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Abstract. Viscoelasticity is exhibited by polymers, metals undergoing diffusion creep,
etc. The strain is a linear functional of the stress, but there is no unique equilibrium
relationship between them. Under a constant stress, the strain does not saturate to
an equilibrium value. This divergence is the main difficulty facing a first-principles
theory of viscoelasticity, in contrast to anelasticity which has already been understood
as a relaxation process in terms of response theory, fluctuations and related concepts.
We now present such a theory, based on the recognition that viscoelasticity occurs
whenever the spontaneous fluctuations of the strain rare, but not of the strain, form
a stationary random process. We give fundamental formulas for the creep function
and the complex compliance, in terms of the spontaneous fluctuations of the strain
rate, that apply to both viscoelasticity and anelasticity. A detailed stochastic analysis
of the basic viscoelastic network equation corroborates and complements these
results. The unphysical instantaneous response of the network is eliminated, and
the network parameters are related to internal fluctuations. A certain functional form
of the creep function is derived that is common to several physical situations, a few
of which are mentioned. Detailed applications will be taken up elsewhere.

Keywords. Viscoelasticity; fluctuations; stochastic processes; linear response theory;
creep; compliance ; Maxwell network,

1. Introduction

Anelasticity is the simplest form of time-dependent mechanical behaviour. It is
exhibited by a wide variety of solids, especially crystalline materials with defects,
under low stress levels. In recent work (beginning with Balakrishnan et al 1978,
referred to as I hereafter; and subsequent references), anelasticity has been success-
fully understood in terms of linear response theory (LRT), strain fluctuations, and
related concepts. The application of these ideas to several specific mechanisms has
also been carried out. Of considerable aid in this programme is the fact that anelasti-
city implies a unique equilibrium relationship between the stress and the strain. Under
a constant stress, therefore, the strain creeps from zero to a saturation value. The
system can be regarded as relaxing from one equilibrium configuration to another. The
theoretical apparatus developed for other relaxation phenomena can be employed to
study anelasticity. This is indeed what has been achieved, in some detail.
Viscoelasticity is a more complicated type of mechanical behaviour (see, e.g., Flory
1953; Ferry 1970; Lockett 1972; and the brief account in Markovitz 1975). Here
there is no unique equilibrium relationship between stress and strain, meaning that
permanent or irrecoverable plastic deformation is induced by an applied stress. Asin
Nowick and Berry (1972), we shall use the term viscoelasticity to cover only those
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cases in which the stress-strain relationship continues to be linear.* A host of ma‘tte-
rials under diverse conditions display viscoelasticity. Polymers provide a prime
example. Diffusion creep in metals at high temperatures is another. The chief diffi-
culty in a fundamental theoretical analysis of viscoelasticity is that the system does
not approach a new equilibrium state once it is perturbed from its initial equilibrium
by an applied stress. Typically, a constant stress applied for a time ¢ produc_es a
strain that becomes proportional to 7 for large values of £. (However, in many }nst-
ances, new mechanisms begin to operate as ¢ is increased further, causing the strain to
saturate ultimately. An example is the formation of cross links that inhibit the inc'ie—
finite extension of long-chain molecules in polymers. We shall not be concerned _wﬂgh
this sort of reversion to anelasticity.) It is the unbounded growth of the strain in
viscoelastic creep that we tackle in this paper from a fundamental point of view.

