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Bayesian Cosmological inference beyond statistical

isotropy

Tarun Souradeep1, Santanu Das1 and Benjamin Wandelt2

1. IUCAA, Post Bag 4 Ganeshkhind, Pune 411007 India
2. IAP, Lagrange Institute, Sorbonne University, Paris

Abstract. With advent of rich data sets, computationally challenge of inference in cosmology
has relied on stochastic sampling method. First, I review the widely used MCMC approach
used to infer cosmological parameters and present a adaptive improved implementation SCoPE
developed by our group. Next, I present a general method for Bayesian inference of the
underlying covariance structure of random fields on a sphere. We employ the Bipolar Spherical
Harmonic (BipoSH) representation of general covariance structure on the sphere. We illustrate
the efficacy of the method with a principled approach to assess violation of statistical isotropy
(SI) in the sky maps of Cosmic Microwave Background (CMB) fluctuations. The general,
principled, approach to a Bayesian inference of the covariance structure in a random field on
a sphere presented here has huge potential for application to other many aspects of cosmology
and astronomy, as well as, more distant areas of research like geosciences and climate modelling.

1. Introduction
With the different experimental data the cosmology has become a play room for the data
analysts. In recent past we get data from WMAP, Planck, BICEP, BOSS etc and there are many
new experiments coming up. We need to analyse the high volume of data and draw inferences
from the data. For many data analysis process we require advanced numerical techniques. In
this proceeding we discuss two cosmological parameter estimation methods in which we used
some advanced numerical methods.

First, we demonstrate a cosmological parameter estimation for different theoretical model by
comparing the Cl with the observed Cl. We develop a MCMC code, named as SCoPE [1, 2,
3, 4, 5], based on global Metropolis Hastings algorithm [6, 7, 8, 9]. In general the Metropolis
Hastings algorithm is pretty slow. Therefore, we have developed few novel technique that makes
the MCMC method faster. In the first section we briefly discuss about these techniques that
make SCoPE faster then standard Monte Carlo methods.

In the second part of the proceeding we have discussed about a Monte Carlo method that
we use for Bayesian estimation of the isotropy violation in the CMB sky. For the first time, we
develop an algorithm for fast basyan estimation of the isotropy violation on the CMB sky. We
use Hamiltonion Monte Carlo for the estimation process. The stability of the algorithm was a
big issue there. Therefore, we have applied different integration method for testing the stability
of the method. We have discussed that in the second part of the proceeding.
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2. Metropolis Hastings
For cosmological parameter estimation we use Metropolis Hastings (MH) algorithm. The
Metropolis-Hastings (MH) is one of the most widely used MCMC sampler, in which the posterior
i.e. π(θ) is sampled using a random walk. A standard Markov Chain at each step i, randomly
chooses a candidate value θi+1 from the proposal distribution q(.|θi). The candidate value only
depends on the current data point θi. The new data point is then accepted with probability
α = min(1, π(θi+1)/π(θi)). If the new data point rejected, the previous point is replicated
by increasing its weight by +1. The chain of data-points thus generated, approximate the
target posterior distribution π(θ). The proposal distribution is generally taken to be a Gaussian
distribution i.e. q(θi+1|θi) = N exp(− s

2ui[Cij ]
−1uj) , where ui = θi+1 − θi and Cij is the

covariance matrix. s is the step size. Theoretical optimum step size for an ideal distribution
that provide the best acceptance rate is s = 2.4/

