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Abstract. Stochastic dynamics in the presence of quenched disorder (e.g., diffusion in a
random medium) is generally treated in a suitable mean-field or effective medium approxima-
tion. While numerical simulations may help determine the accuracy of such approximations
in specific models, there are relatively few instances in which analytic solutions are possible,
to enable a precise comparison to be made with the mean-field results. We consider in this
paper a simple but general model of quenched disorder in which a system variable x jumps
stochastically between two values x, and x,. However, in each level there occurs with a
certain probability a branch (or internal) state into which the system may fall, and from
which a jump to the other level is possible only after a return to the original (or ‘active’)
state. Four different configurations of the states of the system are thus possible, and the
transitions between the states are governed by Markovian transition probabilities. The
moments of x and its autocorrelation function are computed in each case, and then
configuration-averaged over the four realizations. This represents the exact solution. Next,
a mean-field theory of the dynamics is developed: this turns out to involve an effective
waiting-time density at each of the two levels that is non-exponential in time, so that the
mean-field dynamics is a non-Markovian alternating renewal process. The moments and
autocorrelation of x are again computed, and compared with the exact solutions. The extent -
of the differences at both short and long times is elucidated, and a numerical comparison
is presented for the case of maximal disorder.
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1. Introduction and description of the model

Many different physical systems evolve in time according to stochastic dynamics, very
often in the presence of frozen, spatial disorder caused by random inhomogeneities.
Diffusion in a random environment (or a random walk) is a generic problem of this
type, and there exists a considerable literature on the subject (Haus and Kehr 1987;
Havlin and Ben-Avraham 1987; Bouchaud and Georges 1990). The dynamics of spin
glasses and similar disordered systems (Bouchaud et al 1987; Natterman and Villain
1988) is another major example of this class of problems.

The most common method of tackling such problems may be broadly termed a
mean-field or effective medium approach. The details of this approach depend on the
particular situation under consideration, but the central idea is as follows: the final
configuration-averaging of physical quantities over the different realizations of the
disordered system is approximated by an averaging performed at an earlier stage in
the calculations. This generally amounts to replacing the original problem involving
quenched disorder by a counterpart without such disorder, but one involving-effective
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parameters (such as coupling strengths, relaxation rates, etc.) that must be determined
self-consistently.

While the mean-field approximation (MFA) used in the sense just described is
ubiquitous, there are relatively few instances in which its accuracy can be checked
directly against an exact solution: the latter are hard to come by, owing to the difficulty
of performing exact configuration-averaging after the usual thermal averaging over
annealed variables. Numerical simulation must therefore be resorted to, in order to
judge the precision of the MFA. Now, the MFA (and suitable extensions of it) may
be used to compute both static quantities (such as the equilibrium moments of some
variable) as well as dynamic ones (such as time correlation functions). The accuracy
of the latter in the MFA is even more difficult to estimate than that of the static
averages, in the absence of reliable information on precisely how the MFA distorts
the exact dynamical time scales (such as the relaxation rates) of the problem.

In view of these considerations, it is of interest to analyze a simple model of disorder
in which both an exact configuration averaging as well as an MFA can be carried
out, for static as well as time-dependent moments. This is the purpose of this paper.
The model we consider is a two-level system; it is well-known that such systems can
be tailored to model a surprisingly large variety of physical situations in statistical
and chemical physics, resonance spectroscopy, etc. We shall use the language of the
random walk in continuous time of a classical particle, although the origin of the
inter-level transitions may be quantum mechanical: we shall be concerned solely with
the resulting stochastic dynamics in terms of given transition probabilities. It will be
apparent that the formalism to be discussed can be modified in a straightforward
manner to apply to diverse situations in reaction rate theory, molecular relaxation,
two-layer dispersion phenomena, etc.

The system we consider has two possible levels, in which some physical quantity
x takes on values x, and x, respectively. The stochastic variable x(t) jumps between
x, and x, at random ‘instants of time. If there are unique states a and b in which
x=x, and x =X, respectively, and the waiting time density in each state is an
exponential function of time, Aexp(— 1), then x(t) is simply the well-known dichotomic
Markov process (or telegraph process) (Barucha-Reid 1960). However, we are
interested in introducing and evaluating the effects of quenched disorder on static
and time-dependent averages. Accordingly, we suppose that there can be an additional
initernal state « (respectively, ) in some realizations of the system to which a transition
can occur from the state a (respectively b). (One may call the internal states o and f

branches, or passive/quiescent/immobile states, in contrast to the principal/active/

mobile states a and b, the terminology depending on the system being modelled). In
other words, there is a probability ¢ (0 <o < 1) that the branch « (or f) is present,
and a probability (1 — o) that it is not. The parameter o is a measure of the quenched
randomness in the possible configurations of the states of the system. In this simple
model, there are just four configurations, labelled A, B, C and D, as depicted in
figure 1. Denoting the a priori probability of the occurrence of the realization R
(R=A, B, C or D) by ng, we have

nA?(l—J)Za g =T =0(1—0), mp =0~ (1)