It is helpful to state first the basic strategy that enables the problem to be brought
under control. LRT relates the average strain under an applied stress to the auto-
correlation of the strain in the absence of the applied stress, i.e., to the spontar:teou_s
fluctuations of the strain. If therefore e(t)> ~ ¢ for large values of 1, it is clear intui-
tively that {e%(r)), is also ~ ¢ in this limit, where the subscript zero stands for zero
applied stress. (Recall the behaviour of the position of a particle undergoing Brownian
motion.) Therefore the spontaneously fluctuating strain is not a stationary random
variable, and one cannot define its power spectrum in the usual manner. On the other
hand, this does not preclude the possibility that the strain rafe may be a stationz.u'y
random variable, with a well-defined power spectrum, like the velocity of a Brownian
particle. One aims, therefore, at writing all formulas for the strain response in terms
of the equilibrium fluctuations of the strain rate. The strain itself is an integral of a
stationary random process. In other words, it is a process with stationary incremen_ts
(Stratonovich 1963). This identification aids a stochastic analysis of the stress-strai.n
relation for the basic viscoelastic network, the Maxwell model. Such an analysis
corroborates and complements the LRT approach. )

We develop our theory as follows. The notation is that of I. In § 2, we obtai_n
formulas for the strain response to a static stress (the creep function) and to a dynamic
stress (the complex compliance) in forms that are valid Jor both viscoelasticity and
anelasticity. Tn §3, we analyse the constitutive relation of the Maxwell model as a
stochastic equation in which random stress fluctuations drive the strain fluctuations.
The autocorrelation of the strain rate can be calculated from this equation. When fed

“into the general formulas from LRT, the creep function of the Maxwell network is
recovered. This verifies the validity of the formulas, We show further that the instan-
taneous or elastic response, an unphysical feature of the Maxwell model, is elimi-
nated by our analysis. Not only do we relate the dissipative element of the network
to the spontaneous fluctuations of the stress (the fluctuation-dissipation theorem),
but also the reactive element. In terms of the stress relaxation function, we show that
these results amount to a * renormalisation * of the relaxation time. This is dictated
by the necessarily retarded nature of the response. In § 4, we derive a specific form for
the creep function and the corresponding compliance. Different physical examples
are cited to suggest that this form is rather general, in that it is common to a variety
of problems. More detailed applications will be taken up separately.

*The plastic behaviqur of main interest in metallurgy generally involves a highly non-linear stress-
strain functional relationship, Evidently (linear) viscoelast

tral ntly ticity must be fully understood before a
similar first-principles theory of Plasticity is attempted, o ~
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2. Formulas for the creep function and compliance

To keep the notation simple, we restrict ourselves to a single component o of 2 homo-
geneous stress and the corresponding strain component e,  Generalisation to include
spatial inhomogeneity and the tensor nature of the variables is possible as in the case
of anelasticity (Balakrishnan 1978a). The most general linear relation between o
and e is then

. |
e(t) = f dt' (t —t) 6 (). (1)

The creep function ¥ (¢) is the material property that we are primarily interested in.
It is the strain response to a unit applied stress 6 (¢). The complex compliance J (w)
describes the response to a sinusoidal applied stress of frequency w. It is easily shown
that

J(@) = —iw§ @), | @)

where i (w) is the analytic continuation to s= —iw of the Laplace transform
of ¥ (2).

We now write down some of the results of paper I concerning anelasticity. Sub-
sequently we shall generalise them to cover viscoelasticity as well. At t=—o0, let
the system be described a time-independent Hamiltonian H,. Equilibrium averages
(o are determined by the corresponding density matrix. In the presence of the
applied stress o,,(f), the Hamiltonian becomes

H=H,—Vea,(1), | (3)

where V is the volume of the material. LRT, together with the assumption that the
fluctuating strain is stationary in equilibrium, yields

P (1) =BV [(eDy—<e(0) e(t)o], (B =1/kpT), C)
and also  J(w) =BV [{&Dy+iw J’ dr (€ (0) € (1)) exp (iwt)]. (5)
0 4 .

