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Introduction

In the Think it 0 ver® Section ofResonance, M ay 2000
(p-90),S Shiralihas posed a very interesting question :
\Consider the n-fold " sine function

fo(x) = sin(sin (sin (¢¢¢(sin x) ¢¢0))) (9]

representing n successive app lications of the sine func-
tion. The dependence ofthe value off,(X) upon x seem s
to dim inish as n increases; andpfor ~xed x and sut -
ciently large n,wehave f,(x) % = (3=n). How m ay this
phenom enon he explained?”

This question Is interesting i its ow n right. It is alo
related to a m ore generalone in the context of dynanm -
ical systems { in particular, to a phenom enon called
intern ittency that occurs in m any physical situations.
Experimental systems in which it has been observed
include ring lasers, °uid layers undergoing convection,
chem ical reactions and nonlinear electronic circu its, to
namea few . In °uid dynam ics, the transition from the
reqgular °ow ofa liquid to turbulent °ow under certain
conditionsis believed to be related to the ‘intern ittency
route to chaos™ W hatcould be the connection hetw een
such seem ingly unrelated things like the fteration of a
function and the onset of turbulence? This is surely
worth studying in a littke m ore detail.

Stable and Unstable Fixed Pointsofa ll ap

Let f(x) be a real, single-valued function of x (w ith
som e speci ed range of X and dom ain of f). For any
given x > 0, ket xy = F(Xo); X = f(x1),and so on.
Thus f,(xo) isobtained by the n-fold app lication ofthe
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function to the initialvalue xo. W e m ay write
Xp = F(ng1)= F(F(Xn;2)) = ¢0e= To(xo):  (2)

Themap f may be regarded asthe rule ofevolution ofa
dynam ical system in which the integer variable n plays
the role of (discrete) “time”. In the exam ple of (1), f (x)
is just sinx. Asking for the value(s) of fy(x) asn ! 1
is clearly equivalent to asking when f(x) is x itself, ie.,
to asking for the solution(s) of the equation x = f(x).
A solution x = x° if it exists, is called a xed point
(FP) of the map f. The wellknown method of suc-
cessive approxim ations deals w ith the solution of such
equations. T his is illustrated geom etrically in Figure 1,
fora case in which themap hastwo xed points a and
b, respectively. The staircase pattern shows pictorially
what happens to three di®erent initial values Xo under
iteration ofthem ap. An initialvalue xo < a approaches
a asn increases. Sodoesa value Xo lying between a and
b. An initial value Xo > b moves away from b towards
1 .0nethereforesaysthata isan attracting xed point,
while b isa repelling xed point.

-
-
E
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Figure 1.
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It is easy to convince oneself (e.g., by drawing pictures
as in Figure 1) that x”is an attracting or stablke FP if
the m agnitude of the slope of the m ap at x® is kess than
unity, i.e., jfxj< 1. 0n the other hand, x=is a re-
pelling orunstable FP if fx=)j> 1. M oreover, in these
cases the iterates always approach or m ove away from

the FP exponentially as a function of n. For instance,
consider the map f(x) = x=2 for which jfQx)j= 1=2
everyw here. Clearly the only FP isatx®= 0. Since
Xn = Fa(Xo)= 2i"xg = Xgexp(i nln2), the approach is
exponentially fast (asa function ofn),w ith a character-
istic rate equalto In2. Sim ilarly,them ap f(x) = 2x has
a repelloratx®= 0. Since x, = 2"xgp = xpexp(n h2)in
thiscase, the repellor “throw s o® " iterates on either side
of itselfw ith a rate equalto 2. The exponents j Ih2
and + In2 in these two exam ples are called Lyapunov
exponents.