We assume that the variable x has the same value x, (respectively, x;) in the principal
state a and branch state a (respectively, in b and f): we want to analyze the effects
of possible internal transitions between a and o, and similarly between b and B,
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Figure 1. The states in the four configurations A, B, C and D of the system, and the rates
for transitions between them.

intermixed with the a« b transitions that cause changes in the value of the observable
x, configuration-averaged over the realizations A, B, C and D of the system. We note
(see figure 1) that direct transitions from the branch state « to b (or f), or from § to
a (or o), do not occur in the model. The system has to pass from « (respectively, )
to the principal state a (respectively, b) before jumping to the other principal state b
(respectively, a). :

The dynamics in each of the realizations is that of a random walk on a (very short)
linear chain (of just 2 sites in A, 3 sites in B and C, and 4 in D). We may, in the
simplest instance, assume the random walk to the Markovian, with a basic transition
rate k.* This is the transition rate for jumps out of every initial state for which only
a single final state is accessible: namely, a—b and b—a in A; a—»a and b—a in B;
a—band f—bin C; and a—a and f—b in D. On the other hand, the total jump
rate out of an initial state for which neighbouring final states exist on both sides is
2k, and this applies to the state g in realization B; b in C; and both @ and b in D.

At this stage we can widen the scope of applicability of our model by incorporating
a possible asymmetry between the branch states o and B, on the one hand, and the
principal states a and b, on the other, as follows. Let p(0 < p < 1) denote the a priori
probability of a transition from a to its branch « (respectively, from b to B), while
(1 —p) is the a priori probability of a transition to the other principal state b
* (respectively, a). The a—« and a— b transition rates in realization B are then 2kp
and 2k(1 — p) respectively, and similar considerations apply to realizations C and D.
All the transition rates are shown in figure 1. The value p = 1/2 corresponds to the
unbiased case. Other values of p represent an asymmetry that may be caused, for
instance, by asymmetric energy barriers between principal and branch states. We note
that the case p=1/2 is not that of a uniformly biased random walk on the sites

* This assumption can be relaxed, and the underlying dynamics can itself be made non-Markovian, but
this is not the purpose of the present paper.
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concerned. The parameters p and o represent, respectively, the effects of asymmetry
(in the sense just described) and disorder.

In the next section, we solve the simple random walk problem on each realization,
and carry out the exact configuration averaging for the equilibrium moments of x
and for its autocorrelation function. In § 3, we develop the MFA appropriate to the
model at hand, and compute the same quantities in the MFA. We then compare the
results of the MFA with the exact solutions, and comment on the differences between
the two.

2. Exact solution

2.1 The probability distributions

In each realization of the system, the random walk between the states is a stationary
Markov process with transition rates as shown in figure 1. Let Pr(i,t]j) be the
conditional probability (in realization R) of being in the state i at time ¢, given the
initial state j at t = 0. (Here i,j run over the states occurring in R.) Let Pr(i,ulj) be
the Laplace transform of Pg(i,t|j), and let Px(u, ), 8(j) denote column vectors with
elements

[Pr(w,))]i = Pr,ulj), [8()]i=3dy. @)
Then the master equation for Py reads k
(u— Wg)Pr=39, 3)

where the off-diagonal elements of the transition matrix Wy in each realization are
the transition rates shown in figure 1. (W}; is the i —j transition rate.) The diagonal
elements are given by W;;= —X;,; W;;. The solution to (3) is given by

PR: GRS, (4)
where
Gr=(u— WR)_l' (5)

In other words, the column vector Pg(u,j) is just the jth column of the resolvent
matrix Gg. The latter is given, for each of the realizations, in Appendix A. We note
the following salient features of the solution. ’

There is an obvious symmetry between realizations B and C. The latter is obtained
from the former by the substitutions o — 8, a = b, b — a. In realization D, all expressions
are invariant under the simultaneous interchanges a«b, a <> f. '

The equilibrium or stationary distribution in each realization is simply the residue
at u=0 of Pg, and can be read off from G (or obtained directly from figure 1, using
detailed balance). We get '

P, (a) = P,%(b) = 1/2;
P5*(2) = Pc™(B) = 2p/3,

Py*(a) = Pc*(b) = 1/3, ? "
Py*(b) = Pe*(a) = 2(1 — p)/3;

Pp%(s) = Po(B) = p/(1 +2p),

Pp*(@) = Pp*(b) = 1/2(1 + 2p).
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The relaxation rates (the rates at which the {Pz(i,t|j)} tend to the stationary
distributions {Py*(i)}, i.c., the eigenvalues of — Wy) are as follows: 2k in A: k and 3k
in B and C: and k (1 4+ 2p), k (5/2—p +71), k(5/2— p —r) in D, where

r=(9/4—p+ p)}2 (7)

2.2 Equilibrium moments and variance

The moments of the physical observable x in a given realization are defined by
x"(O)>r = ), x"Pr(i,t1 /) Pr*(j). (8)
LJ

As the stochastic process is a stationary one, these moments are actually time-
independent (as may be verified by explicit calculation), and (8) reduces to

