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Abstract. This paper deals with the design, modeling, analysis and implementation of unity power factor
(UPF) based electronic ballast for a fluorescent lamp (FL). The proposed electronic ballast uses a boost AC-DC
converter as a power factor corrector (PFC) to improve the power quality at the input ac mains. In this single-
stage UPF based electronic ballast, boost PFC converter and a half bridge series resonant inverter (HBSRI) share
a common power switch. Thus one power switch is reduced as compared to the conventional two-stage
approach. The design, modeling, analysis and implementation of this topology were carried out in MATLAB-
Simulink environment for a T8 36 W, 220 V, 50 Hz fluorescent lamp. The switching frequency was kept more
than the resonant frequency of the inverter, to ensure the zero voltage switching (ZVS) operation of both power
switches. This resulted in reduction of high frequency switching losses. The power quality parameters such as
displacement power factor (DPF), distortion factor (DF), power factor (PF), crest factor (CF) and total harmonic
distortion of ac mains current (THD;) were evaluated to analyze the performance of proposed electronic ballast.
Test results on a developed prototype of PFC electronic ballast were included to validate the design and

simulated results.
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1. Introduction

Nowadays industries, hospital, institutes, airports, under-
ground metro railway systems, big multiplexes, under-
ground parking spaces and multi-storied residential
complexes use a wide range of discharge lamps with dif-
ferent power ratings and luminaries. All kinds of discharge
lamps require sufficient ignition voltage at the time of
starting and rated steady state current after the ignition,
because they have inherent negative resistance character-
istics [1]. Thus they require a magnetic/electronic ballast to
control the flow of current after ignition. It is noteworthy
that the performance of discharge/fluorescent lamps (FLs)
improves with the use of high frequency electronic ballast.
The other advantages of using electronic ballast are smaller
size, lesser weight and hum, increased efficacy (lumens/
watt) and longer lamp life as compared to the magnetic
ballast.

The electronic ballast consists of a diode bridge rectifier
(DBR), power factor correction stage and high frequency
inversion stage and a proper series resonant circuit. The
resonant circuit generates required high ignition voltage at
the time of starting and then regulates the lamp current to
become sinusoidal. As compared to the magnetic ballast,
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which supplies the lamp aline frequency current of 50/60 Hz,
the electronic ballast provides the lamp 20-100 kHz fre-
quency current using an inverter. Because of the relatively
high switching frequency of the electronic ballast, the gas in
the discharge tube does not suffer from an appreciable de-
ionization and a sufficient number of electron carriers
required for discharge remain after current reversal. Thus,
there is no power required to reignite the discharge, which
results in 10-20% increase in luminous flux.

However, electronic ballast also has many limitations.
The electronic ballast involves AC-DC conversion; hence,
a large amount of current distortion exists into the ac mains.
Owing to the small conduction time of rectifier and filter
capacitor combination creates distortion in current wave-
form which is rich in odd harmonics and also has a rela-
tively high crest factor. Another disadvantage of the
electronic ballast is the radio frequency interference which
is induced by the high switching frequency of the resonant
inverter which drives the lamp. Further, this electronic
ballast has power quality problems such as low power
factor (PF), high crest factor (CF) and high total harmonic
distortion (THD;) of ac mains current, which do not meet
the requirements of the international regulations such as
IEC 61000-3-2 for class C equipments [2].

Due to these limitations of electronic ballast, power
factor corrected (PFC) electronic ballast is gaining
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popularity these days. Normally, PFC electronic ballast
needs two stages of power conversion. One stage is for ac—
dc power conversion and another stage is for dc—ac power
conversion. The advantages of the PFC electronic ballast
are reduction in ac mains current and its crest factor [2].
However, because of the two power stages, this circuit has
low energy conversion efficiency. The other PFC approach
is based on the integration of these two power stages into a
single-stage converter by sharing one or more switches.

This paper deals with the power factor correction (PFC)
in the single-stage electronic ballast. An integration tech-
nique has been used by combining the power switch of
boost converter with a half bridge resonant inverter using a
boost converter operating in continuous conduction mode
(CCM) and integrated with series resonant inverter. This
method provided almost unity power factor (UPF) with low
THD and low crest factor of ac mains current for a wide
variation in ac mains supply voltage.

2. Proposed single stage electronic ballast

The schematic of proposed electronic ballast is shown in
figure 1, which consists of a PFC boost converter integrated
with a high frequency series resonant inverter and this
combination formed single-stage electronic ballast.