The solution in any particular instance then reduces to the evaluation of the
equilibrium autocorrelation (e (0) €(¢)d,. If a stochastic approach is adopted for
modelling the fluctuating strain e (z), it may be more convenient to work with the
associated power spectrum. This is defined as

S(e; @) =2 | dt ((0) e(t)p exp (iwt), (6)

—®
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One can then show that the creep function in (4) has the alternative representation
o)
(1) =(BV]n) f dw S(e; w) sin® (wt/2). | (7
: 0 « ,v , _

It -is evident that
Im J(w) = } Vo S(e; w) (w real). (8)

This fluctuation-dissipation relationship, together with the dispersion relation obeyed
by J(w) by virtue of causality, leads to the spectral representation

J(w) = (BV}4n) f dow' o' S(e; w')/(w'fw—iO). . €)

(See paper I for details. The boundary value prescription in (9) and in (16) below
arises because J(w) is a retarded response function.) As they stand, these formulas
apply only to anelasticity. We seek to modify them so as to allow for viscoelastic
behaviour. The results will continue to be valid for anelasticity as well.

At first sight, it might appear that a linearly time-dependent creep function is easy
to produce, as an approximation to anelastic behaviour itself. Let us take the pheno-
menological Maxwell network as a concrete example. A spring of modulus E is
put in series with a Newtonian dashpot of viscosity 7. A stress o, is applied to the

network. For the spring, o,,;=FE e. For the dashpot, o, =7 €. Since the stress

is the same across both elements while the strains, i.e., the extensions, add up, it is
easy to see that the network equation is

€= Gext/n + &ext/E‘ (10)
The creep function for this network is therefore
P(t) = 1/E + t/n. (11

The first term represents the instantaneous or elastic response due to the spring.
Let us now see how such a functional form could arise from microscopic considera-
tions. The elastic response in a crystalline solid is essentially a property of the perfect
crystal, or the host material. The time-dependent response is governed by the kinetics
of the defect motion in it. Let us write the instantaneous, fluctuating strain as the

sum €(t) = () + ei(t) of the respective contributions, and assume that the two
pieces are uncorrelated. Then (4) becomes

H()=BV [< eﬁ(O)}O — {&(0) €h(1)>0 + <€i>0 - <€a(0) Ed(t)>0]- (12)

Note that¢(0)=0, implying that there can be no truly instantaneous response. How-
ever, the correlation time of «(r) is expected to be very small, as the fluctuations in
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e, would arise from sources such as the thermal motion of the atoms of the crystal.

For all practwal purposes, therefore, {e,(0) ¢(t)), can be dropped. If we assume
also that €,(¢) is exponentlally correlated, we have

(1) = BV o + BV &y [1—exp (—t/;ra)],

~ BV (2> + BV {2 thra, T Wy

correct to first order in #/7,. The final line in (13) has the form required by (11),
although the preceding line describes anelasticity (the strain saturates as ¢ — 00),
There are two reasons why the above is too facile a solution to the problem. First,
viscoelastic behaviour includes cases in which (f)~¢* with 0<a<{1. Such non-
integral exponents cannot arise from a power series expansion of exp (—t/r,). But
this is not a serious objection, because such exponents can occur in situations requir-
ing a summation over an infinite set of correlation times =;". An example is anelastic
relaxation due to the Gorsky effect (Balakrishnan 1978b), where summation over such
a set leads to a r¥ short-time behaviour of :(¢). A more striking example is provided
by the theory of stress relaxation in glass (Majumdar 1971). Here the creep function
can be shown to have a short-time behaviour proportional to = with a=1/3, 1/2, or
3/5, depending on the mechanism. The second point is a weightier one. True visco-
elasticity is characterised by i (¢) ~ ¢ over a considerable range of 7, and not just in
the restricted region ¢ < 7, In fact, this behaviour extends to very large values of 7,
unless overridden by other mechanisms, such as cross linking in polymers. We
really must deal with this ¢ run-away * feature. “
As already explained, we believe that this feature is intrinsic to the phenomenon
of viscoelasticity. In other words, it is our contention that viscoelasticity rather than
anelasticity occurs whenever the spontaneous fluctuations of the strain rate, but not of
the strain, constitute a stationary random process. Fortunately, there is an easy way
to modify the results of LRT so as to allow for this circumstance. One need not re-
derive the formalism from the beginning, although this is possible. It suffices to
observe that if e (f) does happen to be a stationary random process, its derivative
€ (#) is also stationary. The corresponding power spectra are related accordingto

