorithm can
be used for decoding was demonstrated in [8]. The A∗ algorithm uses, in addition
to the path length from the source to the node u, an estimate h(u; f) of the shortest
path length from the node u to the goal node in guiding the search. Let LT (u; f) be
the shortest path length from u to f in T . Let h(u; f) be any lower bound such that
h(u; f)6LT (u; f), and such that h(u; f) satis%es the following inequality, i.e., for u a
predecessor of v, l(u; v) + h(v; f)¿h(u; f). If both the above conditions are satis%ed,
then the algorithm A∗, on termination, is guaranteed to output a shortest path from s
to f. The algorithm is given below.

Algorithm A∗.
Input: A trellis T =(V; E; l) where V is the set of vertices, E is the set of edges

and l(u; v)¿0 for edge (u; v) in E, a source vertex s and a destination vertex f,
and an estimate h(u; f) for the shortest path from u to f for each vertex
u∈V .
Output: The shortest path from s to f.

P. Shankar et al. / Theoretical Computer Science 290 (2003) 1775–1797 1793

/* p(u) is the cost of the current shortest path from s to u and P(u) is a current
shortest path from s to u */

begin
S←∅, PS←{s}, p(s)← 0, P(u)← (), ∀u∈V , p(u)= +∞;∀u 	= s;
repeat
Let u be the vertex in PS with minimum value of p(u) + h(u; f).
S← S ∪{u}; PS← PS\{u};
if u=f then return P(f);
for each (u; v)∈E do

if v =∈ S then
begin
p(v)← min(p(u) + l(u; v); previous(p(v)));
if p(v) 	=previous(p(v)) then append (u; v) to P(u) to give P(v);
(PS)← (PS)∪{v};
end

forever
end

4.3. Decoding on an overlayed trellis

We %rst de%ne the notation we will be using. A path corresponding to a codeword
in the tail-biting trellis will be denoted by an si − fi path. A path corresponding to
a non-codeword is denoted by an si − fj path i 	= j. The estimate or lower bound for
a shortest path from a node u in a sub-trellis to the %nal node fj in that sub-trellis
is denoted by h(u; fj). The l sub-trellises are denoted by T1; T2; : : : ; Tl, with sub-trellis
Tj corresponding to sub-code Cj. A Viterbi algorithm on the overlayed trellis is just
a dynamic programming algorithm that %nds shortest paths to the destination nodes
f1; f2; : : : ; fl from any of the source nodes s1; s2; : : : ; sl. A survivor at any intermediate
node u is a shortest path from a source node si to u. A winning path or a winner at
node fj is a survivor at node fj and its cost is denoted by h(sj; fj), as it turns out to
be a lower bound on the cost of a shortest path from sj to fj. (Note that such a path
need not start at sj.)
Decoding on an overlayed trellis needs at most two phases. In the %rst phase, a

Viterbi algorithm is run on the overlayed trellis Tv with l+1 start states and l+1 %nal
states. The aim of this phase is to obtain survivors at each node, which will subse-
quently be used to obtain estimates h(u; fj) for nodes u in trellis Tj. These estimates are
used in the A∗ algorithm that is run on subtrellises in the second phase. The winner in
the %rst phase is either an sj−fj path, in which case the second phase is not required,
or an si−fj path, i 	= j, in which case the second phase is necessary. During the second
phase, decoding is performed on one subtrellis at a time, the current subtrellis, say Tj
(corresponding to subcode Cj) being presently the most promising one, in its potential
to deliver the shortest path. If at any point, the computed estimate of the shortest path in
the current subtrellis exceeds the minimum estimate among the rest of the subtrellises,
currently held by, say, subtrellis Tk , then the decoder switches from Tj to Tk , making

1794 P. Shankar et al. / Theoretical Computer Science 290 (2003) 1775–1797

Tk the current subtrellis. Decoding is complete when a %nal node is reached in the cur-
rent subtrellis. To summarize, either the %rst phase delivers the winner, i.e. the shortest
sj−fj path, or the second phase does, in the latter case, the winner being the %rst path
in the current subtrellis to reach its %nal node. The two phases are described below.
(All assertions in italics are proved in the next subsection).
Phase 1: Execute a Viterbi decoding algorithm on the shared trellis, and obtain

survivors at each node. Each survivor at a node u has a cost which is a lower bound
on the cost of the least cost path from sj to u in an sj − fj path passing through u,
16j6N . If there exists a value of k for which an sk − fk path is an overall winner
then this is the shortest path in the original trellis TC . If this happens decoding is
complete. If no such sk − fk path exists go to Phase 2.