M arginal Fixed Points

The most interesting case occurs when JfQx™)j is ex-
actly equal to unity: x®is then a marginal FP.This is
whathappens in theproblem posed in Eq. (1), In which
f(x) = sinx. Theonly root of x = sinx isatx®= 0,
and the slope of sin x at the origin is unity. It is clear
from Figure 2a that jfQx)jhasa m aximum at x = 0.
Therefore initial values Xy on either side of 0 approach
the FP under tteration of the map { it isa marginally
stable FP.0On the other hand, if the m ap has a shape
as in Figure 2b, the origin isa m arginally unstable FP .
The third possibility is shown in Figure 2c, in w hich
themarginal FP attracts rterates on one side and repels
them on the other. (Exercise for the reader! Figures
2a{c have been sketched for the case in which the slpe
fQ0) is + 1 at the FP. T he reader is invited to sketch
the corresponding gqures and check out what happens
in the case fQ0) = j 1.)
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(a) (b)

-

(c)

The im portantpointis the follow ing: in all these cases,
the approach towardsthem arginalFP (asn ! 1 in the
case of attraction,orasn ! j1 in the case of repul-
sion) isnotexponential in n;rather, itis proportionalto
n raised t som e power .G iven them ap function f,we
can easily nd (it is j 1=2 for the sine m ap). W e can
also nd the prefactor multiplying jnj (itis"™ 3 for the
sinemap). W e shall derive these results heuristically,
using a sim ple approxim ation. The resultsobtained can
be con rmed by amore rigorous analysis.

Consider rstthe sinemap (Figure 2a). W hen the iter-
ates are very close to 0, sinx can be approxim ated by
the rsttwo term s in its pow er series expansion. T hus
we have
x3

Xn = SN Xpj1 't Xpgui _nG'i 3)
C karly,asn! 1 andx, ! 0,thed®erence (Xnj Xn;1)
hecom es sm aller and sm aller, and so does¢ n = 1 rel
ative to n. Suz ciently clbse to the xed point, there-
fore, we can approxim ate the di®erence equation above
by a di@erential equation in continuous tm e, nanm ely,
dx=dn % jx%<6.This ia easily integrated to give 1=x° =
3=n,or, nally, x,j% = (3=n), as stated in the original
problem .

Letus generalise this result, taking the m arginal FP of
themap f tobe located at 0 ashefore, for convenience.

Figure 2.

RESONANCE | January 2001 “/\Mﬂf\’

21



GENERAL | ARTICLE

Close to the FP, the map takes the form x, = X,;%
term s of higher order in X,;1. If f(x) is regular at 0,
these term s are generically ofthe form cox7 .+ Cax} . +
¢¢¢, unless som ething specialoccurs. (For instance, the
fact that sinx is an odd function of X ld to ¢c; = 0
in that case.) Let us allow for an even more general
possibility: f(x) might be only once di®erentiable at
x = 0. Therefore, sut ciently close to the origin, the
map has the form

Xn = Xp(l+ ijnilj®): “)

Here® isany positive num ber, not necessarily an inte-
ger. We may regard it as the degree of tangency” of
f(x) at the xed pointw ith the 45* line. T he sign of
the coet cient ¢ decides whether the FP is m arginally
stable as in Figure 2a (c < 0), ormarginally unstable
as in Figure 2b (c> 0). W e now proceed exactly along
the lines follow ing (3), by going over from the di®erence
equation to a di@erential equation. It is straightforw ard
to show that the approach to the FP has the lading
hehaviour

Kai# @jen it ®)

asn! 1 intheattracting case (c< 0),orasn! j1

in the repelling case (c > 0). For the sine function
we have ® = 2 and ¢ = j 1=6, and we recover the
result quoted earlier. Sim ilarly, repeated iteration of
the function tanilx (taking the principalbranch of the
functioglm between j %=2 and %=2) would lad to
Xaj¥% 3=2n for very largen.

Anexamnpleofsom eim portance in other contexts is that
of the logistic m ap

Xn = ,Xnil(li Xnil); Xn2 [0;1] (6)

with , = 1. Atthisvalue of the param eter , , the xed
points ofthemap at0 and 1§ , i' coalesce, and a so-
called saddle-node bifurcation takes place. (0 f course

22

.\/\Mﬂ.{\l RESONANCE | January 2001



GENERAL | ARTICLE

the m ost interesting features of this m ap lie at larger
values of ,, follow ing the "rst period-doubling cascade
starting at , = 3 and ending with the onset of chaos
at , = 3:5699¢¢¢ . But this is not our concern here.)
For , = 1 the approach to the marginal FP at 0 can
be read 0@ from (5). M aking the identi cationsc= j 1
and @ = 1,we get X, % 1=n for the lading behaviour
of the approach of the iterates to zero in this case.