√
n for a n dimensional MCMC sampler. The

covariance matrix is provided as an input to the program. As the exact covariance matrix
is unknown before the analysis, in practice an approximate covariance matrix, often based on
some previous analysis, is provided. If no prior information is available about the covariance
between parameters then some approximate diagonal matrix is also often used. However, in such
cases the acceptance rate of the sampler may reduce drastically and can be ensured to remain
reasonable only by trial and error. Therefore a prior knowledge of the covariance is required.
Parallelization of MH sampler is generally done by running multiple chains. Whether it is better
to run a longer chain than running multiple short chains has been addressed and argued by many
authors [10, 11]. But, for running multiple parallel chains proper mixing between the chains
has to be ensured. Therefore, each of the multiple chains has to be long enough so that the it
can represent an unbiased sample of the population. Gelman-Rubin “R” statistics is generally
used for testing the mixing of chains. For convergence, the chains have to be long enough such
that R is very close to unity[12]. For practical purposes it is taken as R < 1.2. However, this
criterion though necessary is often not sufficient for ensuring proper sampling. It is desirable to
devise an implementation of MH algorithm that allows the individual chains to run in parallel
and increase the acceptance rate of the models of a chain. Apart from that the mixing of the
chains are also necessary. Therefore in SCoPE we have modified standard MH algorithm to
accomplish effective parallelization through prefetching together with all other above mentioned
features, namely, enhanced acceptance, regular covariance update from samples.

2.1. Embellishing the standard Metropolis-Hastings algorithm
2.1.1. Prefetching In MCMC it is extremely useful to speed up the generation of a single chain,
through parallelization rather than using multiple chains. In our work we make the individual
chains parallel by precomputing several draws from the posterior distribution ahead of time
via multiple evolution of models simultaneously in parallel and then use only the values that
are needed. Prefetching is a draw level parallelization in a single chain. The method can be
explained by taking the binary tree of a Metropolis algorithm as shown in Fig. 1. In a kth level
binary tree there are total 2k − 1 nodes, each of which represents a possible future state of a
metropolis algorithm. The branches at the left child of any node represent the accepted steps
and the right child represents the rejected states. If we have enough computational resources
then all 2k − 1 nodes can be evaluated simultaneously and k steps of a MCMC chain can be
carried out in parallel simultaneously. Though the method of prefetching allows to parallelize a
single chain, it only uses k steps out of 2k − 1 computations. The rest of the computations are
not utilized. Therefore, many argue against computing all the nodes of the binary tree. Rather
if we know the acceptance rate at a point of time from the previously accepted data points,
we can statistically identify and precompute only the most probable chain and hence avoid any
unnecessary wastage of computation power. It is easy to see that if the acceptance probability
at any point of time is less than 0.5 then the extreme right chain (1-3-7-15-..) of Fig. 1 will
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Figure 1. Prefetching scheme is explained in the text with the help of above figure

be most probable chain. In a similar manner if the acceptance rate is more than 0.5 then the
extreme left chain (1-2-4-8-..) will be the most probable chain [13]. Therefore, by pre-evoluting
only the most probable chain, we parallelize the code and at the same time we can manage the
computational resources in a better way.

2.1.2. Delayed rejection One of the major problems with the MCMC method is the choice of
the step size for the proposal distribution. It will be better idea if the rejected sample from one
step can be used to determine the proposal distribution for the next sample by varying stepsize
accordingly. This increases acceptance rate but at a cost of violation of the Markovian property.
But if we can find some method that can change the acceptance probability of the sample point
to compensate the step size variation then that will be useful. The concept of delayed rejection
can briefly be explained as follows. Suppose at some step i, the position of a chain is θi = x.
Suppose at this time a candidate y1 is accepted from q1(x, y1) and accepted with probability
α1(x, y1) = min(1, π(y1)q1(y1, x)/π(x)q1(x, y1)) as in the standard MH algorithm. For a Markov
chain, q1(y1, x) is time symmetric, i.e. q1(y1, x) = q1(x, y1). Therefore, the acceptance ratio only
depends on the posterior. A rejection at any step suggests that there is a local bad fit of the
correct proposal and a better one, q2(x, y1, y2), can be constructed in light of this. But, in order
to maintain the same stationary distribution the acceptance probability of the new candidate,
y2, has to be properly computed. A possible way to reach this goal is to impose detailed balance
separately at each stage and derive the acceptance probability that preserves it. It can be done
by changing the acceptance probability as [14, 15, 16, 17, 18, 19]

α2(x, y1, y2) = min

(
1,
π(y2)q1(y2, y1)q2(y2, y1, x) [1− α1(y2, y1)]

π(x)q1(x, y1)q2(x, y1, y2) [1− α1(x, y1)]

)
. (1)

The Markovian property of the chain will not get destroyed, but still the sample choice can be
made dependent on the previously accepted data point. We implement this in our algorithm.