Phase 2: 1. Consider only subtrellises Tj such that the winning path at Tj is an
si − fj path with i 	= j (i.e at some intermediate node a pre%x of the sj − fj path was
“knocked out” by a shorter path originating at si), and such that there is no sk−fk path
with smaller cost. Let us call such trellises residual trellises. Let the estimate h(sj; fj)
associated with the node sj be the cost of the survivor at fj obtained in the %rst
phase.
2. Create a heap of r elements where r is the number of residual trellises, with

current estimate h(sj; fj) with minimum value as the top element. Let j be the in-
dex of the subtrellis with the minimum value of the estimate. Remove the minimum
element corresponding to Tj from the heap and run the A∗ algorithm on trellis Tj
(called the current trellis). For a node u, take h(u; fj) to be h(sj; fj)−cost(survivor(u))
where cost(survivor(u)) is the cost of the survivor obtained in the %rst phase. The
quantity h(u; fj) satis8es the two properties required of the estimator in the A∗

algorithm.
3. At each step, compare p(u) + h(u; fj) in the current subtrellis with the top value

in the heap. If at any step the former exceeds the latter (associated with subtrellis,
say, Tk), then make Tk the current subtrellis. Insert the current value of p(u)+h(u; fj)
in the heap (after deleting the minimum element) and run the A∗ algorithm on Tk
either from start node sk (if Tk was not visited earlier) or from the node which it last
expanded in Tk . Stop when the goal vertex is reached in the current subtrellis.
In the best case (if the algorithm needs to execute Phase 2 at all) the search will be

restricted to a single residual subtrellis; the worst case will involve searching through
all residual subtrellises.

4.4. Proofs of assertions in the decoding algorithm

Lemma 4.1. Each survivor at a node u has a cost which is a lower bound on the cost
of the least cost path from sj to u in an sj − fj path passing through u.

Proof. Assume that u is an arbitrary node on an sj − fj path and that path P is the
survivor at u in the %rst phase. There are two cases. Either P is a path from sj to u
or P is a path from si to u, j 	= i. If the latter is the case, then the cost of P is less
than the cost of the path from sj to u; hence the cost of the survivor at u is a lower
bound on the cost of the least cost path from sj to u.

P. Shankar et al. / Theoretical Computer Science 290 (2003) 1775–1797 1795

Lemma 4.2. If there exists a value of k for which an sk−fk path is an overall winner
in the overlayed trellis Tv, then this is the shortest path from source to goal in the
original trellis TC .

Proof. The set of paths in Tv from time index 0 to time index n is a superset of paths
from the source to the goal vertex in TC , as only sk − fk paths in Tv correspond to
paths in TC . Thus if an sk −fk path is an overall winner in Tv, it must be a winner in
TC as well.

Lemma 4.3. The quantity h(u; fj) de8ned in the algorithm satis8es the following two
properties:
1. h(u; fj)6LTj (u; fj),
2. l(u; v) + h(v; fj)¿h(u; fj) where (u; v) is an edge.

