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In Part 11 of this article, we have shown that the basic
solution to the wave equation

(1 a2 2) (D )
22 - \7 'u(r, t) = 15 (r - ro) l5(t - to)C at (1)

that vanishes as r --+ (X), is given by

J
dDk sin cTk ik-R

v,(D)(R,T) = CtJ(T) (21T)D k e ,
(2)

where D is the number of spatial dimensions, 1\ ==r - ro
and T == t-to. We now simplify and analyse the solution
for different values of D.

The Case D = 1

The case of a single spatial dimension is somewhat dis-
tinct from the others, and simpler too. Let us dispose
of this case first.

Recall that the symbol k in the factor (sin CTk)/k in (2)
stands for Ikl; in the case D = 1, therefore, we should

remember to write Ikl instead of just k in this factor.
Further, k. R is just kX in this case, where X = x - Xo .
Therefore

v,(I) (X T ) = C tJ( ) 1
00 dk sin CTlkl .

, T - e1.kX -
-00 21T Ikl -

1 00 dk sin CTk eikX .
C tJ(T) 21T k

-00

(3)

It is immediately evident from this expression that

11,Cl)(-X, T) = v,(I)(X, T), i.e., that 11,Cl)(X, T) is in fact
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a function of IXI. Using eikX = cos kX + i sin kX, we
see that the contribution from the sin kX term vanishes

because the integrand is an odd function of k. Thus

u.(1) (X, -r:)

1
00 dk

= co(r) - sin (crk) cos kX
0 'irk

L
oo dk

= co(r)' _ (sin (cr + X)k + sin (cr - X)k )0 2'ir k

= ~e(r) (c:(cr+X)+c:(cr-X») (4)

In the last equation, we have used the well-known fact

that Iooodk (sin bk)/k = ('ir/2)c:(b) for any real number'
b; here, the symbol c:(b) = o(b)- O(-b) = +1 for b > 0,
and c:(b)= -1 for b < O. Simplifying the final expression
in (4), we find

u(l)(X,r) = ~o(r) o(cr - IXI).. 2 (5)

The second step function ensures that the signal does
not reach any point x until time to + Ix - xol/c, as re-
quired by causality. The presence of this step function
makes the other step function, o(r), redundant from a
physical point of view. However, it is present in the for-
mal mathematical solution for the quantity u(l)(X, r).

But there is another aspect of the solution which is note-
worthy. Although an observer at an arbitrary point x
starts receiving the signal at time to + Ix - xoi/ c, he does
not receive a pulsed signal, even though the sender sent
out such a signal. In fact, the signal received persists
thereafter for all time, without diminishing in strength!
This last feature is peculiar to D = 1. Let us see what
happens in higher dimensions.

The Case D = 2

Before we discuss the nature of the solution for D ;:::2,
we must note an important feature of u.(D)(R, r).
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In 0 =2 again, the.

signal is no longer a

sharply pulsed one; it

persists for all t> to.+
Ir- 'ollc, although its

strength slowly

decays as t increases.

~he expression in (2) is a scalar, by this we mean that
it is unchanged under rotations of the spatial coordinate
axes about the origin. This remains true for all integer
values of D 2: 2.

This assertion may seem to be more-or-Iess obvious,
because k . R is after all a scalar product of two D-
dimensional vectors. But it must be proved rigorously,
which requires a bit of work. We will not do so here, in
the interests of brevity, but merely point out that two
factors playa role in such a proof. First, the region
of integration in (2) is all of k-space, and this is invari-
ant under rotations of the coordinate axes in that space.
Second, the volume element d(D)k is also similarly un-
changed under rotations of the axes.

As a result of this rotational invariance, u(D)(R, T) is ac-
tually a function of Rand T (where R = IRI, as, already
defined). The consequence of this is that we can choose
the orientation of the axes in k-space according to our
convenience, without affecting the result.

