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ABSTRACT

Using a nonparametric function estimation methodology, we present a comparative analysis of the Wilkinson
Microwave Anisotropy Probe (WMAP) 1-, 3-, 5-, and 7-year data releases for the cosmic microwave background
(CMB) angular power spectrum with respect to the following key questions. (1) How well is the power spectrum
determined by the data alone? (2) How well is the ΛCDM model supported by a model-independent, data-driven
analysis? (3) What are the realistic uncertainties on peak/dip locations and heights? Our results show that the height
of the power spectrum is well determined by data alone for multipole l approximately less than 546 (1-year), 667
(3-year), 804 (5-year), and 842 (7-year data). We show that parametric fits based on the ΛCDM model are remarkably
close to our nonparametric fits in l-regions where data are sufficiently precise. In contrast, the power spectrum for an
HΛCDM model is progressively pushed away from our nonparametric fit as data quality improves with successive
data realizations, suggesting incompatibility of this particular cosmological model with respect to the WMAP data
sets. We present uncertainties on peak/dip locations and heights at the 95% (2σ ) level of confidence and show how
these uncertainties translate into hyperbolic “bands” on the acoustic scale (lA) and peak shift (φm) parameters. Based
on the confidence set for the 7-year data, we argue that the low-l upturn in the CMB power spectrum cannot be ruled
out at any confidence level in excess of about 10% (≈0.12σ ). Additional outcomes of this work are a numerical
formulation for minimization of a noise-weighted risk function subject to monotonicity constraints, a prescription
for obtaining nonparametric fits that are closer to cosmological expectations on smoothness, and a method for
sampling cosmologically meaningful power spectrum variations from the confidence set of a nonparametric fit.
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1. INTRODUCTION

The angular power spectrum of cosmic microwave back-
ground (CMB) temperature fluctuations is a measurable physi-
cal quantity that depends sensitively on the physics of the early
universe. In particular, the shape of the angular power spectrum
and the locations and heights of its peaks relate directly to pa-
rameters in the underlying cosmological models. As such, it has
been used extensively as an acid test of the relative merit of com-
peting cosmological models and as a rich source of information
about cosmological parameters themselves.

Traditionally, and almost exclusively, cosmologists have re-
sorted to model-based parametric statistical methods for esti-
mating the CMB angular power spectrum from data. Parametric
regression methods require the functional form of the unknown
regression function f to be pre-specified.

The adjustable parameters in f, finite in number that is inde-
pendent of the data size, are usually estimated by maximizing an
appropriate likelihood function or a posterior distribution. In the
cosmological context, it is conventional to employ parametric
models that attempt to capture the essential physics of the prob-
lem via the pre-specified functional form, and any pre-existing
knowledge about parameters is incorporated in the estimation
process via appropriate prior distributions.

Nonparametric function estimation methods, on the other
hand, assume no specific functional form for f, except for
mild regularity conditions such as smoothness assumptions,
membership to a function space, etc. In this approach, the

number of parameters that define the unknown regression
function f is either infinite or grows proportionally with the data
size, and the estimate f̂N of f is obtained by balancing bias and
variance of f̂N via optimal smoothing. Nonparametric methods
are therefore model-independent and are based on fewer and less
restrictive assumptions about f. This, in turn, implies that any
inferences about f made from nonparametric regression analyses
tend to be more data-driven as opposed to being primarily
model-driven. In other words, to a greater extent nonparametric
function estimation methods tend to infer what is rather than
what should be. As such, nonparametric regression methods
can be meaningfully employed as sanity-enforcing mechanisms
on parametric analyses, thereby making the conclusions drawn
more conservative. For example, a feature seen in a parametric
fit that survives in a nonparametric analysis is likely to be a real
and robust feature of the data itself, and not merely an artifact
that is seen because a parametric model expects it to be there.

Alternative methodologies, such as the nonparametric
methodology (Genovese et al. 2004; Bryan et al. 2007) used
in this work, may allow posing inferential questions that are dif-
ficult to address using conventional methods. For example, this
particular nonparametric methodology allows validating model-
based, parametric fits against the confidence set for the nonpara-
metric fit to the same data, possibly to rule them out as candidates
for the true but unknown regression function. This methodology
also has the formal advantage of being able to provide realistic
uncertainties on any number of features of the angular power
spectrum that are simultaneously valid at the same level of con-
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fidence. Such desirable features are arguably lacking in most
mainstream methodologies, including Bayesian ones, that are
commonly used in cosmology. (An incisive, insightful, and dis-
cerning discussion about the relative merits of this methodology
over statistical methods conventionally employed in cosmology
can be found in the two references cited above and is best read
in the original.)

The four CMB angular power spectrum data sets (Hinshaw
et al. 2003b, 2007; Nolta et al. 2009; Larson et al. 2011) released
by the Wilkinson Microwave Anisotropy Probe (WMAP; Bennett
et al. 2003) mission, representing cumulative observations at
the end of 1, 3, 5, and 7 years of operation, present a unique
opportunity for statistical analysis. For example, till date these
are claimed to represent the most precise and extensive full-
sky CMB measurements ever made (only to be superseded
by the Planck mission (Tauber et al. 2010)). The four data
sets represent the evolution of data over a period of about a
decade, thereby making it possible to assess progressive and
possibly systematic resolution of features of the spectrum. From
a statistical perspective, each of these moderately large data sets
(minimum of 899 data points for the WMAP 1-year release) is
not only heteroskedastic, but also has substantial correlations
that arise in typical data pipelines (Tegmark 1997; Hinshaw
et al. 2003a, 2009; Jarosik et al. 2007; Jarosik et al. 2011).