X'Op= in"PRSt(i)- ©)
We find
X" Pa={x"p = (1/2)(x,"+ x,"),

e =173+ 2p)x," + 2(1 = p)x,"],
o= 1321 = p)x,"+ (1 +2p)x,"]. | (10)

The exact configuration-averaged moments are defined by

Lx"p = ;”R X" Dg- (11)
Using (1) for the g, we get at once

XY =(1/2)(x."+ %"), - (12)

a not unexpected result. On the other hand, the variance of x involves squaring the
mean in each R and then averaging over R with the weights n,, and we may anticipate
a deviation from the value (x, — x,)?/4 which we would expect at first sight. We find,
defining {(Ax)?) = {x?> — {(x)? as usual,

) {(AX) D = {(AXY dp = (1/4)(x, — x,)?, (13)
ut '
(AX)? yg = {(Bx)* D¢ :
= (2/9)(xs — x5)*(1 — p)(1 + 2p). ‘ (14)

Hence the exact configuration-averaged variance of x is

(8" = 2 mx (8% |

= (1/4)(x, — x,)*[1 — (2/9) o (1 — 0)(1 — 4p)]. (15)

The factor in square brackets in (15) will turn out to be the measure of the deviation
of the MFA from the exact solution.
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2.3 Correlation function

The exact expression for the autocorrelation function of x is

C(t) =, mrCr(t); | (16)

where
Cr(t) = {x(0)x() P&

=Z(Xi—<x>x)(xj‘* <x>R)PR(i’tlj)PRSl(j)' (17)
i’j
The expressions obtained for C :(t) (R =A,B,C,D)are recorded in Appendix A. Using
these, we obtain the result

C(t)=(1/8)(x.— xb)2|:(1 — o) exp(— 2kt) + (16/9)a (1 — o)

x (1—p)(3pexp(— kt) + (1 — p)exp(— 3kt)) + o* exp(—(5/2 — p)kt)

— 2 o
X (cosh k) + &2 - lzi 2p)3/ 2) Ginh (rkt))], (18)

where r = (9/4 — p + p*)*/? as defined in (7). We note that C(0) = &(Ax)*», and that
C(t)—~0 when t— o0, as required.
In the unbiased case (i.e., for p = 1/2), (18) simpiifies to

C(t) = (1/4)(x, — x)*[(1 — 0)* exp(— 2kt) + (4/3)5(1 — 0)
x (exp(— kt) + (1/3)exp(— 3kt)) + 0% exp(— 2kt)(cosh \/ikt
+(1/4/2)sinh . /2kt)]. (19)

3. Mean-field approximation and comparison with exact solution

3.1 Effective waiting-time density

+

The mean-field approximation (MFA) in problems of this sort consists of deriving
an effective, configuration-averaged waiting-time density (Cox 1962) for a transition
from one site to another (here, from the level x, to the level x,, and vice versa). This
WTD is common to all the sites (levels), as it is already configuration-averaged.
Translation invariance (here, symmetry between x, and x,) is thus implicit in the
MFA right from the start, whereas in the exact solution it is restored only after the
final configuration-averaging. Our aim is to develop an MFA that is as accurate as
possible: In the present instance, this objective makes it more involved than the exact
solution itself, but this will not, of course, be the case in more realistic cases of disorder.
The effort we expend in developing the MFA in what follows should be regarded in
this light. ’

Let us consider the WTD for a jump in the value of x from x, to x, in each of the
realizations. (The same WTD would apply to a jump from x, to x,, as explained
above.) This WTD is a conditional probability density: Given that the value x = x,
has just been attained at ¢ = 0, it is the probability density for the next change to the

&
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value x;, to occur in the interval (¢, t + dt). In realizations A and C (in which the
branch « is absent), this WTD is simply the exponential corresponding to the total rate
k of transitions out of the state a, namely,

¢(t) = kexp(— kt). (20)

In realizations B and D (see figure 1), the WTD for a change in the value of x from
x, to x, is obviously no longer given by ¢(¢). If x has just attained the value x, at
t =0, this means that a transition from b to a has just occurred at t = 0. (Recall that
X = x, in state o as well as in state g, and that a direct transition from b to a cannot
occur.) However, in view of the Markovian nature of the transitions, it does not
matter how the system reached the state a at t = 0. What matters is that the system
has just attained the state a at t =0. The WTD we need is then the first passage time
density to go from state a (commencing at t = 0) to state b (at time ¢). Let us denote
this density by ¢,,(¢). This quantity is found as follows. We note that the total rate
of transitions out of the state a is 2k. This implies (as the process is Markovian) a WTD

¥ (t) = 2k exp(— 2kt) (21)

for the totality of transitions out of the state a. Since p and (1 — p) are the respective
bias factors for a—« and a — b transitions, the WTD for a jump from a to « (without
going to b) is py(t), while that for a jump from a to b (without going to &) is (1 — p) x(2).
Now, the first passage from a to b can occur after an arbitrary number of excursions
from a to « and back to a. Therefore the density ¢,,(t) is given by the renewal type
equation '