2.1.3. Inter-chain covariance adaptation The practical problem in implementing MH is the
tuning problem of the proposal distribution q so that the sampling is efficient. One of the
recent improvements in the MCMC efficiency is to introduce adaptive samplers. The adaptive
MCMC uses the sample history and automatically tune the proposal distribution in the sampling
process [20, 21, 22, 23]. In adaptive metropolis algorithm, the covariance matrix from the
samples obtained so far is used as the covariance of a Gaussian proposal. The most common
parallelization scheme of MCMC method is to run parallel chains instead of running a single
one. If in each chains proposal distribution is adapted using the local covariance matrix then the
acceptance probability a chain may improve, however, the inter-chain mixing will not improve.
If some chain stuck at some local minima then the local covariance matrix corresponding to that
chain will be erroneous. So, in case of a local peak the local covariance update will give covariance
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corresponding to the local peak. In that case, the mixing of chains will slow down and sampling
may not be proper. Therefore, we have adapted the concept of the inter-chain covariance
update in the adaptation technique. We run several parallel chains, and randomly update the
covariance matrix taking the data points accepted till then from all the chains. This means we
have used the covariance after ith accepted step as Cov(θ11.., θi1, θ12, .., θi2....θ1n, ..., θin), where,
n is the number of chains. This speeds up the mixing of the chains and covers the sample space
faster. The value of the covariance matrix will freeze after few adaptations and hence we will be
using same Gaussian proposal after few steps, which is important to guarantee proper sampling.
However, if the adaptive covariance is not frozen, it may give rise to unfair sampling as the
Gaussian proposal will vary between steps. Therefore, the process of the adaptive covariance
calculation is only used for the initial burn in process and after that the adaptation is stopped,
during which the covariance calculation attains partial convergence.

3. Estimation of Isotrypy violation with Hamiltonion Monte Carlo
The previous section we briefly demonstrate how the standard MH algorithm can be modified
to make a faster parameter estimation algorithm. However, MH algorithm is mainly applicable
when the number of parameters is small, of order of 10’s. However, if the parameter space is
high of the order of 106-107 then MH is not at all efficient. To explore such a big parameter
space we need to use Gibbs sampling or Hamiltonian Monte Carlo (HMC) etc. In the problem
of estimating isotropy violation in CMB we use HMC [24, 25, 26, 27].

In CMB the observed sky map is a convolution of the real sky temperature with the
instrumental beam with an addition of instrumental noise. Therefore, T̃ (γ) the actual
temperature signal of the CMB sky along the direction γ is linearly related to the observed
sky temperature, d̃(γ),as

d̃(γ) = B̂(γ, γ0)T̃ (γ0)dΩγ0 + Ñ(γ) (2)

where B(γ, γ0) is the instrumental beam profile andÑ(γ) is the instrumental noise. For a
perfectly circular beam profile, B(γ, γ0) ≡ B(γ ·γ0), assumed in this work, it is easy to deconvolve
the effect of the beam after inferring the power spectra. However, if the beam is not circular
symmetric then the effect of the beam depends on the full scan pattern of the experiment and
its deconvolution may be non-trivial [28, 29, 30, 31, 32]. For data defined on a sphere, it
is convenient to work in the spherical harmonic space. The CMB signal, T̃ (γ), then can be
expanded in terms of spherical harmonics as