S (€; w) = S (e; w)/wi. (14

Here S (€; w) is defined exactly as in (6), with € standing in place of e. All we have to
do, then, is to substitute this relation in equation (7) for ¢ (¢). The rest follows, pro-
vided some care is exercised. We cannot directly use (14) in (9), for instance; the inte-
gral will diverge if we did so. J (w) must be found by going back to the basic equa-
tion (2). Let us now write down the new representations for the response functxons
in terms of the properties of € (¢).

The creep function is given by

b)) =B V/"IT) f do S (€; w) (sin } wt/w)?. o ’ (15)
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Constructing J (w) and using (2), we get after some algebra

J@)=@V2m [ do' S o)/[e? —(+ 0y, (16)
0

Provided S (e; ) vanishes sufficiently rapidly as w — == o, it is not difficult to show
that (16) can be written also as

[v 0]
J (0) = (B V/dr w) f do' §(&; 0)/(w' —w—i0). (17)
=0 .
Formula (15) and the spectral representation (17) supplant (7) and (9) respectively.
They are actually of wider applicability than the latter equations. They remain valid
even when e (¢) is not a stationary random variable in equilibrium, in which case

S (e; w) cannot be defined and (7) and (9) make no sense. In a similar fashion, the
fluctuation-dissipation theorem is

ImJ(w) = (B V/4 w) S (¢; w). 13)

Besides (15), there is another, equivalent representation for i (¢); this turns out to be
the most convenient one for practical applications. In addition, it is an expression
in the time domain, and is therefore a generalisation of (4). The desired representa-

tion is found by substituting the definition of S (e; w) in (15) and carrying out the
integration over w. The result is

W) =BV [ dr (1—1) ¢z (0) & (1Y), 19
0

The analogy with classical diffusion is now quite evident. If the velocity of the diffu-

sing particle stands in the place of ¢, the integral in (19) is essentially its mean square
displacement.

In like manner, the correct generalisation of (5) can be shown to be
[va]
J@) = (B V) [ dt €& (0) (1)), exp (iwt). (20)
0

Equations (15) and (17), or equivalently (19) and (20), are the key results. We reite-
rate t_hat they hold good for both viscoelasticity and anelasticity. In the latter case,
€ (1) is also stationary in equilibrium. It may be verified that the previous set of for-
mulas, (‘4)3 (3),(7) and (9), is then recovered. This set is inapplicable to viscoelasticity.
Befc‘re“ this section is concluded, it is worth perceiving the difference between an-
elasticity and viscoelasticity in yet another way. The difference in the long-time beha-
viour of r (1) is of course reflected in the low-frequency behaviour of J (w). To deter-
mine the latter, let us separate the representation (17) into its real and imaginary

M—.__
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parts.* Now the principal value integral of S(¢; ')/’ vanishes by virtue of symmetry.
Hence, as w— 0, the dominant contribution to J (w) comes from its imaginary part.
This is given by (18). The extreme of viscoelastic behaviour occurs when S (¢; 0)
is a non-vanishing number. In that case J(w) ~ o™, with a coefficient equal to
iBVS (e; 0)/4. At the other extreme the divergence at w = 0 actually disappears,

because S (¢; 0) vanishes. Anelasticity is the result. For, if € is itself stationary in
equillibrium,

S (&;0) =4 j dt (& (0) & (1) = — 4 (¢ (0) €(0)), = 0. 1)
0

It is easy to show that, in this situation,
J(0) =i (0) =BV (). (22)

Finally, consider the behaviour of J(w)as w— 0, or, equivalently, the — 0 beha-
viour of the creep function. This question is related to that of an elastic component
in the response. In turn, this depends on whether or not a subtraction is needed in

the dispersion relation (17). If it is, then of course J (w) tends to a real constant as
w->co, If it is not,

J(w) ~ iBVK/ho, K= lim S(; ). S (23)

@ —>C0 w—»0

This corresponds to the linear dependence

i (t) —>0 1 BV Kt (24)
-~

In some cases, K may vanish. i () may then display a t? dependence for small ¢.
All these remarks will become clearer in the hght of the specific examples to be con-
sidered below.