The following considerations were made while analyzing
the proposed single-stage electronic ballast:

e The fluorescent lamp was treated as an open circuit
before ignition and as a resistor under steady state

condition.

e The capacitor Cy, was large enough as compared to Cy,, to
ensure its negligible reactance at switching frequency.
Moreover, Cy, blocked the dc component present in the
fundamental component of square input to the inverter.

e The dc link capacitor C, must be large enough to
ensure the CCM operation of boost converter.

e The switching frequency was selected much higher
than the ac mains frequency, thus input voltage could
be considered as constant over a switching cycle.

e Quality factor should be high enough to ensure proper
ignition voltage at start up and sinusoidal load current.

e The filament resistances were neglected as compared
to the lamp resistance.

PFC boost converter nearly achieved UPF at input ac mains.
Simultaneously, the resonant inverter provided sufficient
ignition voltage and provided constant lamp current at higher
frequency. The quasi-half bridge inverter produced a square
wave voltage which was fed to the load through an LC network
which filters out the higher order harmonic components in the
square wave. As the harmonics of the square wave are atten-
uated by the LC network, an analysis is carried out using only
the fundamental component of the square wave.

The switching frequency of the resonant inverter was
kept more than the resonance frequency of the inverter to
ensure zero voltage switching (ZVS), which reduced the
switching losses and increases the overall efficiency of the
system [3-6].

3. Operating modes of single stage electronic
ballast

The operating modes of proposed single-stage electronic
ballast are shown in figure 2a—d along with the waveform
in figure 2e. The sinusoidal input voltage was considered as
constant in each switching cycle, since the switching fre-
quency is much higher than the ac mains power frequency.
The circuit operation is explained using modes I-IV over
one switching cycle:
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Figure 1. Proposed single-stage electronic ballast.



Single-stage UPF based electronic ballast

Sz

1113

S

Van

to it t ta

y s tg itz t

D, M, D, M,

D, M, D, M,

Figure 2. (a) Mode I, (b) mode II, (¢) mode III, (d) mode IV, and (e) theoretical waveforms of resonant inverter stage of proposed

electronic ballast.

Mode I (1 <t < t;)

At time ty, initially intrinsic diode D, (shown in figure 2a)
starts conducting and maintaing the dc link voltage by
charging the capacitor gradually. The rectified input voltage
(after the LC filter) is applied to the boost inductor (Ly),
which forms a close path with the dc link capacitor. Thus
the boost inductor current increases linearly up to time #;.
During this interval the gate pulse (S,) is also applied to
active power switch M,. In this mode, the path of two
currents is shown in figure 2a and given by loop-1 and
loop-2.

Loop-1: Vie(+) = Ly = Dy — Ly — Cy
— (Riampl|Cp) — Co — Vree(—)
Loop-2: Co(—) = D, —» L, — Gy
— (Riampl|Cp) — Co(+)

Mode Il (t; <t < 1p)

At time ?,, the resonant inductor current further increases
linearly up to time #,, since only the impedance of inductor

offers the opposition for the flow of current. Because of
already conduction of intrinsic diode D,, the MOSFET M,
is turned on at ZVS. In this duration, dc link capacitor is
lost some of its charge. In this mode, the path of two cur-
rents is shown in figure 2b and given by loop-1 and loop-2.

Loop-1: Viee(+) — Ly — Dp — My — Viee(—)
Loop-2 : Co(+) = (Riamp||Cp) — Cp — Ly — Ma — Co(—)

Mode III (1, <t < t3)

MOSFET M, is turned off at time rand given by loop-1 and
loop and the resonant current shifts from MOSFET M, to
intrinsic diode D;, thus due to series resonating phe-
nomenon of the circuit resonant current still flows in the
same direction. During this mode of operation, the boost
inductor current decreases linearly since effective voltage
across the inductor is (Viec—Vyc). In this duration the gate
pulse (S;) is also applied to active power switch M. In this
mode, the path of two currents is shown in figure 2c and
given by loop-1 and loop-2.
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Loop-1: Viee(+) — Ly = Dy — Dy — Co — Viee(—)
LOOp—2 : D1 — (RlampHCP) — Cb — Lr — Dl

Mode IV (1; <1t < ty)

At time t3, the MOSFET M, is turned on at ZVS, since in
earlier mode of operation intrinsic diode D; was conduct-
ing, which ensures the zero voltage transition of the switch.
Thus the direction of resonant current changes from posi-
tive to negative as shown in figure 2e. This mode completes
at 74 and then modes I-IV repeat for the new switching
cycle. In this mode, the path of two currents is shown in
figure 2d and given by loop-1 and loop-2.