T̃ (γ) =

∞∑
l=0

l∑
m=−l

almYlm(γ) , (3)

where Ylm(γ) are the spherical harmonic functions and alm are the coefficients in the spherical
harmonic basis. Similarly, the observed data, d̃(γ), can also be expanded in spherical harmonics
with coefficients, dlm. For a perfectly statistically isotropic sky, the two point correlation function
on sky can be expressed in terms of the angular power spectrum, Cl , alone as

〈alma∗l′m′〉 = Slml′m′ = Clδll′δmm′ (4)

Here 〈 . . . 〉 denotes the ensemble average. However, in presence of SI violation, Cl does not
provide a full description of the covariance matrix. A general covariance matrix can be expanded
in the BipoSH representation as

〈alma∗l′m′〉 =
∑
m,m′

(−1)m
′
ALM

ll′ CLMlml′−m′ , (5)
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where CLMlml′−m′ are the Clebsch Gordon coefficients and ALM
ll′ are the BipoSH spectra that provide

a natural generalisation of the angular power spectrum.
The observed sky map contains the noise with the CMB signal and our goal is to calculate the

posterior distribution of ALM
ll′ from the observed sky map, i.e. P (ALM

ll′ |dlm) or P (Slml′m′ |dlm).
However, its difficult to calculate this Probability directly as there are no direct method to
find out the alms. Therefore, in practice instead of finding this distribution, people find a joint
probability distribution of the Slml′m′ and alm, i.e. P (Slml′m′ , alm|dlm) and then marginalize
over alm.. This can be obtained directly by using the Bayesian Technique

P (Slml′m′ , alm|dlm) = P (dlm|alm)P (alm|Slml′m′)P (Slml′m′)

=
1√
|Nl|

exp

[
−1

2
(d∗lm − a∗lm)T N−1l (dlm − alm)

]
× 1√
|Slml′m′ |

exp

(
−1

2
a∗TlmS

−1
lml′m′alm

)
P (Slml′m′) (6)

P (Slml′m′) is the prior on Slml′m′ . Here we use a flat prior on Slml′m′ i.e. P (Slml′m′) = 1. We
also consider a isotropic noise and Nl is the noise power spectrum.

We tried to sample alm amd ALM
ll′ simultaneously from a given map dlm and noise covariance

matrix Nl. Therefore we have of the order of 107 variables.

3.1. Calculating the equations of motion
Hamiltonian Monte Carlo (HMC) technique based on the Classical Hamiltonian Mechanics relies
on the fact that the density of a group of particles with random momenta placed in a potential
will trace the potential given that all of them start from random momentum drawn from a
normal distribution with mean 0 and co-variance M , where M is a positive definite matrix
called the mass matrix and can be chosen independently. It is known that HMC method can
sample the distribution more effectively even in very high dimensional space in comparison to
other conventional MCMC methods. In a Hamiltonian Monte Carlo algorithm we need to define
a conjugate momentum and a mass corresponding to each of its parameters. We consider the
conjugate momentum to alm and ALM

ll′ are palm and pALM
ll′

and a corresponding mass malm ,

mALM
l1l2

respectively. The mass matrices are the positive definite quantity by their definition.

Thus the Hamiltonian for the motion of this ensemble of particles is

H =
∑
lm

p2alm
2malm

+
∑
LMll′

p2
ALM

ll′

2mALM
ll′

− ln(P (Slml′m′ , alm|dlm)) . (7)

Using Hamiltonian mechanics

ȧlm = palm/malm (8)

and

ṗalm = − ∂H

∂alm
= N−1l (d∗lm − a∗lm)− S−1lml′m′a

∗
lm, (9)

Similarly, the equation of motion for ALM
ll′ will be

ȦLM
ll′ = pALM

ll′
/mALM

ll′
(10)
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and

ṗALM
ll′

= − ∂H

∂ALM
ll′

= −1

2
∂ALM

ll′
ln |S|+ ∂ALM

ll′

(
a∗lm

(
S−1

)
lml′m′ al′m′

)
(11)

