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Abstract

The support of an [n, k] linear code C over a finite field Fq is the set of all coordinate
positions such that at least one codeword has a nonzero entry in each of these coordinate
position. The rth generalized Hamming weight dr (C), 1 � r � k, of C is defined as the
minimum of the cardinalities of the supports of all [n, r] subcodes of C. The sequence
(d1(C), d2(C), . . . , dk(C)) is called the Hamming weight hierarchy (HWH) of C. The HWH,
dr (C) = n − k + r; r = 1, 2, . . . , k, characterizes maximum distance separable (MDS) codes.
Therefore the matrix characterization of MDS codes is also the characterization of codes with
the HWH dr (C) = n − k + r; r = 1, 2, . . . , k. A linear code C with systematic check matrix
[I |P ], where I is the (n − k) × (n − k) identity matrix andP is a (n − k) × k matrix, is MDS iff
every square submatrix ofP is nonsingular. In this paper we extend this characterization to linear
codes with arbitrary HWH. Using this result, we characterize Near-MDS codes, Near-Near-
MDS (N2-MDS) codes and Aµ-MDS codes. The MDS-rank of C is the smallest integer η such
thatdη+1 = n − k + η + 1 and the defect vector ofC with MDS-rankη is defined as the ordered
set {µ1(C), µ2(C), µ3(C), . . . , µη(C), µη+1(C)}, where µi(C) = n − k + i − di(C). We
call C a dually defective code if the defect vector of the code and its dual are the same. We
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also discuss matrix characterization of dually defective codes. Further, the codes meeting the
generalized Greismer bound are characterized in terms of their generator matrix. The HWH of
dually defective codes meeting the generalized Greismer bound are also reported.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction and preliminaries

Let C be an [n, k] linear code over Fq . Let χ(C) be the support of C, defined
by, χ(C) = {i|xi /= 0 for some (x1, x2, . . . , xn) ∈ C}. The rth generalized Hamming
weight of C is then defined as dr(C) = min{|χ(D)| : D is an r-dimensional subcode
of C} [1–3]. The sequence (d1(C), d2(C), . . . , dk(C)) is called the Hamming weight
hierarchy (HWH) of C. The notion of HWH has been found to be useful in several
applications. HWH characterizes the performance of C on Type-II wire-tap channels
[4]. HWH also finds application in state complexity of trellis diagrams of codes [5],
t-resilient functions [3] and designing codes for switching multiple access channel
[6].

A linear [n, k, d] code satisfying the Singleton bound d � n − k + 1 with equality
is called a maximum distance separable (MDS) code [7]. All Reed–Solomon (RS)
codes are MDS. The length of RS codes are at most the size of the alphabet and
hence are short. Moreover, all known MDS codes are such that there is an RS code
(with slight modifications) with identical parameters [8]. The problem of obtaining
the maximal length MDS codes, in general, is still open. Algebraic geometric (AG)
codes [9] are a generalization of RS codes with minimum distances deviating from
the Singleton bound by the genus of the curve over which the code is defined, which
is small in some cases. The length of the AG code is determined by the number of
rational points on the curve. It is shown in [10] that the class of AG codes contains
codes that exceed the Varshamov–Gilbert bound [11]. Hence, to find long codes,
codes with minimum distance not reaching the Singleton bound, but deviating from it
only slightly needs to be studied in general. An explicit approach to this problem was
developed by Dodunekov and Landgev [12,13] by considering Near-MDS (NMDS)
codes. The class of NMDS codes contains remarkable representatives such as the
ternary Golay code, the quaternary code with parameters [11, 6, 5], the quaternary
code with parameters [12, 6, 6] and a large class of algebraic geometric codes [14].
The importance of NMDS codes is that there exist NMDS codes which are consid-
erably longer than the longest possible MDS codes for a given size of the code and
the alphabet. Also, these codes have good error detecting capabilities [15]. AMDS
codes [16] and several classes of codes with distances close to the Singleton bound
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are studied in [17]. One such class of codes is the Near-Near-MDS codes, which we
denote by N2-MDS codes [18]. Classes of codes with generalized Hamming weights
close to the generalized Singleton bound also include Aµ-MDS codes and dually
Aµ-MDS codes [17]. The generalized Singleton bound for an [n, k] code C is given
by

dr(C) � n − k + r; 1 � r � k (1)

and it is a well known fact that the sequence of generalized Hamming weights is
strictly increasing [3], i.e.