3. Stochastic analysis of the network equation

We now come to a most important task. The modified response-theoretic formulas
of §2 were motivated by the assertion, already made, that «(¢) is non-stationary while
€(t) is stationary in the absence of an applied stress. In more formal language (van
Kampen 1977), the macroscopic equation for «(¢) is supposed to be stable but not
asymptotically stable, like that for the position of a Brownian particle. On the other
hand, the macroscopic equation for e(¢) is asymptotically stable, like that for the
velocity of a Brownian particle. This basic assertion must now be substantiated
explicitly. Only then can confidence be placed in the formal answers derived in § 2.

*t is worth remembering that J(w) is a retarded susceptibility. Itis not an analytic function of .
The spectral representation (9) shows that it is the boundary value from above of an analytic func-
tion of w. The latter has a cut along the real axis,
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What must be done is as follows. A suitable macroscopic or phenomenological
stress-strain constitutive equation that represents viscoelastic behaviour, must -be
chosen. Next, this relation must be regarded as a stochastic equation connecting
the instantaneous fluctuating stress and strain. In the absence of an externally applit?d
stress, the equation describes how random internal stress fluctuations drive the strain
fluctuations.* Given the statistica] properties of the former, the equilibrium auto-
correlation of the strain rate may be computed. When substituted in the LR_T '
formulas of § 2, the known response functions corresponding to the macroscopic
constitutive relation must emerge correctly.  These response functions relate the
average strain to the external stress. Their determination from the properties of
equilibrium (zero applied stress) fluctuations in &(z) constitute, therefore, a direct
demonstration of our theory. Once this verification is achieved, attention may be
diverted to applications. ‘

The natural choice for the macroscopic constitutive relation corresponds to ﬂ.le
Maxwell network. This is the stmplest model of viscoelasticity. The stress-strain
relation (10) and the creep function (11) have already been written down. The Iattc?r
displays the typical runaway character of viscoelastic flow with increasing time. Th{s
will be reproduced from a consideration of the fluctuations. In addition, the unphysi-
cal instantaneous response occurring in the phenomenological model will be tamed. |
After the stochastic analysis of this archetypal model is completed, one need no
longer lean upon any particular network equation to describe viscoelastic behaviou_L '
Any convenient method of computing the equilibrium autocorrelation of the strain
rate will suffice to solve the problem in each physical situation.

Let us begin, therefore, with the stochastic counterpart of the network equation
(10), namely,

€(t) = o(t)/n+6(t)/E. 25)

No external stress is applied. o(t) is the random internal stress. It is taken to be a
stationary random process with <o(#)>=0. Therefore €(?) is also a stationary random

process with < €(t) >, =0. On the other hand, integrating (25) with the initial
condition o(t;)=0, say, gives

z
O—<lt)= /) [ dt'o@)+1/E)o (). (26)
Ze

The first term on the right arises from the dissipative element in the network, the
dashpot in series. Its presence clearly shows that (z) is not a stationary process, but

rather one with stationary increments (Stratonovich 1963). This is the property
ultimately responsible for viscoelastic flow in the model.