Proof. 1. h(u; fj)= cost(survivor(fj))− cost(survivor(u)).
Also cost(survivor(fj))6cost(survivor(u))+LTj (u; fj), from which the result follows.
2. To prove: l(u; v) + h(v; fj)¿ h(u; fj)

LHS= l(u; v) + h(v; fj)

= l(u; v) + h(sj; fj)− cost(survivor(v)):

If survivor at v is survivor at u concatenated with edge (u; v), then

LHS= l(u; v) + h(sj; fj)− cost(survivor(u))− l(u; v)

= h(u; fj):

On the other hand if survivor at v is not a continuation of the survivor at u,

cost(survivor(v))¡ cost(survivor(u)) + l(u; v)

cost(survivor(v))− l(u; v)¡ cost(survivor(u))

or; h(sj; fj)− cost(survivor(v)) + l(u; v)¿ h(sj; fj)− cost(survivor(u))

or; h(v; fj) + l(u; v)¿ h(u; fj)

Therefore; l(u; v) + h(v; fj)¿h(u; fj):

4.5. Simulation results

Below we display the results of simulations using, both the Viterbi decoding algo-
rithm on the original trellis, and the algorithm of Section 4.3 on the overlayed trellis.
There are a total of 56 nodes in the graph. The graph showing the average num-
ber of nodes expanded in the second pass, indicates that the second pass is rarely
needed for signal-to-noise ratio of 2dB or greater. The second graph shows how many
times decoding begins on a new subtrellis (normalized on a scale of ten.) The third

1796 P. Shankar et al. / Theoretical Computer Science 290 (2003) 1775–1797

graph shows that the proposed algorithm outperforms the Viterbi algorithm on the
conventional trellis for signal to noise ratios of about 2:5 dB and beyond.

2 0 2 4
0

10

20

30

40

50

signal to noise ratio (dB)

no
de

s
ex

pa
nd

ed
 in

 2
nd

 p
as

s

2 0 2 4
0

0.2

0.4

0.6

0.8

1

signal to noise ratio (dB)

tr
el

lis
 s

w
itc

hi
ng

3 2 1 0 1 2 3 4 5
780

800

820

840

860

880

900

signal to noise ratio (dB)

ra
te

 o
f d

ec
od

in
g

(c
od

ew
or

d/
se

c)

proposed algorithm on overlayed trellis

Viterbi algorithm on the full trellis

5. Conclusions

This paper oKers a new perspective from which block codes may be fruitfully viewed.
It is shown that previous results on minimal trellises for rectangular block codes follow
naturally from the Myhill–Nerode theorem, when the trellis is viewed as a %nite au-
tomaton. A technique called overlaying is proposed here which reduces the size of the
trellis and produces a tail-biting trellis. Necessary and su:cient conditions for over-
laying are derived from the representation of the code as a group. Finally a decoding
algorithm is proposed which needs at most two passes on the tail-biting trellis. The
algorithm is a general algorithm which will work on any tail-biting trellis. Simulation
results suggest that overlaying may oKer signi%cant bene%ts on larger trellises. Fu-
ture work will concentrate on investigating the existence of an e:cient algorithm for
%nding tail-biting trellises and on obtaining tail-biting trellises for industrial strength
codes.

Acknowledgements

The authors are very grateful to the referee for his careful reading of the manuscript
and his useful comments which improved the presentation of the paper.

P. Shankar et al. / Theoretical Computer Science 290 (2003) 1775–1797 1797

References

[1] L.R. Bahl, J. Cocke, F. Jelinek, J. Raviv, Optimal decoding of linear codes for minimizing symbol error
rate, IEEE Trans. Inform. Theory 20 (2) (1974) 284–287.

[2] R.E. Blahut, Theory and Practice of Error Control Codes, Addison Wesley, Reading, MA, 1984.
[3] A.R. Calderbank, G. David Forney Jr., A. Vardy, Minimal tail-biting trellises: the Golay code and more,

IEEE Trans. Inform. Theory 45 (5) (1999) 1435–1455.
[4] G.C. Clark Jr., J.B. Cain, Error-Correction Coding for Digital Communication, Plenum Press, New

York, 1981.
[5] J.H. Conway, N.J.A. Sloane, Sphere Packings, Lattices and Groups, Springer, New York, 1993.
[6] G.D. Forney Jr., Coset codes II: binary lattices and related codes, IEEE Trans. Inform. Theory 36 (5)