Loop-1 : Viee(+) — Ly — Dy — Ly — Cy, — (Riamp||Cp)
—Cy — Vrec(_)
LOOp—2 M| - L, —» C, — (RlampHCP) — M

It is clear from the fact that prior to the conduction of both
power switches, their intrinsic diodes conduct first, hence
both MOSFETs (M; and M,) are operating at zero voltage
switching (ZVS) over a switching cycle. Moreover, the
resonant current also lags behind the fundamental compo-
nent of inverter input voltage (V,,), which is also a basic
guideline to turn-on the power switches at ZVS. To ensure
the lagging nature of resonant inverter circuit, the switching
frequency has kept four times of the resonant frequency of
the inverter (i.e. f; = 4f;). Important theoretical waveforms
of series resonant inverter are given in figure 2e.

4. Design and analysis of single stage electronic
ballast

The design procedure of the components of PFC boost
converter and the series resonant inverter are given as
follows [7, 8].

4.1 Design of boost inductor

The design value of a boost inductor can be calculated by
using the following equations. The duty ratio, D is
expressed in terms of dc inverse voltage gain as

D=1-aq, (1)
where « is defined as
Vsm
o= . 2
Ve (2)

The value of boost inductor is given in Eq. (8) as
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Vem ) (1= o) - Y(a) 3)

L=
Wswitching * P, o

where the coefficient Y (o) is defined as

2
Y(o) =—-2— Ty {E +tan”

o av/l—o |2 1(\/%—0@)}
(4)

The dc link capacitor (C,) should have enough capaci-
tance to maintain the constant voltage with less voltage
ripple and should provide continuous load current. It can be
estimated as

Vo

Co>—° 5
"= 47 RiampAVeo ()

where D is duty ratio, o is dc inverse voltage gain, V, is
peak value of the input voltage, V. is dc link voltage, P, is
rated output power of fluorescent lamp, f; is switching
frequency, f. is power frequency, Rjamp is lamp resistance
under steady state condition, and AV, is the ripple voltage
of the dc link capacitor.

4.2 Design of series resonant inverter

The equivalent circuit of the series resonant inverter (SRI)
under the steady-state operation of the fluorescent lamp is
shown in figure 3. In the equivalent circuit L, C,, and C,, are
the resonant parameters and Rj,mp is the resistance of the
fluorescent lamp. The capacitor Cy, is used to block the dc
component present in the square wave applied to the res-
onant inverter otherwise they can distort the lamp current.
At the time of starting, high voltage is required to ionize
the gas present inside the lamp. Thus the series resonant
inverter is designed such that during starting, the resonance
frequency is equal to the switching frequency to insure high
voltage generation across the lamp electrodes. Before the
starting of the lamp, resonant circuit consists of L, Cy, and
C,. After the ignition, the switching frequency is selected
higher than the resonance frequency to achieve ZVS at turn-
on transition of both the active switches (i.e. M; and M,).

Figure 3. Series resonant inverter (SRI) equivalent circuit.
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Figure 4. MATLAB model of proposed single stage electronic ballast.

By applying the voltage division rule (figure 3), the ratio
of rated lamp voltage (Viymp) and the fundamental com-
ponent of input square voltage (V,p,) is given as [3],

V]amp(jw) _ 1
Van(jo) — [1 4 (Cp/Cy) — @*LiCp + j(wLy/R) — (j/wCR)]

(6)

Now substituting, the quality factor O, = (@sLe / Riamp)
the frequency ratio x = (w;/w,) and the resonance fre-

quency after ignition f; = (l / \/Ler) in the above equa-
tion, then the results are given as

- 1 7

\/[1 +(Cp/Co) (1 = x2)*+0; (x — )1?)2]

Vlamp
Vab

Under steady state condition, the resistance of fluorescent
lamp is expressed as

Rlamp = Vlzamp/Plamp (8)
The parallel resonant capacitor is defined as

G = ©)

The series resonant inductor is given as
L 1
T (GG, 2
(Cb+cp) “s

where Viymp is the rated lamp voltage, Vy, is the funda-
mental component of square voltage, Rimp is the lamp
resistance under steady state condition, w; is the angular

(10)

switching frequency, Cy, is blocking capacitor, Cy, is parallel
resonant capacitor and L, is the series resonant inductor.