Turning now to the D = 2 case, it is evidently most
convenientto work in plane polar coordinates, choosing
the k1-axisalong the vector R. Then

(2)( ) ( ) 1
00 k dk sin cTk

1
21r ikR COB<p'11. R, r = e () r -

( )2 k dcpe0 27r . 0

1
00 dk

= e O(r) - sin (erk) Jo(kR),
0 27r

where Jo(kR) is the Bessel function of order O. The
final integral over k is again a known integral, equal to

(e2T2 - R2)-1/2 provided c2T2 > R2, and zero otherwise.
Since we are concerned here with the physical region in
which both rand R are non-negative, our solution reads

(6)

u(2)(R, r) = e OCT) O(er - R)
27r ve2r2 - R2 .

(7)

The signal thus reaches any point r only at time to +
Ir - rolle, in accordance with causality and the finite
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velocity of propagation of the disturbance. But once
again, the signal is no longer a sharply pulsed one; it
persists for all t > to + Ir - rollc, although its strength
slowly decays as t increases, like lit at very long times.

The Case D = 3

Something entirely different happens in three-dimensional
space. We have

11,(3)(R,r)= co(r) ! d3k sin crk ik.R

(27r)3 k e .
(8)

Rotational invariance is now exploited; we use spherical
polar coordinates (k, 0, <p) in k-space, and, moreover,
choose the polar axis along the vector R. This imme-
diately enables us to carry out the integration over the
azimuthal angle <p,obtaining a factor 27r. It is useful to
write out the subsequent steps in this instance, because
they (or their variants) appear in more than one context
in physical applications.

u(3)(R, r)

- c O(r~ (OOdkk2 sin crk 1 1 d( cos 0) eikR cos 0
(27r) 10 k-l
2cO(r)

1
00

)2 dk sin (crk) sin (kR)27r R 0

c OJ:) {OOdk (cos (cr - R)k - cos (cr + R)k )(27r R 10
c 0(r )

1
00

( )- - -oodk cos (cr - R)k - cos (cr + R)k

c O(r) Re 100 dk (ei(CT-R)k - ei(CT+R)k )2(27r)2R -00

cO(r)
( )- -Re 8(cr-R)-8(cr+R).47rR (9)

But the delta functions are real quantities. And once
again, we are interested in the region in which both r
and R are non-negative. The solution therefore reduces
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The propagation of

sharp signals is

possible in all odd-
dimensional spaces
with D ~ 3, while it

fails for all even

values of D.

to

(3)( )
cO(r)8(cr-R)

.
O(r)8(r-Rlc)

u. R, r = = . (10)47rR 47rR

Thus, almost miraculously, the signal is also a delta
function pulse that reaches (and passes) an observer at

any point r at preciselythe instant to+ \r - ro JI c. There
is no after-effect that lingers on, in stark contrast to the
situation in D = 1 and D= 2.

The amplitude of the pulse drops with distance like II R,

exactly the way the Coulomb potential does. In fact,
this is yet another unique feature of the solution in D =
3. Formally, if the limit c -t 00 is taken in (1), the wave

operator reduces to the negative of the Laplacian oper-
ator. We might therefore expect the solution for Y.(r, t)
to reduce to the corresponding Green function for - \72.
In three dimensions, this is precisely 1I (47rR). This fact

is very familiar to us from electrostatics. The poten-

tial 4J(r) due to a point charge q located at ro satisfies
the equation -\724J(r) = p(r)/Eo = (qIEo)8(3)(r - ro).
With the boundary condition 4J-t 0 as r -t 00, the so-

lution to this equation is just Coulomb's Law, namely,

4J(r) = -ql(47rEOR), where R = Ir - rol. This reduction
of the solution of the inhomogeneous wave equation to

that of Poisson's equation in the limit c -t 00 does not

occur in D = 1 or D = 2.

Dimensions D > 3

Now that we have appreciated a very important feature
of three-dimensional space that is absent in one- and

two-dimensional spaces, it is natural to ask if this feature

is unique to D = 3. Surprisingly, it is not; the propa-
gation of sharp signals is possible in all odd-dimensional

spaces with D ~ 3, while it fails for all even values of
D. In other words, the signal received at any point r

lingers on for all t > to + Jr - rol/e in D = 2,4,...,
while it is sharply pulsed, arriving and passing on at

time to+ Ir - Tolle with no after-effect, in D = 3,5,'" .
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There is, however, one feature that is absolutely unique
to D = 3: this is the only case in which the original
8-function pulse is transmitted without any distortion,
namely, as a 8-function pulse.