d1(C) < d2(C) < · · · < dk(C) = n. (2)

The HWH of a code is related to that of its dual code C⊥ as follows:

{dr(C)|r = 1, 2, . . . , k} ∪ {n + 1 − dr(C
⊥)|r = 1, 2, . . . , n − k}

= {1, 2, . . . , n}. (3)

MDS, AMDS, NMDS, N2-MDS and Aµ-MDS codes: Linear [n, k, d] codes meeting
the generalized Singleton bound (Eq. (1)) with equality are MDS codes. AMDS codes
are the class of codes with d1(C) = n − k. NMDS codes are those with the following
HWH: d1(C) = n − k and di(C) = n − k + i for i = 2, 3, 4, . . . , k. Equivalently a
code is NMDS iff d1(C) = n − k and d1(C

⊥) = k. N2-MDS codes are codes with
the property that d1(C) = n − k − 1, d2(C) = n − k + 1 and di(C) = n − k + i for
i = 3, 4, . . . , k [17,18]. Aµ-MDS codes are those with d1(C) = n − k + 1 − µ [17].

An equivalent condition for an [n, k] code to be NMDS is that d1(C) + d1(C
⊥) =

n, where d1(C
⊥) is the minimum Hamming distance of the dual code [12]. This

implies that an [n, k] NMDS as well as its dual code are AMDS. Further NMDS
codes are characterized in terms of their parity check matrices and generator matrices
as follows [12]: A linear [n, k] code is NMDS iff its parity check matrix satisfies
the following conditions: (i) any n − k − 1 columns of the parity check matrix are
linearly independent, (ii) there exists a set of n − k linearly dependent columns in
the parity check matrix and (iii) any n − k + 1 columns of the parity check matrix
are of rank n − k. A linear [n, k] code is NMDS iff its generator matrix satisfies
the following conditions: (i) any k − 1 columns of the generator matrix are linearly
independent (ii) there exists a set of k linearly dependent columns in the generator
matrix and (iii) any k + 1 columns of the generator matrix are of rank k.

Definition 1 (Defect and MDS-rank). The defect µi(C) of the ith generalized Ham-
ming weight of a code C is defined as µi(C) = n − k + i − di(C) (µi(C) is zero for
MDS codes for every i, 1 � i � k) and the MDS-rank of an [n, k] code C is defined
as the smallest η such that dη+1 = n − k + η + 1.

Definition 2 (Dually Aµ-MDS codes). A code C is dually Aµ-MDS if µ1(C) =
µ1(C

⊥) = µ.
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It is well known that a linear MDS code can be described in terms of its systematic
generator matrix as follows: a linear code with systematic generator matrix [I |P ] is
MDS iff every square submatrix of P is nonsingular. Since MDS codes are character-
ized by the HWH dr(C) = n − k + r for 1 � r � k, the systematic generator matrix
characterization of MDS codes can be viewed as the systematic generator matrix
characterization of linear codes with HWH dr(C) = n − k + r for 1 � r � k. In this
paper, we generalize this characterization to all linear codes in terms of their HWH. We
also characterize NMDS and N2-MDS codes in terms of their systematic generator
matrices. Codes meeting the generalized Greismer bound are also characterized in
terms of their systematic generator matrices. The HWH of dually defective codes
meeting the generalized Greismer bound is also reported.

The contents of this paper is organized as follows: In Section 2 we discuss the
systematic check matrix characterization of an arbitrary linear code with a specified
HWH. We also apply this systematic matrix characterization to Aµ-MDS codes,
NMDS codes and N2-MDS codes. In Section 3 we define a class of codes which we
call dually defective codes and discuss the matrix characterization of these codes.
The codes meeting the generalized Greismer bound are also characterized in terms of
their generator matrix in Section 3. Also we present the conditions for dually defective
codes to meet the generalized Greismer bound.

2. Systematic check matrix characterization in terms of HWH

The following result from [19] gives a check matrix characterization of the
HWH for a linear code. We will use this result to prove our main result presented in
Theorem 2.