Pap(t) = (1 = p)x(t) + L dt, detl[Px(tl)fb(tz —11)@ap(t — t2) ]. (22)

The first term on the right represents a direct jump from a to b without an excursion
to a. The second term includes all possible excursions a— o — a before the transition
to b, the factor ¢(t, —t,) being the propagator for the return from « to a. As the
factors in the renewal equation are in convolution, we use the Laplace transforms @,
7, ¢y etc., where

Pu) = r) dt o (z)exp(— ut). E (23)

0

Equation (22) then yields

Gap=(1—p)T/(1 = p&7). (24)

Inserting the expressions ¢(u)=k(u+k)"' and 5(w) =2k(u+2k)~* in (24) and
inverting the transform, we find

bup(t) = 2k(1 — p)exp(— 3kt/2)[cosh <f‘23(1 + 8p)”2)

— (1 +8p)~*2sinh (—l;—t(l + 8,0)1/2)]. (25)



i
!
v
[

242 V Balakrishnan and S Lakshmibala

~ This is the WTD for a jump from x, to x, (or vice versa) when there is a branch state
‘at the initial level.

The effective WTD for a jump from x, to x; (or vice versa) is obtained by configur-
ation averaging the WTD’s obtained above. This is the mean field approximation in
the problem at hand. Since ¢ is the probability that a branch state is present at the
initial level, we get for the effective WTD y(t) in the MFA the expression

Y(0)=(1—0)¢(t) + 0o (1) (26)

where ¢ and ¢, are given by (20) and (25) respectively. For ready reference, we note
that the transform of y is given in terms of ¢ and § by the expression

_ 1)) 27

f=(-0f+ 72k @)

This will be used in the calculations to follow. We note that, at u =0, $ == J =1,
so that all these WTD’s are properly normalized.

We shall need also the first waiting time density (Cox 1962) (FWTD) 1[/ (t) for a
change in the value of x: given that the value of x is found to be x, (or x,) at some
arbitrary origin of time t =0, Y, (t)dt is the probability that the first (i.e., next) change
in the value of x occurs in (t,t + dt). [(¥(t)dt, on the other hand, is the probability
that the next change in the value of x occurs in (t, ¢t + dt), given that a change has

just occurred at ¢ = 0.] It is evident that at very long times the averages to be computed '

will not be sensitive to the precise form of y,. As far as this asymptotic regime is
concerned, we could in fact take y,(t) to be y(t) itself (a procedure that would be
rigorously correct only for a purely exponential density, which y(t) is not.) However,
-we are interested in developing an MFA that describes the actual dynamics as
accurately as possible. (See also the remarks at the end of §3.4.) With this aim in
mind, we deduce an expression for y, as follows.

When there is no branch state o present, the WTD to jump from x, to x, is just
¢(t) = k exp(— kt), as we have seen already. This is an exponential density, and the
corresponding FWTD is therefore ¢(r) itself*. When the branch « is present, let the
FWTD for a jump from x, to x, be denoted by ®(t). Then the configuration-averaged
FWTD that we must use in the MFA is given, in a manner analogous to (26), by

Y1) =(1—0)p(t) + o (t). (28)

To find ®(t) we argue as follows. If we find that x = x, at the arbitrary instant of
time t = 0, the system could actually be either in state a or in the branch state o, with
probabilities in the ratio

P3(a)/P3(x)=Pp(a)/P5(e) =1/2p), (29)

from (6). Now, if the system is in state a, the WTD to jump to b is ¢, (t), already
found in (25). This is also the first waiting time density (FWTD) from an arbitrary

*This is a well-known result (see, e.g., Cox 1962; Cox and Miller 1965). A renewal process with an
exponential WTD is one in which the transition probability density is a constant (4,say); in any interval
of time dt, the probability of a transition is Adt. Successive events are uncorrelated, which is why the
FWTD turns out to be the WTD itself in this case.
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origin of time t = 0 to go from the initial state a to the state b, because any transition
out of the state a is governed by the exponential density x(f) (in other words, the
underlying dynamics is Markovian.) If the system happens to be in the state a at
t =0, the WTD to go from « to b is the first passage time density to go from o to b,
which we denote by ¢,,(). Again this is also the FWTD for going from o to b from
an arbitrary origin of time ¢ = 0, because any transition out of « is governed by the
exponential density ¢(t). Since the only possible direct transition from « is to the
state a, and this transition is governed by the density ¢ (t), we see that the first passage
time density from o to b is given by the convolution

bus(t) = L dt; §(t1) byt — 1), (30)

(We recall that ¢,(t) is the first passage time density to go from a to b in the presence
of the branch state a.) Hence the transform of ¢, is given by

6&b=$$aba ‘ (31)

where ¢, is given by (24). Putting together the foregoing, the transform of D) is
given by

6=ra$ab+ra$ab= (32)
where the weight factors r, and r, satisfy r, +r,= 1, r,/r, = 1/(2p). Hence

6= (1-p)1+ 2p<§)i
(1+2p)(1 = po)

Using the expressions for ¢ and § and inverting the transform, we find

: (33)

(1 — k
o) = H%—é—gexp(— 3kt/2)|:cosh (—25(1 + 8p)1/2>

- k
+ ﬁ“—:’—%;}ﬁsinh(-z—tu + 8,0)1’-2)]. (34)

Finally, y, (¢), the FWTD sought, is given by the weighted sum of ¢(t) and ®(t), as
in (28). We note that i, (0) is also equal to unity, so that ¥, (t) is a normalized density.