A remark is in order here. W e obtained the expres-
sion given in (5) forthe leading behaviour by the sim ple
device of replacing the m ap by its continuum version,
a diBerential equation. In general, this will not yield
anything more than the kading term in the asym ptotic
behaviour ofx,. For higher order corrections, we m ust
return to the original m ap and analyse it carefully. For
instance, continuing w ith the exam ple considered in the
preceding paragraph, the asym ptotic behaviour of the
iterates of the logistic m ap at , = 1isgiven by

1 hn
Xp = n—| n—2+ ¢ee ()

Sim ilarly, in the case of our original exam ple (the sine
map) itself, som e work is required to show that

q A 31 1
— nn
Xp= 370 1; £ 000 ®)

The *+ ¢¢¢" in these equations stand for higher order
term s in the asym ptotic expansions. Unlike the rst
two term s that we have w ritten down explicitly in (7)
and (8), these higherorderterm sturn outto depend, in
general,on the initialvalue Xo. The reader is invited to
estab lish these resu lts for herself!

Interm ittency

Let us now see how the foregoing is connected to the
phenom enon of interm ittency. This is the nam e given
to a kind of dynam ical behaviour that is interm ediate
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Figure 3.

between regular, periodic motion on the one hand, and
irrequ lar, chaotic m otion on the other. The system dis-
plays fairly long intervals of approxim ate periodicity,
called 'lam inarphases”; these are separated by randon ly
interm ittent bursts* ofchaos,and hence thenam e. T he
phenom enon occurs quite com monly in so-called dissi-
pative system s". Interm ittentchaosoften precedes fully-
developed chaos. 0 ne then speaks of ‘the interm ittency
route to chaos".

There are, in fact, several types of intern ittency. T hese
d®er from each other in technical detail, having to do
with the speci ¢ kinds of bifurcations that can occur
in di®erent cases. However, there is a smpl model
thathelpsusunderstand the basic m echanism by which
chaotic m otion can he interspersed w ith (possibly long)
intervals of approxim ately periodic m otion. C onsider
the discrete-tim e dynam ical sy stem

Xn = f(Xnil): 2+ Xnj1t Xﬁil: ©

Here X 2 R and 2 is a sm all param eter. For 2 >_0
(Figure 3a), the map has a stﬁble FP atx== j 2
and an unstable one at x®= +" 2. W hen 2= 0, these
two FPscoalesce at 0,which becom esamarginalFP,as
shown in Figure 3b. Finally,when 2> 0 (F igure 3¢), the
map hasno xed pointatall,since the roots ofx = f(x)
becom e com plx. The reverse progression from Figure
3c to F gure 3a as 2 crosses zero from positive to negative

L) T .
{
,-f//

(b) (c)
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valuesis the prototype ofa phenom enon m entioned ear-
lier, nam ely, a sadd lke-node bifurcation. T he scenario at
2= 0 is already fanm iliar to us from the foregoing dis-
cussion on m arginal FP"s. (It corresponds to the case
®=1,c= 1)

N ow consider the situation in Figure 3c, corresponding
to 2> 0. T he staircase pattern suggestsa long, approx-
in ately regular, sojourn across the narrow “channelin
the vicinity ofx = 0. In thesim plem odelof(9),oncethe
iterate escapes from the vicinity of thischannel, itm oves
0® tol . However,in truly chaotic system s (see the B ox
1 for avery brief ‘recap®ofwhatwem ean by chaos), the
dynam ical variable (here, x) rem ains bounded; and the
map T representing the evolution is folded " in such a
way that the variable is repeatedly injected back into
the channel region, after wandering chaotically in other
regions. This is essentially how interm ittency arises in
nonlinear dynam ics. To be m ore preciseFigure 3c il
lustrates what is called Type I" interm ittency. M ore
detailed m odels involve m aps in several variab les, and
more com p licated scenarios occur than thatshow n here.
B ut the basic m echanism in all types of interm ittency
Is essentially the same: (i) near-regular sojourns in a
channellike region associated with a bifurcation that
involves an FP orm ore com plicated ob ject like a lim it
cycle that ism arginal; (ii) escape from such a region to
m ore chaotic behaviour; (iii) re-in jection into the chan-
nel;and soon.W ehave already m entioned severalkinds
of physical system s in w hich interm ittency has been ob-
served. Further details m ay be found in the references
listed under Suggested R eading.