*One_ could just as well adopt the complementary view: namely, that random internal strain
fluctuations drive those in the stress. This would be a more natural standpoint, perhaps, if one could
‘apply * external strain. And indeed this is effectively the case in astress relaxation experiment.
Moreover, the Maxwell model does exhibit an exponential stress relaxation. However, we have
once and for all chosen to regard the stress as the ‘external force’ in the Hamiltonian, and the strain
as the conjugate variable. No generality is lost by retaining this convention. In fact, our being able
to handle viscoelastic creep dlrecﬂ)(, instead of considering stress relaxation, is an illustration of
the power of the method of analysis used, - ’ '

[ —
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When applied to (25), the Wiener-Khinchin theorem gives
S(&; w)=(1/n*+w*/E?) S(o; w). @7

To go on, some further properties of the stochastic process o(t) must be specified.
The simplest choice is a totally random o(z), a white noise—more specifically, a §-
correlated Gaussian Markov process. However, this is an idealisation not realisable
in practice. There is also a technical difficulty in defining the corresponding deri-
vative process o(¢), and the latter occurs in the stochastic equation. Finally, the factor
w? in (27) (associated with the instantaneously responding part of the network) leads
to an unphysical divergence of S(¢; w) as w00, if S (o; w) has the flat spectrum
corresponding to white noise. All these problems can be solved quite simply. After
white noise, the simplest random process is a stationary Gaussian Markov. process.
We take o(t) to be such a process. It is then exponentially correlated:

(0(0) o(t))> = {o*)> exp (—yt) (t>0). ‘ (28)
The correlation time is 1/y. Further, |
Sos @) = 4% ¥/(r+a). o (29)

The white noise case can also be recovered from the above, on letting {a*) —»00,
y~1 -0 such that

lim {o*)/y = constant=T"/2. o ‘ ey
We have then
o(0) o(1)) = T'8(t), S(o; w)=2T. 6y

Let us return to (28) and (29). Substitute the latter in (27), and use the result ig equa-
tion (15) for the creep function. Performing the required integration, we obtain

(t)y=BV< 0 [t/nPy + (1B — 1/n2y") {I—exp (—yD)}]: = - (2

Except for the additional exponential term, this is functionally of the same form
as (11), as required. Let us analyse (32) point by point. First, note that the
exponential term ensurés that (0) = 0. Hence there is no strictly instantaneous
response, as long as the correlation time y™! is non-vanishing. If y71 is very small,
then exp (— y ¢) -0 within a very short time period-z. The system then gppears to
hive an elastic Tesponse. The next point is crucial. For large values of ¢ (such that
yt> 1), the term linear in ¢ dominates (¢). Likewise, the creep function (11)
obtained from the macroscopic equation (10) is dominated by the linear term tfn.
A comparison thus yields the equation -

T ACOY . S ®
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In the white noise limit (30), the above relation becomes

T = 2nkpTIV. (34)

Equation (33) and its special case (34) represent a very important consistency condi-
tion, the fluctuation-dissipation theorem. It relates the strength of the random inter-
nal stress to the parameter controlling the dissipation in the network, the dashpot
viscosity 5. Such a relation exists even though e (¢) is non-stationary because € (¢) is
stationary and the macroscopic equation for this latter variable is asymptotically
stable. What is even more striking is the following observation. In paper I, a
stochastic analysis of the Voigt network was given. This is the simplest model of
anelasticity, It consists of a spring and dashpot in parallel. Here, (z) is itself statio-
nary in equilibrium. The corresponding fluctuation-dissipation theorem happens to
be precisely the one deduced above! (See equation (40) of I). There is a simple ex-
planation for this  coincidence’. After all, the fluctuation-dissipation connection
should transcend the particular configuration in which the dissipative element occurs
in the network.* Therefore this identity of result, obtained from two very different
network equations describing two different types of mechanical behaviour, is grati-
fying. It serves as a further corroboration of our procedure.