5. Matlab model of proposed single stage
electronic ballast

As shown in figure 4 the proposed PFC boost converter
based single-stage electronic ballast is modeled in
MATLAB/Simulink environment, in which fluorescent
lamp is considered as a resistor at high frequency
(40 kHz).

In proposed single stage electronic ballast topology,
current multiplier approach is used with a proportional
integral (PI) controller for operating the boost converter in
continuous conduction mode (CCM). The designed values
of the boost inductor and series resonant inverter compo-
nents have been optimized to obtain improved power
quality at the ac mains. These component values are given
in Appendix along with the PI controller and other circuit
parameters.

6. Results and discussion

The modeling and simulation of the proposed single-stage
electronic ballast is carried out to validate the proposed
design of an electronic ballast which has low crest factor,
high power factor (HPF) and low THD of ac mains cur-
rent. The dc link voltage is maintained constant at 400 V,
for the wide variations of input voltage from 170 V to
270 V. Figures 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18 and 19 show simulated results which are discussed as
follows.
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Figure 5. Performance of proposed electronic ballast in terms of source voltage (V), source current (/;), boost inductor current (/1 poos)
and dc link voltage (V) at 170 V.

200F T T T T

Vg (V)
T

200 )

0.5

g (4)

-0.5

1 1
0.5 0.5 0.5 0.5 0.5 0.5001

Time(s)

1 1
0.5001 0.5001 0.5001 0.5001

Figure 6. Performance of proposed electronic ballast in terms of lamp voltage (Viamp) and lamp current (Jjyp) at 170 V.
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Figure 8. Performance of proposed electronic ballast in terms of lamp voltage (Viymp) and lamp current (Jjmp) at 220 V.
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Figure 9. Performance of proposed electronic ballast in terms of source voltage (V;), source current (I;), boost inductor current (I poos)

and dc link voltage (Vg4.) at 270 V.
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Figure 10. Performance of proposed electronic ballast in terms of lamp voltage (Viamp) and lamp current (/j,mp) at 270 V.

6.1 Simulation results

Under steady state operation, the input voltage (Vj), input
current (I,), boost inductor current ([1p.0s) and dc link
voltage (V4.) at ac mains voltage of 170 V, 220 V and
270 V are shown in figures 5, 7, and 9. Under steady state

operation, the lamp voltage (Viamp) and lamp current (/jamp)
at ac mains voltage of 170 V, 220 V and 270 V are shown
in figures 6, 8 and 10.

The main advantage of the proposed ballast is low
switching losses by sharing one active switch between boost
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Figure 11. Performance of proposed electronic ballast in terms of resonant inverter voltage (V,,), resonant inductor current (I ), lamp
voltage (Viamp) and lamp current (/zmp) at 170 V.
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Figure 12. Performance of proposed electronic ballast in terms of resonant inverter voltage (V,,), resonant inductor current (I ), lamp
voltage (Viamp) and lamp current (fjzmp) at 220 V.
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Figure 13. Performance of proposed electronic ballast in terms of resonant inverter voltage (V,,), resonant inductor current (I ), lamp
voltage (Viamp) and lamp current (/1ymp) at 270 V.
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Figure 16. Input current waveform and its harmonic spectra at ac mains voltage of (a) 170 V and (b) 220 V.

PFC converter and half-bridge inverter, which also reduces  current waveforms are shown in figures 11-13 for ac mains
the cost. With the input ac mains voltage variations, thereisa  voltage of 170 V, 220 V and 270 V.

negligible variation in the rated lamp voltage (110 V) and The switch voltages (Vy; and Vyp) and their switch
rated lamp current (0.2836 A) which have been given in  currents (Iy; and Iy;,) are shown in figures 14 and 15
table 1. The output waveforms such as resonant inverter respectively, which validate the zero voltage switching
voltage, resonant inductor current, lamp voltage and lamp  (ZVS) operation of both the power switches.
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The input current waveforms along with its harmonic
spectra and THD are shown in figures 16 and 17 at ac
mains voltage of 170 V, 220 V and 270 V.
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The variation of power factor and crest factor are shown
in figure 18 and the variation of %THD of source current
and its magnitude are shown in figure 19

Table 1 shows the variations of power factor (PF), dis-
placement power factor (DPF), %THD of ac mains current and
crest factor (CF) of PFC single-stage boost converter-based
electronic ballast with a wide variation in ac mains voltage.