One way to establish these results is to start with (2),
and to use hyperspherical coordinates in D dimensions.
Then k = (k, °b °2"" , °D-2, cp), where 0 ~ k < 00
0 ~ Oi ~ 7r, 0 ~ cp < 27r. Once again, we may choose
the k1 axis to lie along the vector R, which permits us
to carry out the integrations over °2, . .. ,OD-2 and cpo
The result is

'/J,(D)(R,T) = (const.) O(T) 100 dk kD-2 sin (cTk).

111"dflt( sin ° d D- 2eikR CDS(h,

where the constant depends on D. Clearly, this is a
laborious method of finding u(D)(R, T), especially as the
integrations over 01 and k have yet to be carried out.

(11)

There is a more elegant an4 powerful way to solve the
problem. This is based on the relativistic invariance of
the wave operator and the solution sought. A detailed
account of this would take ustoo far afield. We therefore

restrict ourselves to a short description of this approach,
to get some feel for the undedying 'mechanism' respon-
sible for the basic difference between the cases of even

and odd D. . Our discussion will not be fully rigorous,
as we shall not pay attention to certain technical details
that warrant a more careful examination.

The operator (1/c2)a2/ at2 - '\72 can be verified to be
unchanged in form ('invariant') under Lorentz trans-
formations in (D + I)-dimensional space-time. As a
consequence of this invariance, the specific solution we
seek can also be shown to be Lorentz-invariant. In the

present context, this means that we can always evaluate
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2 Once again,this is only true
for a time-like or light-like four-

vector, but not a space-like one.

the integrals involved in (2) by first transforming to an
inertial frame in which the four-vector (CT,R) has only a
time-like component, i.e., it is ofthe form (CT', 0), where
c2r2 - R2 = c2T,2. [This can only be done for a so-called
time-like four vector, i.e., one for which c2T2- R2 > O. It
cannot be done for a light-like four-vector (c2T2- R2 = 0)
or a space-like four-vector (c2T2 - R2 < 0). This is the
technical point we slur over, with the remark that our
conclusions will not be affected by it.] After the inte-
grals required are evaluated, we can transform back to
the original frame by replacing CT' with (c2T2 - R2) 1/2.
We must also mention that T > 0 implies T' > 0, be-
cause the sign of the time component of a four-vector
remains unchanged under the set of Lorentz transfor-
mations with which we are concerned.2 Denoting the

corresponding signal by u(D)(T '), we have
""

'll.(D)(T') = CO(T')J
dDk sin cT'k .

(271")D k

= (const.) O(T') 100 dk kD-2 sin (CT' k)

on carrying out all the angular integrals in D-dimensional
space. The constant on the RHS in the last equation de-
pends on D. This representation shows us, in very clear
fashion, how the cases of odd and even D differ from
each other. When D is odd, the integrand is an even
function of k, and hence the integral can be converted
to one that runs from -00 to 00. The result can then be

shown to be essentially a derivative of a certain order of
the delta function 8(c2T,2),i.e., a sharply pulsed signal.
(The order of the derivative increases with D.) On the
other hand, when D is even, this cannot be done, and
the integral leads to an extended function of c2T ,2. This
dissection lays bare the precise mathematical distinction
that lies at the root of the physical differences in signal
propagation in odd and even dimensional spaces, respec-
tively. In fact, the formal solution for u(D)(T') can be

(12)
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shown to be essentially the derivative of order (D - 3)/2
of 8(c2T '2) in all cases. When D is even, this solution
is a so-called fractional derivative, which is a non-local
object - in physical terms, an extended function.

The form of the result in (12) suggests even more. Since
the second derivative of the sine function is again a sine
function (apart from a minus sign), it follows that the
solution in (D + 2) spatial dimensions can be obtained
from that in D space dimensions by a simple trick. We
find

7JJD+2)(T') = - 1 a211.(D)(T')
27rC2D aT,2

(13)

This shows how the solutions in D = 5,7,. . . can be gen-
erated from that in D = 3, while those in D = 4,6, . . .
can be generated from that in D = 2. The detailed
working out of these solutions is left to the interested
reader.