(1988) 1152–1187.
[7] G.D. Forney Jr., M.D. Trott, The dynamics of group codes: state spaces, trellis diagrams and canonical

encoders, IEEE Trans. Inform. Theory 39 (5) (1993) 1491–1513.
[8] Y.S. Han, C.R.P. Hartmann, C.C. Chen, E:cient priority-%rst search maximum-likelihood soft-decision

decoding of linear block codes, IEEE Trans. Inform. Theory 39 (5) (1993) 714–729.
[9] P.E. Hart, N.J. Nilsson, B. Raphael, A formal basis for the heuristic determination of minimum cost

paths, IEEE Trans. Solid-State Circuits SSC-4 (1968) 100–107.
[10] J.E. Hopcroft, J.D. Ullman, Introduction to Automata, Languages, and Computation, Addison Wesley,

Reading, MA, 1977.
[11] F.R. Kschischang, The trellis structure of maximal %xed cost codes, IEEE Trans. Inform. Theory

42 (6) (1996) 1828–1837.
[12] F.R. Kschischang, V. Sorokine, On the trellis structure of block codes, IEEE Trans. Inform. Theory 41

(6) (1995) 1924–1937.
[13] D. Lind, M. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press,

Cambridge, 1995.
[14] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error Correcting Codes, North-Holland, Amsterdam,

1981.
[15] J.L. Massey, Foundations and methods of channel encoding, in: Proc. Int. Conf. on Information Theory

and Systems, Vol. 65, Berlin, Germany, 1978.
[16] R.J. McEliece, The Theory of Information and Coding, Encyclopedia of Mathematics and its

Applications, Addison Wesley, Reading, MA, 1977.
[17] R.J. McEliece, On the BCJR trellis for linear block codes, IEEE Trans. Inform. Theory 42 (1996)

1072–1092.
[18] D.J. Muder, Minimal trellises for block codes, IEEE Trans. Inform. Theory 34 (5) (1988) 1049–1053.
[19] J.E. Pin, On reversible automata, in: I. Simon (Ed.), LATIN 92, Lecture Notes in Computer Science,

Vol. 583, Springer, Berlin, 1992, pp. 401–416.
[20] P. Shankar, P.N.A. Kumar, H. Singh, B.S. Rajan, Minimal Tail-Biting Trellises for certain cyclic block

codes are easy to construct, in: F. Orejas, P. Spirakis, J. van Leeuwen (Eds.), ICALP 2001, Lecture
Notes in Computer Science, Vol. 2076, Springer, Berlin, 2001, pp. 627–638.

[21] H. Singh, On tail-biting trellises for linear block codes, M.E. Thesis, Department of Electrical
Communication Engineering, Indian Institute of Science, Bangalore-560012, January 2001.

[22] A. Vardy, Trellis structure of codes, in: V.S. Pless, W.C. HuKman (Eds.), Handbook of Coding Theory,
Elsevier Science, Amsterdam, 1998.

[23] A.J. Viterbi, Error bounds for convolutional codes and an asymptotically optimum decoding algorithm,
IEEE Trans. Inform. Theory 13 (1967) 260–269.

[24] N. Wiberg, H.-A. Loeliger, R. Kotter, Codes and iterative decoding on general graphs, Eoro. Trans.
Telecommun. 6 (1995) 513–526.

[25] J.C. Willems, Models for dynamics, in: U. Kirchgraber, H.O. Walther (Eds.), Dynamics Reported,
Vol. 2, Wiley, New York, 1989, pp. 171–269.

[26] J.K. Wolf, E:cient maximum-likelihood decoding of linear block codes using a trellis, IEEE Trans.
Inform. Theory 24 (1978) 76–80.

	On viewing block codes as finite automata
	Introduction
	Background
	Viewing block codes as finite state languages
	Bideterministic languages
	Overlaying of subtrellises
	Example illustrating an overlayed trellis
	Alternate formulation of the overlaying condition

	Decoding
	The Viterbi decoding algorithm
	The A* algorithm
	Decoding on an overlayed trellis
	Proofs of assertions in the decoding algorithm
	Simulation results

	Conclusions
	Acknowledgements
	References