It has been observed that the THD of ac mains current is
in between 4.34% and 9.55% for the ac mains voltage
variations from 170 V to 270 V. The zero voltage switch-
ing (ZVS) of switches M; and M, has been confirmed
through results shown in figures 11 and 12. This has
reduced the switching losses which could be significant at
high switching frequency of 40 kHz.

6.2 Experimental results

Test results of the proposed electronic ballast are demon-
strated good power quality improvement (PQI) at varying
AC mains. Figures 20, 21 and 22 have shown AC mains
voltage and current waveforms along with THD spectra at
AC mains voltages of 170 V, 220 V and 270 V respec-
tively. The lamp voltage and lamp current waveforms have
been shown in figure 23 at AC mains voltage of 170 V,
220 V and 270 V respectively. The measured efficiency of
the proposed electronic ballast is 86.95%, 88.48% and
88.95% at AC mains voltages of 170 V, 220 V and 270 V
respectively. The efficiency of the single stage electronic
ballast for fluorescent lamp has reported between 80 and
85% in literature [9-13].

7. Conclusion

In the proposed electronic ballast, AC-DC converter with
series resonant parallel loaded inverter (SRPLI) has pro-
vided an improved power quality at input AC mains. It has
been observed that the input current meets IEC-61000-3-2
class-C requirements. High power factor single-stage
electronic ballast with constant dc link voltage has been
designed for the fluorescent lighting. The dc link voltage
has been maintained constant, independent of changes in
the input ac mains voltage. With an appropriate design of
the resonant converter, the lamp current has been main-
tained close to the rated value. The power factor correction
has been achieved by a boost converter operating in con-
tinuous conduction mode (CCM). In single-stage electronic
ballast, a PFC stage and series resonant inverter stage have
shared a common power switch, hence due to less number
of switches as compared to two-stage approach overall
switching losses are reduced considerably. Moreover, since
the circuit is working at lagging power factor (f; < f;), the
zero voltage switching (ZVS) has been achieved in resonant
inverter operation. The simulation and test results have



Single-stage UPF based electronic ballast

Table 1. Performance parameters of proposed single stage electronic ballast.
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Vs (V) I (A) Vae (V) Viamp (V) Damp (A) PF DPF DF % THD; CF
170 0.2354 400.6 117.6 0.3016 0.9989 1 0.9989 4.38 1.41
180 0.2342 399.8 120.8 0.3096 0.9989 1 0.9989 4.40 1.41
190 0.227 399.5 123.1 0.3156 0.9989 1 0.9989 4.56 1.41
200 0.2187 399 124.1 0.3181 0.9988 1 0.9988 4.74 1.41
210 0.21 398.2 1254 0.3216 0.9986 1 0.9986 4.97 1.41
220 0.1971 398.3 124.5 0.3191 0.9985 1 0.9985 5.28 1.41
230 0.1814 398.3 122.9 0.3152 0.9981 1 0.9981 5.85 1.41
240 0.1644 398 119.8 0.3072 0.997 1 0.997 6.68 1.41
250 0.1496 398.6 117 0.3001 0.9969 1 0.9969 7.57 1.408
260 0.1324 399.3 113.5 0.2911 0.996 1 0.996 8.56 1.41
270 0.1194 399.2 109.4 0.2806 0.9951 1 0.9951 9.55 1.408
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Figure 22. AC mains voltage and current waveform with THD spectrum at 270 V AC mains.
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Figure 23. Lamp voltage and lamp current waveform at 170 V, 220 V and 270 AC mains.

confirmed the low crest factor and high power factor of the
proposed single-stage electronic ballast.

Appendix

Rated lamp power: 31 W, rated lamp current: 0.2836 A,
rated lamp voltage: 110 V, switching frequency (f;):
40 kHz, PI controller gains (Kp): 0.0035, (K;): 0.028, Boost
PFC converter components: Boost inductor (Ly,): 40 mH, dc
link capacitor (C,): 30 puF, Resonant parameters: resonant
inductor (L.): 1.75 mH, dc blocking capacitor (Cp): 105 nF,
resonant capacitor (C,): 7 nF, Quality factor (Qs): 2.6,
frequency ratio (x): 0.25.
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