Proposition 1. An [n, k] code C with MDS-rank η and a check matrix H has the
HWH {di(C)|1 � i � k} iff

1. For every i, every (di(C) − 1) columns of H have rank greater than or equal to
(di(C) − i).

2. There exist di(C) columns of H for every i, with rank equal to (di(C) − i).

For [n, k] linear MDS codes or equivalently for linear codes with the HWH di(C) =
n − k + i for all i = 1, 2, . . . , k the systematic check matrix characterization assumes
that the check matrix is in the form [I |P ] where I is the n − k × n − k identity matrix.
For MDS codes anyk coordinate positions can be taken as information symbols and the
remaining co-ordinate positions can be taken as check locations. There always exists
such a systematic check matrix. This need not be possible for arbitrary linear codes in
general. However, with suitable column permutations on the check matrix one can ob-
tain a check matrix in the systematic form [I |P ] for any linear code. In the strict sense
the resulting matrix is a check matrix for an equivalent code obtained by the coordinate
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permutation corresponding to the column permutations that led to the systematic form.
In this paper we will always assume that the code under consideration has a check ma-
trix in the systematic form [I |P ] with the understanding that we are dealing with the
corresponding equivalent code. Then the conditions onP should be taken as conditions
on the submatrix of the original code that corresponds to check positions. With this
understanding we present our main result in the following theorem.

Theorem 2. An [n, k] code with parity check matrix H = [I |P ] and MDS-rank η

has the HWH, {di(C) = n − k + i − µi(C)} where µi(C) � 0 for 1 � i � k iff the
following conditions are satisfied:

1. For i < g � min{di(C) − 1, k}, every g + µi(C) + 1 − i × g submatrix of P

have rank � g − i + 1.

2. There exists a g, i < g � min{di(C), k}, such that the rank of some g + µi(C) −
i × g submatrix of P is g − i.

Proof. We establish equivalence between the conditions of Proposition 1 and Theo-
rem 2. In the Part (i) of the proof we prove that the conditions of Proposition 1 imply
those of Theorem 2 and in Part (ii) we prove the converse.

Part (i): Let di(C) = n − k + i − µi(C). From the condition 1 of Proposition 1,
we know that every n − k + i − 1 − µi(C) columns of H have rank greater than or
equal to n − k − µi(C). Choose a set of n − k + i − 1 − µi(C) columns of H . If
all these columns are from the P submatrix then the n − k × n − k + i − 1 − µi(C)

submatrix of P has rank greater than or equal to n − k − µi(C). This leads to the con-
dition 1 of Theorem 2. Consider the case where g columns are from the P submatrix.
Then n − k + i − 1 − µi(C) − g columns are from the I submatrix of H . The rank
of these n − k + i − 1 − µi(C) − g columns is n − k + i − 1 − µi(C) − g. Hence
the g columns from the P submatrix of H have rank greater than or equal to g − i + 1.
Therefore every g + µi(C) − i + 1 × g submatrix has rank greater than or equal to
g − i + 1, where i � g � min{di(C) − 1, k}. The range of g follows from g � k,
g + µi(C) − i + 1 � n − k and g − i + 1 � 0.

Using the condition 2 of Proposition 1 we prove the second condition of our
theorem as follows: Choose a set of n − k + i − µi(C) columns of H with rank
n − k − µi(C). If all these columns are from P , then we have an n − k × n − k +
i − µi(C) submatrix of P with rank n − k − µi(C). Let g′ of the n − k + i − µi(C)

columns be from the P submatrix. Then n − k + i − µi(C) − g′ columns are from
I . These n − k + i − µi(C) − g′ columns of the I submatrix have rank equal to
n − k + i − µi(C) − g′. Therefore in the set of g′ columns from the P submatrix we
have a g′ − i + µi(C) × g′ submatrix of P with rank g′ − i.

Part (ii): To prove the condition 1 of Proposition 1, pick any g + µi(C) − i + 1 ×
g submatrix from P . Take a set of n − k + i − 1 − µi(C) − g columns from the I

submatrix such that these columns have zeros in the g + µi(C) − i + 1 rows asso-
ciated with the g + µi(C) − i + 1 × g submatrix of P . The g + µi(C) − i + 1 × g
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submatrix has rank � n − k − µi(C). Since we have chosen an appropriate set of
columns from the I submatrix of H , the n − k + i − µi(C) columns of H has rank
� n − k − µi(C) (which is the sum of the ranks of the columns from the I submatrix
and the P submatrix of H ).