Next, consider (32) once again in the region yt > 1, so that the exponential term

may be dropped. Comparing the constant term in the result with that in (11), we
get the equation ‘

I/E = BV{a*)(1/E® — 1/nty%). (35)

Solving for E, and using (33), we find that

E = (V5 — DBV 0?2 = (V5 — 1)ny/2. (36)

Before commenting on the final e

' quation in (36) let us record that (33) and (36) help
write the true creep function (32)

of the Maxwell network in the form
W) = (t/n) 4+ (1/E) [1 — exp (— ). (37

This replaces (11). The compliance corresponding to (37) is, using (2),

J(w) = (i[n0) + y/E(y — iw). (38)

Smgg this fzxpression vanishe§ 45 @ - o0, no subtraction is needed in the spectréi
r_epres:enta:cxon fgr J(w). The limit ¥ = oo takes us back to the instantaneous'response
situation, in which J (w0) =y (0) = 1/E. '

Let us now comment on the relation between E and 7 that appears to be expressed

by ‘ihe. ﬁéw-f equation in (36). At the phenomenological level, of course, these are two
quite independent, unrelated network parameters. Now the compliance of the origi-

P o |
age%g:atrt:os?sfgﬁ.) %h‘;hfa:?::?:ﬁcigi\ ei%l-gmnt_og the Nyquist theorem for the thermal noise volt-
LR circuit is used in deriving it Yy independent of whether a series or parallel effective
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nal Maxwell network is given by (1/E)+(i/nw). One may be tempted to argue,
therefore, that causality, i.e., a dispersion relation, does connect the real and imagi-
nary parts of this expression. Once again, this is not so. The model is so simple
that both the terms in the compliance are ¢ exceptions *. The real part is a subtrac-
tion term. The imaginary part is a zero-frequency pole. Both these are independent
additions to the analytic part of the generalised susceptibility. It is the latter part
that obeys a dispersion relation. In the present instance, this part happens to be _
absent, that is, identically zero. Hence E and n are not related. . -

What is the meaning, then, of (36)? The original Maxwell model exhibits stress : y
relaxation. The stress required to maintain a given constant strain imposed at #=0
decreases exponentially with time. The stress relaxation function is E exp (—£t/n).
The relaxation time is r=17/E. Equation (36) merely relates this to the correlation P
time 1/y of the random ‘internal stress, according to r=(4/5+1)/2y. However, =
should no longer be regarded as the actual relaxation time. We have shown that
(37) and (38) are the true response functions of the model. Concurrently, the stress
relaxation function is also modified.* It is given by E’ exp (—#/7), where the
relaxation strength decreases to E'=2 (4/5—2)E/(4/5—1)=20-39 E. The relaxation
time turns out to have the ‘ renormalised ’ value

7 = (\/5 +3)2y =7+ 1/ : (9 | i

The smearing out of the original instantaneous response thus slows down the stress
relaxation. ‘

4. A general form for i (t); other remarks S '

The creep function of the original Maxwell model is linear in ¢, with a slope 1/7.
According to the modified form (37), however, this is the asymptotic value of the
slope. For very small values of #(yt < 1),¥() is again approximately linear in #. The
slope is (1/m)4-(/E)=(v/3-+3)/27 = 2:62/n. |
Y(¢) has a leading linear behaviour for small ¢ because €(t) has a white noise compo-
nent in the example under consideration. (Equations (27) and (29) show that S(e; )
- const. as w—>00.) Itis necessary to point out that this will not be the case in most
physical situations. «(¢) can generally be related to some microscopic velocity or
current. In a wide range of problems, the conditional probability density of the
latter variable can be taken to obey a generalised Fokker-Planck equation. In a
broad sense, we may say that the viscoelasticity of the material is ‘ diffusion-con-
trolled ’. As in various other situations (see, €.g., Balakrishnan 1978b), the advant- :
age of the LRT approach is that only the external stress-free master equation need
be considered in evaluating the creep function, compliance, etc. Quite generally, -
{ (0)e(t)), will turn out to be a damped exponential, or possibly a superposition
of such terms. Unless there are questions of convergence in cases involving a super-

*To determine the stress relaxation function, we may use the fact that its @urier—l.aplacetrans-
form $(w) and that of the creep function, #(w), are related by 1+ w? ¢(w)P(w)=0.