It is of interest to look at the mean times (first moments) corresponding to the
different normalized densities obtained above. Writing

T, = J té(t)dt = — ¢'(0). (35)
0
etc., we find (since kT, =1 and kT, =1/2)
o(dp—1)
kTy=1+——— 36
T ©o
and
2
-1
kT, =14 200 601 (37)

21+ 20)(1—p)’
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3.2 Transition probability

The MFA thus amounts to treating x(t) as a dichotomic process that jumps between
the value x, and x, with a (non-exponential) waiting time density y(¢). There is no
question of individual realizations of the system any longer, as the averaging over
configurations has been done already in computing (¢). It is worth noting that the
original Markovian dynamics is replaced in the MFA by a non-Markovian process,
as Y(t) is not an exponential density.

In the simple model under consideration, we have merely to find the probability
that x =x, at time ¢, given that x=x, at t=0. Let us denote this probability by
P(x,,t]x,). Then (since the same WTD governs both x, - x, and x, — x, transitions),

P(xa, tlxy) = P(x,2x,), (38)
and

Pxa, t]xa) = 1= P(xp, ]x,) = P(x, , t] ) (39)

A straightforward enumeration procedure yields, for the transform of P, the
expression (see Appendix B)

Bl ulx,) = Pxg,ulx,) = Uy (wy/[u(l + ()], . (40)

where ¥, (¢) is the first waiting time density as defined in §3.1 (see eq. (28)). From
(39), we have also

ﬁ(x‘a,ulxa)::I],i;(x"bar’d-xb)=u_l"'ﬁ(xaaulxb)' (41)

3.3 Moments and the correlation function in the MF A

As the mean waiting time T, is the same when x =x, or when x =X, and the
stochastic process is a stationary one, it follows trivially that

<X dmr = (1/2)(xg + x3), ‘ - (42)
and hence

(AX)* dyp = (1/4)0xa = Xp)%. (43)

(Here <{->wr stands for the corresponding average evaluated in the MFA.) The
autocorrelation function of x is given by

Cur (1) = (1/2) X (x; = Cedwe) (¢ = <X ur) P (i, 2 ;) ‘ (44)

where x;,x; run over the values x, and x,, and the factor 1/2 comes from P*(x;).
Using the results of §3.2, (44) simplifies to

Cur (1) = (1/4) (x5 — x,)* [1 ~ 2P (x;, 1] x,) . . (45)

Since P(x;,0]x,) =0, it is evident that Cy(0) = ¢ (Ax)? Omr» as required. The Laplace
transform of (45) gives

Gt =2 1 B (46

Since i, (0) = 1 and §/(0) = 1, we see that Cyx(u) has no pole at u =0, and that Cy(t)

Tt
»

ir
*
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does tend to zero at t — co. The explicit expression for Cyp(u) as a function of u is a
bit lengthy, and is recorded in Appendix B, (B.3)~(B.5). It is the ratio of a quadratic
in u and a cubic in w.

3.4 Comparison of the MFA and the exact solution

As ‘translational invariance’ (in the present case, the symmetry between the levels x,
and x,) is restored by configuration averaging, one expects the static moments X" dmE
to agree with the exact expressions {x". Equations (12) and (42) bear this out.

The variance of x is, however, another matter, This involves the square of the mean,
and therefore the result depends on whether the configuration averaging is done
before or after the mean is squared. The exact answer, given by (15), differs from that
in the MFA, (43). We note that this remains so even if the mean value of x is zero,
Le., even if x, + x, = 0. (In other words, the discrepancy cannot be removed by merely
changing the reference level of x.) We find :

KAX* /(AX)* Sye = 1 = (2/9)0(1 — 0)(1 — 4p)2. (47)

The MFA therefore overestimates the variance. For a given value of the randomness
parameter o, the discrepancy decreases as the asymmetry parameter p increases from
0to 1/4 (at which point the difference vanishes), and then increases again as p increases
from 1/4 to 1. Figure 2(a) illustrates this for the maximally disordered case, ¢ = 1/2.
When p = 1/2 (the symmetric or unbiased case), the ratio in (47) is 17/18, so that the
MFA overestimates the true variance by 1/17, or by about 6%. The same figure
obtains also in the case p — 0, even though one might naively expect the discrepancy
to vanish as the bias factor for a transition from the state a to the branch state o (or
from b to f) tends to zero. The reason, of course, is that the value ¢ = 1/2 implies
that the configuration of states is ‘asymmetric’ (ie., either B or C) in 50% of the
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Figure 2. The ratio of the exact configuration-averaged variance of x to the variance in
the mean-field approximation, (a) as a function of the asymmetry or bias parameter p, for
o =1/2; (b) as a function of the randomness parameter o, for p = 1/2,
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Figure 3. The correlation function of x, in units of (1/4)(x, — x,)%, as a function of tlme in
the case ¢ =1/2, p = 1/2.