A final remark, before we pass on to more general con-
siderations. How widely applicable are the conclusions
at which we have arrived? Basically, there are two im-
portant additional aspects of wave or signal propagation
that can be adjusted so as to modify the basic result.,
The first is dispersion. Sinusoidal waves of different
wavelengths will, in general, propagate with different
speeds in a medium. The precise manner in which the
frequency and wavelength of waves in a medium are re-
lated to each other is called a dispersion relation. Such
relations can be quite complicated. The second aspect
is nonlinearity. The simple wave equation (1) that we
have used, is linear in 11..On the other hand, physical
situations often call for nonlinear equations. The in-

terplay between dispersion and nonlinearity can be ex-
tremely intricate and interesting, and a vast variety of
new phenomena can arise as a result. Among these are
the so-called solitary waves and propagating solitons,
which represent very robust pulsed disturbances.
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Is there anything else special about three-dimensional
space that is not shared by a space of any other dimen-
sionality? Again, answers can be given at many levels.
An important observation is that it is only in D = 3 that
the cross product oftwo vectors is again a vector. For, it
is only in D = 3 that the number of mutually perpendic-

ular planes spanning the space is equal to the number of
Cartesian coordinate axes, 3 being the 'only nonzero so-
lution ~f the equation DC2 ==D(D -1)/2 = D. Though
these statements appear to be simple, they have pro-

'found consequences.

At a slightly more sophisticated level, we may make
the following general, if rather loose, statement: one-
or two-dimensional space is, in some sense, too 'sim-

ple' for anything too complicated to be possibl~; on the
other hand, four- or higher-dimensional space is again
too 'roomy' for anything very complicated to occur. (In
even more loose terms, this 'roominess' permits the un-

doing of complications like knots, for instance.) This
leaves D = 3 as the most 'interesting' number of dim~n-

sions. Once again, we refrain from further elaboration.

Finally, we must recognize that our sensory organs and
the information processing hardware and software in our
brains are designed so specifically for (3 + 1)-dimensional
space-time, that we literally take this dimensionality to

" be a fundamental and 'self-evident' fact of nature. In ac-
tuality, however, "there are very deep unanswered ques-
tions about the nature of space and time. These ques-
tions are connected to questions about quantum .me-
chanics, general relativity and the origin of the universe.
We do not know for sure whether, at the very smallest
time scales and length scales, the number of space di-
mensions is three or more; or whether space-time coordi-
nates must be supplemented with certain other kinds of
variables to specify a point in the 'true' arena in which
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phenomena occur; or even whether space-time is ulti-
mately continuous or discrete ('granular'). One thing
does appear to be fairly certain, though: It is very prob-
able that, sooner or later, our long-standing ideas and
preconceptions about the nature of space and time will
have to be revised sign~ficantly at the most fundamental
level.

~
.

1' ,1

~.

The following poem written by Gamow and his wife described the debate
on the steady state model of the universe. It mentions Martin Ryle's
observations which could not be explained by this model, which was
advocated by Fred Hoyle, Thomas Gold and Herman Bondi.

"f our years of toil"
Said Ryle to Hoyle
"Are wasted years, believe me
The steady state
is out of date
unless my eyes deceive me.

My telescope
has dashed your hope;
Your tenets are refuted
Let me be terse:
Our Universe

Grows daily more diluted!"

Said Hoyle, "You quote
Lemaitre, I note
And Gamow, well,forget them!
That errant gang
And their Big Bang
Why aid them and able them?

Yousee, myfriend
It has no end

And there was no beginning
As Bondi, Gold
and I will hold

Until your hair is thinning!"

"Not so!" cried Ryle
With rising bile
And straining at the tether;

"Far galaxies
Are, as one sees,

More tightly packed together!"

"You make me boil!"

Exploded Hoyle,
His statement rearranging
''New matter is born

Each night and morn.

The picture is unchanging!"

"Come offit, Hoyle!
I aim tofoil
you yet"
"And in a while"

Continued Ryle
"I'll bring you to your senses!"

From: 'Mr Tompkins in Wonderland'
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