The condition 2 in Proposition 1 is obtained from the second condition of our
theorem as follows: From our second condition, it follows that there exists a g′ +
µi(C) − i × g′ submatrix of P with rank equal to g′ − i + 1. Choose n − k + i −
µi(C) − g′ columns from the I submatrix of H such that these columns have zeros
in the g′ + µi(C) − i rows associated with the g′ + µi(C) − i × g′ submatrix of P .
These columns have rank n − k + i − µi(C) − g′. Thus we have n − k + i − µi(C)

columns of H with rank n − k − µi(C) which is equal to the sum of the ranks of
columns from the I submatrix and the P submatrix. This completes the proof. �

The well known systematic check or generator matrix characterization of MDS
codes is obtained from Theorem 2 by putting µ1(C) = 0. From the second condition
of the theorem we see that every g × g submatrix of the P submatrix has rank g. This
systematic generator matrix characterization is used for constructing MDS codes in
[20].

Now we apply our systematic parity matrix characterization of Theorem 2 to
other well known codes which are close to achieving the generalized Singleton
bound.

Corollary 3. An [n, k] code with parity check matrix [I |P ] is NMDS iff

• For 1 < g � min{n − k − 1, k} every g + 1 × g submatrix of P has rank � g.

• For 1 < g � min{n − k, k} there exists a g × g submatrix of P with rank equal
to g − 1.

• For 1 < g � min{n − k, k − 1} every g × g + 1 submatrix of P has rank g.

Corollary 3 has been reported in [22] as an independent result with a different proof.

Lemma 4 [18]. If k > q > 3 and n < 2q − 1 + k then every [n, k, n − k − 1] code
C over Fq is an N2-MDS code.

Corollary 5. For k > q > 3 and n > 2q − 1 + k, a code with the systematic parity
check matrix [I |P ] is N2-MDS iff every g + 2 × g submatrix of P has rank � g.

Proof. This corollary is obtained by combining following two results: (i) for the given
range of n and k any code with d1(C) = n − k − 1 is a N2-MDS code (this follows
from Lemma 4) and (ii) the systematic matrix characterization given in Theorem 2.
We substitute η1 = 2 in Theorem 2 to get this characterization of N2-MDS code. �

Corollary 6. If n > k + q the [n, k] code with systematic parity check matrix H =
[I |P ] is NMDS iff every g + 1 × g submatrix of P has rank g.
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Proof. This corollary is obtained by using the fact that for the given range of k and n

any n − k code is a NMDS code. Therefore, all we need to show is d1(C) = n − k. We
know that d1(C) = n − k iff every n − k − 1 columns of H are linearly independent
and there exist n − k linearly dependent columns. Therefore it follows that every
g + 1 × g submatrix of the P submatrix has rank g. �
The above result is useful in decoding codes for the erasure channel [11].

Proposition 7. A code C is dually Aµ-MDS iff it’s MDS-rank is µ.

Proof. The MDS-rank is µ implies that dµ+1(C) = n − k + µ + 1 and µ + 1 is the
first i such that di(C) = n − k + i for 1 � i � k. Therefore dµ+1(C) − dµ(C) � 2.
It follows that d1(C

⊥) = k + 1 − µ. Hence the code is dually Aµ-MDS. �

Proposition 8. For an Aµ-MDS code C with parity check matrix H the following
conditions hold

1. Every n − k − µ columns of H are linearly independent.
2. There exists n − k + 1 − µ linearly dependent columns of H.

Proof. We have d1(C) = n − k + 1 − µ. Therefore there exist n − k + 1 − µ line-
arly dependent columns in the H matrix. Also every n − k − µ columns of H are
linearly independent. �

The following corollary characterizes dually Aµ-MDS codes.

Corollary 9. An [n, k] code C with systematic generator matrix [I |P ] is dually Aµ-
MDS iff every g + µ, g and g × g + µ submatrix of the P submatrix has rank greater
than or equal to g.

Proof. For an Aµ-MDS code to be dually defective we know that its MDS-rank has
to be µ. The proof follows from Theorem 2 by taking µ1 = µ. For Aµ-MDS codes
we specify only d1(C) and other Hamming weights are arbitrary. Therefore we need
to ensure only d1(C). Hence the result follows from Theorem 2. �

3. Matrix characterization of dually defective codes and codes meeting
the generalized Greismer bound

We begin with

Definition 3. The defect vector of an [n, k] code C with MDS-rank η is defined as
the ordered set {µ1(C), µ2(C), . . . , µη(C), µη+1(C)}, where µi(C) = n − k + i −
di(C). (Note that µη+1(C) is equal to zero.) A code is called dually defective if the
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defect vector is same for the code and its dual. The difference set of the defect vector
of an [n, k] code C with MDS-rank η is the ordered set {(µ1(C) − µ2(C)), (µ2(C) −
µ3(C)), . . . , (µη−1(C) − µη(C)), (µη(C) − µη+1(C))}.