St

556 V' Balakrishnan

position of an infinite number of terms, the representation (19) enables us to deduce
the leading small ¢ behaviour

¥() NO% BV €D, 12, (40)
—

This explains the comment made following (24). Similarly, the asymptotic bchaviqur
of the creep function is given by

W) ~ BVt [ dt' (e (0) (), (41)
t—>00 0

%
As already shown in (21), this integral vanishes, and the strain therefore saturates,
in the special case of anelasticity,

The rest is specific to the particular problem of interest. A few further rema{:ksr
of a general nature may be made. An example of diffusion creep is Nabarro-Herring
creep (see, e.g., Nowick and Berry 1972). This occurs in metals at hightemperatur_es~
The mechanism is the anisotropic intra-grain diffusion of vacancies under an applied
stress. To determine the associated creep function rigorously, the equilibrium auto-
correlation of the vacancy current must be computed. However, one may state on
physical grounds that the basic time scale governing the correlation of this ﬂuctu.atlng
current will be ~/2/D, where /is the average linear dimension of a grain an@ Dis the
vacancy diffusion constant, Of course, a whole spectrum of relaxation times, re-
lated to the basic time scale, may occur in the expression for (€(0)&(2)),. This depends

refinements. Here each macromolecule is a

ssumed to be made up of »n ¢ submole-
cules °. The end-to-end displacement

r; of the ith submolecule is supposed to have a

1z, =.(24 BlkpT/r?) sin? [rr[2(n4-1)]. (r=1, 2,...n). (42)

Here B is a * mobility * constant, and 2 is the mean Square end-to-end distance of a
submolecule. In all the above cases, {¢(0)e

herefore interesting to see what the functional

form of the corresponding creep function i, This form promises to be one of some
generality, : . :

- Accordingly, let
O o =3 crexp (—a, 1) >0), (43)

where the summation may be an integration in Some cases. Oscillatory multipli-

cative factors (e.g., cos w;? ) can be included if necessary without any difficulty. Pro-

——
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vided certain easily-deduced convergence conditions are satisfied, the creep functionis

¢(t)=BV2 (c/ XB) [t—1-Fexp (—Az)]. (44)

As expected, i (z) begins with a leading 72 short-time behaviour, and switches overtoa
linear asymptotic behaviour. This feature is quite universal. Many mechanisms
of plastic deformation also share it. The asymptotic region of course corresponds
to steady-state flow. In diffusion-controlled cases, the #2 regime is a consequence of
the familiar ‘free-particle’ short-time behaviour that dominates for r<1 /A, e,
before the ° friction * sets in to damp the motion. In plastic deformation due to dis-
location motion, there is a rather similar reason for the existence of this regime. It
occurs while the dislocation density is in the process of building up under the applied
stress. The density is sufficiently small to permit unhindered dislocation glide. Once
there is substantial interaction between the dislocations, the creep behaviour becomes
more complicated. Work-hardening is said to occur. Thus, although plasticity
with its non-linear o- € functional relationship is well outside the scope of this paper,
the corresponding creep function shares, in many cases, some of the physical features
present in (44).

Let us conclude by recording the expression for J(w) associated with (43) and (44).
This is

J(w):z‘ﬁVZ cifw (A—iw). 45)

Consistent with the short-time 72 dependence of (t), J(w) ~w™? as w—>co0. We re-
iterate that these conclusions can be altered drastically in certain cases. An infinite
summation over the index 7, or an integration over a continuous spectrum, may lead
to fractional powers in the leading behaviour at either extreme of frequency (or time).
The general formulas derived in §2 continue to hold good. A careful examination
of these will yield the correct leading exponents in such cases,
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