HMC is performed in two steps. In the first step, values of the momentum variables are chosen
from the Gaussian distribution of mean 0 and variance mx, where x ∈ (alm, A

LM
ll′ ). In the next

step a Matropolis update is performed from the state (palm , pALM
ll′
, alm, A

LM
ll′ ) to a new state

(p1alm , p
1
ALM

ll′
, a1lm, A

LM1
ll′ ) by integrating the equation equation of motions through a trajectory

of length ∆t. The Hamiltonian is computed in this new state and the state is accepted with
probability min(1, exp(−∆H)), where ∆H is the change in the Hamiltonian between these two
states. If the new state is accepted then similar operation is performed considering (a1lm, A

LM1
ll′ )

as the new position variable, otherwise the position is not updated from (alm, A
LM
ll′ ). Choice of

malm and mALM
ll′

decides the stability of the integration process. HMC algorithm in general uses

the Leapfrog integration algorithm due to its time reversal symmetry and almost symplectic
nature. However, in our calculation we have used a fourth order Forest and Ruth integrator ,
which is a symplectic integrator that involves three Leapfrog steps, works better then a simple
Leapfrog.

3.2. Computational implementation
3.2.1. Overcoming the time complexity There are practical limitations arising from carrying
out the computationally challenging analysis in reasonable time. The first practical issue that
we face is related to inverting the covariance matrix. A brute force inversion of the matrix
is computationally prohibitive. The inversion of

(
S−1

)
lml′m′ al′m′ can be done by using Gauss

Seidel method. Brute force inversion of Slml′m′ is difficult and time consuming except for small
lmax . However, using the fact that, in case of CMB signal the off-diagonal components of the
matrix Slml′m′ are expected to be much smaller than the diagonal components dominated by
A00

ll , we can use Taylor series expansion to invert the matrix. Taylor series up to the first order
gives us considerably good results.

3.2.2. Stability of numerical integration Another computational issue is the choice of the
numerical integration method and the mass matrix. In Hamiltonian integrators, though
Leapfrog integrator is common because the integrator preserves the Hamiltonian in phase
space (symplectic), the propagation error being huge we have to use a fourth order symplectic
integrator, namely Forest and Ruth integrator [25, 33], which performs better and the
propagational errors are contained at a manageable level. Forest-Ruth algorithm is a
combination of three Leapfrog steps. It can be shown that for the absolute stability of the
integration process we need to take the mass matrix of the particles to the inverse of the
covariance matric of the corresponding quantities [24].

4. Conclusion
In this proceeding we discuss two MCMC techniques that we use for cosmological parameter
estimation and discuss the techniques which we use to make the algorithm faster. In our modified
global Metropolis Hastings algorithm, SCoPE, the individual chains can run in parallel and a
rejected sample can be used to locally modify the proposal distribution without violating the
Markovian property. The latter increases the acceptance probability of the samples in chains.
The prefetching algorithm allows us to increase the acceptance probability as much as required,
provided requisite number of multiple cores are available in the computer. Apart from these,
due to the introduction inter-chain covariance update the code can start without specifying any
input covariance matrix. The mixing of the chains is also faster in SCoPE.
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In the second part of the proceeding we discuss about a general method to infer the underlying
covariance structure of a CMB sky using a completely Bayesian technique. We employ the
Bipolar Spherical Harmonic representation of the general covariance matrix underlying random
fields on a sphere and outline the method for a fully Bayesian inference of the angular power
spectrum and the BipoSH coefficients simultaneously from a single observed map. We use
Hamiltonian Monte Carlo for sampling the posterior distributions of the BipoSH parametrization
of the covariance. We also discuss the time complexity and choice of the mass matrix and
integration method for the HMC algorithm that can provide stable numerical integration.
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