Example 1. Consider an N2-MDS code. The defect vector is {2, 1, 0} and the dif-
ference set is the ordered set {(2 − 1) = 1, (1 − 0) = 1}. Therefore between the first
three Hamming weights of the code there is a gap. From (3) we see that the HWH of the
dual code is {d1(C

⊥) = k − 1, d2(C
⊥) = k + 1, d3(C

⊥) = k + 3, . . . , dn−k(C
⊥) =

n}. Therefore the defect vector of the dual code C⊥ is {2, 1, 0} and hence C is dually
defective.

Example 2. Consider a code C with µ1(C) = 8. For C to be dually defective it’s
MDS-rank should be 9 and (µ8(C) − µ9(C)) > 1. Let the code have the defect
vector as {8, 7, 7, 7, 6, 5, 4, 1, 0}. The difference set is {1, 0, 0, 1, 1, 1, 3, 1}. Since
µ2(C) = µ3(C) = µ4(C) = 7 and µ5(C) = 6 for the code to be dually defective
(µ8(C) − µ9(C)) = 1 and (µ7(C) − µ8(C)) = 3. Similarly since µ5(C) = 6 and
µ6(C) = 5 we have (µ6(C) − µ5(C)) = 1.

Now we proceed to study the properties of the defect vector.

Lemma 10. For an [n, k] code C with MDS-rank η, we have µ1(C) � µ2(C) �
. . . µη(C) � µη+1(C).

Proof. This result can be proved from the monotonicity of the HWH. We know that
di+1(C) > di(C), i.e. n − k + i + 1 − µi+1(C) > n − k + i − µi(C). Simplifying
the inequality we get µi(C) + 1 > µi+1(C). �

Lemma 11. IfC is an [n, k] code with MDS-rankη, then
∑η

i=1(µi(C) − µi+1(C)) =
µ1(C).

Proof. Since the MDS-rank of C is η we have µη+1(C) = 0. In the sum all terms
except µ1(C) and µη+1(C) cancel out. Therefore the sum is equal to µ1. �

The class of dually defective codes include MDS codes, NMDS codes, N2-MDS
codes and self dual codes. The following lemma gives the conditions for a dually Aµ-
MDS code to be dually defective. The proof of the following lemma follows from
Theorem 5.27 in [17].

Lemma 12. Let C be an [n, k, d] dually Aµ-MDS code over Fq with s � 2. If n �
s(q + 1) − 1 + k and 2 � s � q. Then C is a dually defective code with di(C) =
n − k + 1 − s and di(C) = n − k + i − 1 for 2 � i � s.

The following proposition gives a matrix characterization of dually defective
codes.
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Theorem 13. An [n, k] code C with MDS-rank η and systematic generator matrix
[I |P ] is dually defective iff the following conditions are satisfied

1. For i < g � min{di(C) − 1, k}, every g + µi(C) + 1 − i × g and g × g +
µi(C) + 1 − i submatrix of P has rank ≥ g − i + 1.

2. There exists a g, i < g � min{di(C), k}, such that the rank of every g − i +
µi(C) × g and g × g − i + µi(C) submatrix of P is g − i.

3. For 1 < g � min{n − k, k − η} every g, g + η and g + η × g submatrix of P has
rank g.

Proof. Let us assume that C is dually defective. Then di(C) = n − k + i − µi(C)

and di(C
⊥) = k + i − µi(C). Therefore, from Theorem 2 every submatrix of −P T,

where P T denotes the transpose of P , of the type g + µi(C) − i × g has rank � g −
i + 1 since di(C) = n − k + i − µi(C) [22]. For dually defective code di(C

⊥) =
k + i − µi(C). Therefore every g + µi(C) − i × g submatrix of P matrix has rank
� g − i + 1. Therefore it follows that every g + µi(C) + 1 − i × g and g × g +
µi(C) + 1 − i submatrix of P has rank � g − i + 1.

The fact that di(C) = n − k + i − µi(C) and di(C
⊥) = k + i − µi(C) leads to

the condition that there exist g − i + µi(C) × g and g × g − i + µi(C) submatrices
of P such that the rank is g − i. The third condition of the theorem follows similarly.
Establishing that the code is dually defective assuming the three conditions is straight
forward. �

Proposition 14 (The generalized Greismer bound [1]). If C is an [n, k, d] code over

Fq, then dr(C) �
∑r−1

i=0

⌈
d
qi

⌉
for 1 � r � k.