realizations; and even at p =0, P3(a) # P§(b) (and similarly for realization C). As
p—>1, the discrepancy given by (47) increases: the MFA can then overestimate the
true variance by as much as 1009, in the case of maximal disorder (a =1/2). (See
also the comment following (A.14) in Appendix A.)
~ For a fixed value of the _asymmetry parameter p, the difference between the exact
variance and the MFA result is largest for o = 1/2, as expected. This is illustrated in
figure 2(b), drawn for p = 1/2 (no bias present). The ratio in (47) is again 17/18 at
o = 1/2, so that the error is about 6% at its largest.*

The variance is just the ¢ = 0 limit of the correlation function C(¢). In order to get
a quantitative estimate of the difference between Cy(f) and the exact correlation
C(t), we have plotted these functions in figure 3 in the symmetric (p = 1/2), maximally
disordered (o = 1/2) case. From (19), we find that C(z) is given in this case by

C(¥) = (1/4)(xa — x,)*[(1/3)exp(— kt) + (1/4)exp(— 2ke)(1 + cosh (. /2kt)
+(1/,/2)sinh (\/2kz)) + 1/9exp(— 3kz)], (48)

* Clearly, higher order cumulants calculated in the MFA would also deviate from the exact configuration-
averaged values, for a reason essentially similar to that in the case of the variance.
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which is a superposition of five exponentials: we have

C(t) = (1/4)(x, — x,)2[0-2134 exp(— 0-5858 kt) + 0-3333 exp (— ki)
+0-25exp(— 2kt) + 0-1111 exp(— 3kt)
+ 0-0366exp(— 3-4142kt)]. (49)

On the other hand, Cy(t) is a superposition of three exponentials, given in this case
(p=1/2, 0 =1/2) by (see Appendix B)

Cup(t) ~ (1/4)(x, — x,)2[0-2411 exp( — 0-4486 kt) + 0-5769 exp (— 1-4268 kz)
+0-1820exp(— 3-1246k0)]. (50)

The behaviour of C(¢) at long times is controlled by the smallest relaxation rate. In
the particular model under consideration, this occurs in realization D, which can be
regarded as a linear chain of four sites (ordered a, a, b, B, with transition rates as in
figure 1). The (exact) value of the smallest relaxation rate is

hmin =[5/2—p—(9/4 —p + p*)'"* 1k, (1)

which is less than k. In the symmetric case p = 1/2, this becomes A, = (2 — \/i)k o
0-5858k. In contrast, the smallest relaxation rate predicted by the MFA (for the values
p =1/2, 0 = 1/2 of the parameters p and o) is about 0-4486k, a relative error of about
23%, but this is compensated for by the differences in the coefficients weighting the
exponentials in the two cases. It is evident from figure 3 that the MFA is a rather
good approximation to the exact solution even in the maximally disordered case
(6=1/2).

The relaxation rates as predicted by the MFA are given by the negatives of the
zeroes of the cubic d(u) ((B.5), Appendix B.) We note that these rates are dependent
on both p and ¢ in the MFA, owing to the occurrence of ¢ in the effective WTD y/(t),
whereas the exact rates are of course independent of the randomness parameter o.
We may examine further how this spurious dependence affects the long-time behaviour
of Cye(t). As p—1, we see that A,,;, =0, which is to be expected. (The smallness of
the a— b and b— a transition rates as p— 1 leads to very slow relaxation.) We find

Amin = (4/3)k(1 — p) (52)

correct to first order in (1 — p). In the MFA, too, the smallest relaxation rate tends
to zero as p— 1, but we find (see Appendix B, Eq. B.7)

(Amin)vr = (4/3)k(1 = p)(2 — o)™ | (53)

to first order in (1 — p). ((52) and (53) agree at o = 1.) At the other extreme, as p—0,
we find that A, approaches k (from below), according to ‘

In the MFA, we find (from Appendix B, Eq. (B.8))

(Amin)ve 22k — 2kp + 0(p?) | (55)
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for all o except the limiting value ¢ = 1. (In the limiting case ¢ = 1, the MFA coincides
with the exact solution, as discussed below. Hence (A;n e behaves as in (54) when
c=1and p—0) ‘

What are the main qualitative differences between the exact solution and the MFA
in a problem of this kind? We have, first, the differences in the expressions for the
cumulants (as exemplified by the variance) owing to the premature configuration-
averaging performed in the MFA. The second feature is the spurious dependence of
the dynamics (i.e., the relaxation rates) on the parameter o characterizing the disorder,
again arising for essentially the same reason. A third feature, related to the second,
is the introduction of non-Markovian effects into what is essentially a Markovian
random walk on a set of sites with quenched ‘spatial’ disorder. We have already
discussed the first two aspects in the foregoing.