PowerLaws in Interm ittency

One of the most interesting features of interm ittency
Is the occurrence of various power laws instead of the
moreusualexponential dependencies. W e have already
seen how the tangency at a marginal FP “slows down*

RESONANCE | January 2001 “/\Mﬂf\’

25



GENERAL | ARTICLE

Box 1. Fixed points,Periodic points and C haos

As the main focus of this article is not on chaos, we do not go into the details of
the latter here. The reader may refer to the sources in Suggested Reading, and
also to earlier articles in Resonance { see, in particular, S Natarajan, Chaotic
Dynamics on the Real Line, Parts 1 and 2, Resonance, Vol. 5, Nos. 4 and 5,
2000. However, as we have used the term ‘chaos' in the present article without
elaboration, it is useful to state a few relevant points brie®y.

As explained in the text, a xed point (or period-one point) of the map f(x) is
a solution of the equation x = f(x). All such solutions obviously also satisfy
the equation x = f,(x). But this equation may have additional solutions that
are not xed points of the map. Such solutions correspond to period-n cycles.

(i=1;:::;n) isa xed point ofthe map f,(x) but not of any f (x) for allk < n.
What happens isthat f (a;) = ay;f(az) = as;¢¢¢;f(a,) =ay. Just as in the case
of a xed point of the map, the condition for the stability of the period-n cycle
is given by jfQa;)f Qa;) ¢eef Qa,)j< 1.

It may so happen that the map has no stable periodic orbits of any nite period
n. The iterates of 'most’ initial values x o then wander 'randomly’ over the inter-
val concerned without settling down at any xed point or periodic cycle as the
iteration numbern ! 1 ; the map is then said to display chaos.

This is a rather loose description of how chaos occurs in one-dimensional maps. As
we may expect, the case of higher dimensional maps is more involved. Also, there
are substantial di®erences between dynamics described by di®erential equations
(°ows) as opposed to di®erence equations (maps). However, fairly general criteria
for the occurrence of chaos are: (i) a bounded phase space; (ii) a dense set of
unstable periodic points therein; and, most importantly, (iii) sensitive dependence
on initial conditions. That is, the distance between two neighbouring initial
points typically increases exponentially with the number of iterations, at least to
start with.

Computer demonstrations (often with spectacular colour graphics) of complex
dynamics including chaos are, by now, quite common. For a very modest home-
grown version of some of the aspects relevant to us here, try the URL

http://hsb.iitm.ernet.in/ ~suresh/shaastra/
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the dynam ics in its vicinity and producessuch a power-
law behaviour. In the case of interm ittency, the average
tin e T between chaoticbursts isan im portant quantity.
Thiscan be related directly to the m ean tim e taken by
the system to traverse channellike regions such as the
one described above. Very interesting scaling relations
em erge in thisregard. N otsurprisingly, it turns out that
the param eter ®, the degree of tangency introduced in
(4), plays a crucial role here too.

Let us rst consider the prototypical m odel of (9) for
sm all positive 2. G oing over to the diderential form of
the dynam icsnear x = 0, we now have dx=dn % 2+ x2,
Thisim plies that the tim e taken to cross the tunnel-like
region is of the order of

Z1 dx

1
aEm P a4
ie., it scaks like 2i'°2 as2 1 0. In a more general
setting, 2 would represent the am ount by which some
‘control param eter*p d®ers from a threshold or critical
value p.,thatis,2= (pj pc)- The generic scaling expo-
nentfor this type ofinterm ittency is therefore j 1=2,as
long as the leading nonlinearity in the m ap is quadratic

(i.e., x5y, asin (9)).

Finally, let us extend this result to the case of the m ore
general kind of tangency perm itted by (4). This is eas-
ily done, and we nd that the tim e taken to cross the
tunnel-like region, and hence the mean tim e betw een
chaotic bursts, scales like

Ty (i p)ith (11)
The scaling exponent corresponding to a degree of tan-
gency @ is thus found to be j ®=(® + 1). 0 ther scaling
relations associated with interm ittency can be general-
ized in a sim ilar fashion.
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