Theorem 15. If an [n, k, d] code C over Fq meets the generalized Greismer bound
then the code will have a generator matrix whose structure is as follows:

d1(C) d2(C) − d1(C) d3(C) − d2(C) . . . dk(C) − dk−1(C)︷︸︸︷∗
︷︸︸︷

0
︷︸︸︷

0 . . .
︷︸︸︷

0
� ∗ 0 . . . 0
� � ∗ . . . 0
...

...
... . . .

...

� � � . . . ∗

(4)

where ∗ denotes any non-zero element of Fq , � denotes any element of Fq and
(di+1(C) − di(C)) denotes the number of columns with the structure as shown below
it.

Proof. As the code meets the generalized Greismer bound for all the values of dr(C)

we can construct the matrix in the proposition as follows. Since the minimum distance
is d we can choose a generator matrix with the first row having d consecutive non
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zeros followed by n − d zeros. Next, we know that d2(C) = d +
⌈

d
q

⌉
. Therefore, we

can choose a second row such that the first d elements can be any element from the

field followed by
⌈

d
q

⌉
non zero elements of the field. Thus, we have constructed a two

dimensional subcode with support d2(C) meeting the generalized Greismer bound. It
is possible to construct rows with a sequence of zeros and non-zeros as we can permute
the columns of the generator matrix without affecting the weight distribution of the
code. We can repeat the above construction for all di(C) where 3 � i � k. Thus, we
can construct the generator matrix for a code meeting the Greismer bound as given
in the proposition. �

From this matrix characterization we can obtain the systematic matrix characteriza-
tion of codes meeting the generalized Greismer bound by elementary row operations
and permutations of the columns.

Theorem 16. Consider an [n, k] code C of MDS rank η with defect vector {µ1(C),

µ2(C), . . . , µη(C), µη+1(C)} with µη+1(C) = 0 and the difference set between suc-
cessive elements of the defect vector be {(µ1(C) − µ2(C)), (µ2(C) − µ3(C)), . . . ,

(µi(C) − µi+1(C)), . . . , (µη(C) − µη+1(C))}. If the difference set is not the all zero
vector or the all one vector (i.e., (0, 0, . . . , 0) or (1, 1, . . . , 1)) then C is not a dually
defective code meeting the generalized Greismer bound.

Proof. We need to consider the cases (i) (µ1(C) − µ2(C)) > 1 and (ii) (µ1(C) −
µ2(C) = · · · = µi − µi+1 = 0; (µi+1(C) − µi+2(C)) > 0 for some i and show that
in both these two cases dually defective code meeting the generalized Greismer bound
do not exist.

Assume that a dually defective code C meeting the generalized Greismer bound
exists with (µ1(C) − µ2(C)) > 1. Let d1(C) = n − k + 1 − µ1(C) and d2(C) =
n − k + 2 − µ2(C). Let µ1(C) − µ2(C) = δ > 1. For the code to be dually defective
dη+1(C) = n − k + η + 1, dη(C) = n − k + η − 1 and dη−i (C) = n − k + η − i −
1 for 1 � i � (δ − 1). Since the code also meets the generalized Greismer bound we

have dη+1(C) − dη(C) =
⌈

d1(C)
qη

⌉
. Further since the code is assumed to be dually

defective we have
⌈

d1(C)
qη

⌉
= 2. For codes meeting generalized Greismer bound

dη(C) − dη−1(C) =
⌈

d1(C)

qη−1

⌉
. This difference must be equal to 1 for the code to

be dually defective. But this is not possible since
⌈

d1(C)
qη

⌉
= 2. Therefore C can not

meet the generalized Greismer bound.
Assume that a dually defective code meeting the generalized Greismer bound

exists with the following difference set (µj − µj+1) = 0 for all 1 � j � i and (µi −
µi+1) � 1. For dually defective code we have (µη − µ(η+1) = i and (µ(η−1) − µη) �
1. Further since the code is assumed to meet the generalized Greismer bound we have

dη+1(C) − dη(C) =
⌈

d1(C)
qη

⌉
. This difference dη+1(C) − dη(C) = (i + 1).
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Moreover dη(C) − dη−1(C) =
⌈

d1(C)

qη−1

⌉
� 2. But this is not possible since

⌈
d1(C)

qη

⌉
�⌈

d1(C)

q(η−1)

⌉
. This completes the proof. �
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