The third aspect arises in the MFA because the effective waiting-time density (in
the present problem, y(t)) is not a simple exponential function of time, implying that
successive transitions governed by the WTD are temporally correlated in a non-
Markovian manner. The origin of this effect lies in the ‘bunching up’ of more than
one state of the original Markov chain into a single ‘level’. In the model under
consideration, the two states a and « (respectively, b and f) are bunched together in
the MFA into a ‘level’ in which x = x, (respectively, x = x,), and then we speak of
transition probabilities P(x,, t]x,), etc., from one level to another. It is evident that
similar comments apply to more complicated situations, such as diffusion on a random
comb (White and Barma 1984; Havlin et al 1987, Goldhirsch and Noskowicz 1987;
Balakrishnan and Van den Broeck 1990). In the latter case, we have an arbitrary
number of ‘branch’ states connected to each ‘principal’ state (or site on the backbone
of the comb), with a prescribed number distribution. All these states are bunched
together in the MFA to compute the effective WTD at each backbone site for inter-site
transitions. It is this ‘projection’ of states that is responsible for the non-Markovian
effects in the MFA.

Finally, it is worth noting that the MFA we have developed can be checked, in
some sense, by the following consistency test. (In particular, we have in mind the
correctness of our expressions for the effective WTD ¢ and the effective FWTD y,).
In the absence of the (quenched) disorder, we should expect the MFA to coincide
with the exact calculation, as there is no configuration-averaging involved. The
disorder disappears in the limits ¢ = 0 (no branch sites at all) and ¢ = 1 (branch sites
present with probability one.) The limit ¢ =0 is a trivial one - only the two-state
configuration A survives. It is easily verified (see Appendix B, (B.9) and (B.10)) that
‘the MFA, too, reduces to this solution when ¢ = 0. At the other extreme, when ¢ = 1,
only the realization D survives. Thus

[C()],=1= Co(d) (56)

where Cp(t) is given explicitly in (A.11). On setting o =1 in the MFA (see Appendix
B, (B.11) and (B.12)), we find that

[Cur(t)]s=1=Cp(t) ' (57)

showing that the mean field solution matches the exact solution in the limit o =1 as
- well. .

In conclusion, the mean field approximation we have developed for the problem
under consideration reduces to the exact solution in the absence of disorder, as it
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should; further, it is a rather good approximation to the exact solution even when
the disorder is maximal, as may be seen at a glance from the behaviour of the
correlation function in figure 3.
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Appendix A

In realization A, the indices i, j run over the two values a and b. The resolvent
G, =(u— W,)"!is the 2 x 2 matrix

u+k k

GA=A;1( N u+k), A, = u(u + 2Kk). (A1)

The correlation function is given by (17), and in this case it is simply
Ca(®) = (1/4)(x, — x,)* exp(— 2kt). - (A2

In realization B, i and j run over the values a, a and b, in that order. The resolvent
matrix is found to be

u? +3uk+2k%p  2kp(u+k) 2k%p
Go=At|  kw+k) (u+ k) k(u'+ k)
2k2(1—p)  2k(1—p)u+k) u?+3uk+2k*(1—p)
(A3)
where -
Ag = u(u + k)(u + 3k). (A4)

After a bit of algebra, (17) yields in this case

Ca(t) = (2/9)(xa — x,)*(1 — p)[3pexp(— kt) + (1 — p)exp(—3kt)].  (A5)

Realization C is obtained from B by the replacements a—b, b—a, a— . The
indices i, j now run over the values a,b and p, in that order. The resolvent matrix G
is therefore obtained from Gy by reflecting each element of the latter about the centre
of the matrix. (A¢ is evidently equal to Agz.) Moreover, the correlation function Cg(t)
is symmetric under the interchange x, > Xx,, so that it remains unchanged in realization
C, ie,

Ce(t) = Cy()- | (A6)

(We note that going from B to C does not involve replacing the asymmetry parameter

pbyl—p) .
In realization D, i and j run over a, a, b and f, in that order. The resolvent is given by

Go=A5"g (A7)
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where
Ap = u(u + (1 + 2p)R)(* + (5 — 2p)uk + 4k*(1 — p)), (A8)

and the (4 x 4) matrix g has the »following elements (using the symmetry properties
of the configuration D)

11 =Gas =1 +5uPk+2(2+3p— 2p%Yuk? + 4k3p(1 — p),

Gz = a3 = 2kp(u? + 3uk + 2k*(1 — p))

913 =gar =4k p(1 — p)(u + k),

gia=941= 4k*p(1 - p),

a1 = gaa = k(u? + 3uk + 2k2(1 — p)),

G2z = g3z = (U + k)(u? + 3uk + 2k*(1 = p)),

923 =032 =2k(1 — p)(u+ k),

24 =931 = 2k*(1 — p)(u + k). (A9)
After some algebra, we obtain the following expression for the transform of the
correlation function in realization D:

~ (14 2p)u+ k(1 + 12p — 4p*)

= —_— 2 .

Colt) (.1/4)(x,, xs) [(1 +2p) {u® + (5 — 2p)uk + 4k*(1 — p) } (A10)
We note that the factor (u + (1 +2p)k) in Ap gets cancelled out, so that there is no
contribution to Cp(t) from the relaxation rate k(1 + 2p). Inverting the transform in
(A10), we get

Cp(t) = (1/4)(x, — x;)* exp[— (5/2 — p)ki]
(8p—20%—3/2)

r(1 +2p)

X [cosh (rkt) + sinh (rkt):\, (All)

where
r=(9/4—p+p?)% (A12)

As a simple check, we consider the limiting cases p =0 and p = 1. We find, first,

lim Cp(£) = (1/4)(x, — x;)* exp (— 4kt). ' (A13)
p—0
This is precisely what one should expect: P*(x) = P*(f) = 0 in this case, and the rates
for the transitions @ — b and b— a are equal, each given by 2k. This is similar to the
situation in realization A, except that k is replaced by 2k. Similarly, we find that

1irri Cp(t) = (1/4)(x, — x,)%, (A14)
o
with no t-dependence at all. But when p = 1, the a— b and b — q rates vanish, so that
the configuration is essentially split into two disjoint pieces («,a) and (b, f) with no
time evolution of the value of x possible. Hence Cp(t) remains unaltered from its
initial (equilibrium) value Cp(0) in this limiting case.

Combining (A2), (AS), (A6) and (A11), we get eq. (18) for C(z).

“a
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Appendix B

In the MFA, x(t) is a dichotomic process with an effective waiting time density y(t)
in each of the levels x,, x,. Contributions to the transition probability P(x;,t|x,)
must necessarily involve an odd number- (2! + 1) of jumps x, - x, = x,— +-- = X;,, and
the corresponding probabilities are in convolution. Hence

By ubxg) = 3 1P (1= T (B1)

where ¥, (t) is the FWTD (the WTD for the first jump from an arbitrary origin of
time), and the final factor (1 — ¥)/u is the transform of the holding time distribution

- corresponding to the WTD /() this factor takes care of the requirement that no
more than (2/ + 1) jumps occur in the time interval t. Therefore

B(xy, ulxg) = ¥ /[u(l + )], (B2)

which is {40).
To find Cyg(u) from (46), we use (27), (28) and (33). Substituting the expressions
¢ =k(u+k)~! and § =2k(u + 2k)~* in these, and simplifying, one obtains

Cur (1) = (1/4)(x, — x,)* (n(w)/d (w)), (B3)
where
n@w)=(1+2p)u*+ (3 —0o+6p +8ap —4op?)uk
+((2—0+2p+ 100p —4p?)k?, (B4)
and

d(w) =1 +2p)[u® + (5 + 0 — 20p)u*k + (8 — 2p + 0 — dop)uk?
+4(1 — p)k?]. (BS)

Cur(?) decays to zero from the value (x, — x;)?/4 at t = 0 via a superposition of three
exponentials, the rates being given by the negatives of the roots of d(u)=0. (This
cubic equation has three real, negative roots in the physical range of the parameters
o and p.) In the special case p = 1/2, 0 = 1/2, we get

~  2u? + Tuk + 4K
CMF(u)=(1/4>(xa—-x,,>2[ 2u_+ Tuk + ]

2u3 + 10u k + 13uk? + 4k3 (B6)

The roots of the denominator are — 0-4486k, — 1-4268k and — 3-1246%. Using these
to invert the transform, we obtain (50) for Cyg(t).

The long-time behaviour of Cyg(t) is controlled by the zero of d(u) with the smallest
magnitude, as discussed in the text. As p—1, this root approaches 0. Calling this
root — (Apin)ue, We find

(Amin)vr = (4/3)k(1 — p)(2 = 0)™* +a((1 = p)?). (B7)
Again, as p — 0, this root approaches — k. We now find
(Zemin e = k(1 —2p) +a(p?), (B8)

provided o # 1. (The case o =1 is dealt with below.)
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We need the limiting cases of the MFA corresponding to the valuesc=0and g =1
for the discussion at the end of § 3.4. Setting ¢ = 0 in (27) and (30) we obtain

[ (0)]e=0 = [¥1()]s=0 = &), (B9)
(as expected.) Equations (B3)—(B5) yield
[Cup(®)1,=0 = (1/4)(xa — x,)* exp(— 2k1), (B10)

which is the same as C, () (eq. (A2)), as required.
Setting ¢ = 1 in (26) and (28), we get

W®)o=1 = da(t) [¥1(B)]e=1=2@). - (B11)

Here ¢,,(t) and ®(t) are the densities given by (25) and (34). Further, (B3)~(B5) give
after simplification (a factor (u + k) cancels out between n(u) and d(u))

[éMF(u)]a= 1 = (1/4)(x, — xb)2

y [ (1 +2p)u+ k(1 + 12p — 4p?) ]
(1 +2p){u® + (5 — 2p)uk + 4k*(1 — p)} |

(B12)

But this is precisely Cp(u), given by (A10). The MFA thus coincides with the exact
solution in the limiting cases of vanishing disorder (6 =0 and o =1).
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