In this paper, we present a comparative nonparametric analy-
sis of the WMAP 1-, 3-, 5-, and 7-year data sets for the angular
power spectrum. Specifically, for each data realization, we ad-
dress the following three key questions. (1) How well is the
angular power spectrum determined by the data alone? (2) How
well is the ΛCDM model supported by a model-independent,
nonparametric, data-driven analysis? (3) What are the realistic
uncertainties on peak/dip locations and heights? Our analysis
is based on a nonparametric function estimation methodology
(Genovese et al. 2004; Bryan et al. 2007), which is discussed in
Section 2 together with our extensions; i.e., a numerical formula-
tion for minimization of a inverse-noise-weighted risk function
subject to monotonicity constraints, a prescription for obtain-
ing nonparametric fits that are closer to cosmological expecta-
tions on smoothness, and a method for sampling cosmologically
meaningful power spectrum variations from the confidence set
of a nonparametric fit. Results are presented in Section 3, and
conclusion in Section 4.

2. METHODOLOGY

The nonparametric function estimation methodology
(Genovese et al. 2004; Bryan et al. 2007) used in this work is an
extension of the REACT methodology (Beran 2000a, 2000b),
which is in turn founded on rigorous formal results in Beran &
Dümbgen (1998) and Beran (1996).

Two early papers (The Pittsburgh Institute for Computational
Astrostatistics 2003; Miller et al. 2002) used this methodology
to analyze, under the assumption of homoskedasticity, a pre-
WMAP data set that combined BOOMERanG, MAXIMA,
and DASI data sets. A generalization of this formalism for
dealing with heteroskedasticity via an inverse-noise-weighted
loss function was developed in Genovese et al. (2004). More
recently, using the WMAP 1-year data, Bryan et al. (2007)
illustrated how confidence intervals on cosmological parameters
and boundaries in the cosmological parameter space can be
inferred from the confidence set for a nonparametric power
spectrum fit.

In this section, we first present an operational outline of this
methodology (Sections 2.1 and 2.2). This outline is entirely

based on Genovese et al. (2004) and Bryan et al. (2007) and
is included here for completeness. A pedagogic treatment of
the central ideas and a simpler variant of the problem can be
found in Wasserman (2006). Specific citations to other sources
are provided wherever appropriate.

Our own numerical formulation of the monotone risk
minimization problem, where the risk function is derived
from an inverse-noise-weighted loss function, is presented in
Section 2.3. In Section 2.4, we describe a systematic way of ob-
taining a monotone fit with smoothness that meets cosmological
expectations. In Section 2.5, we describe our method for prob-
ing the confidence set; this is the basis for the results presented
in Sections 3.1 and 3.3.

2.1. The Nonparametric Fit

We are given CMB angular power spectrum data of the form

Yl = Cl + εl (1)

consisting of N data points observed over multipole index range
lmin � l � lmax. Here, Cl stands for the value of the true
but unknown power spectrum at multipole index l. The noise
variables εl are assumed to have a mean-0 normal distribution
with known covariance matrix Σ. In practice, any reasonable
estimate/approximation Σ̂ of this covariance matrix, such as an
inverse Fisher matrix for a pilot parametric fit, can be used in
place of Σ.

This nonparametric regression method is based on expanding
the unknown regression function f, assumed to belong to an
appropriate L2 function space, in a complete orthonormal basis
{φj (x)}, as

f (x) =
∞∑

j=0

βjφj (x).

A basis that has proven useful in the CMB angular power
spectrum context is the cosine basis defined over 0 � x � 1:

φj (x) =
{

1 (j = 0)√
2 cos(jπx) (j = 1, 2, . . .)

. (2)

Assuming that f is sufficiently smooth, we take

f (x) ≈
N−1∑
j=0

βjφj (x),

and estimate it as

f̂N (x) =
N−1∑
j=0

β̂jφj (x). (3)

While the method is asymptotically (i.e., as the data size
N → ∞) basis-independent, choice of the basis may matter
in any finite-N application; see Beran (2000a, 2000b) for a
detailed discussion. This basis satisfies a discrete orthogonality
property when the data Yi are available over an equispaced grid
{xi = (2i + 1)/2N, 0 � i � N − 1} consisting of zeros of
φN (x). In the CMB context, any contiguous range of N integer
multipole indices lmin � l � lmax can be formally mapped onto
this equispaced grid, hence we will not make any categorical
distinction between data index i and the corresponding multipole
index l.
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The true angular power spectrum Cl ≡ f (xl) is estimated as
Ĉl ≡ f̂N (xl) via coefficient estimates β̂j , which are estimated
as

β̂j = λjZj , (4)

where

Zj = 1

N

N−1∑
i=0

Yiφj (xi) = (UT Y )j√
N

. (5)

Here, U is the orthonormal matrix with elements Uij =
φj (xi)/

√
N and Y ≡ (Y0, . . . , YN−1)T .

The task of obtaining coefficient estimates β̂ ≡
(β̂0, . . . , β̂N−1)T , and thereby the fit f̂N (xi), is now relegated to
determining the shrinkage parameters λj . Assuming smooth-
ness for f (which implies a rapid decay of the true coefficients
βj with j), the shrinkage parameters λj are constrained to be
monotonically decreasing

1 � λ0 � λ1 � . . . � λN−1 � 0 (Monotone shrinkage). (6)

A special, discrete subset of the monotone shrinkage defined
above is the nested subset selection (NSS) shrinkage, defined as

λj =
{

1 for 0 � j < J

0 for J � j < N
(NSS shrinkage). (7)

Either shrinkage type results in selective damping of high-
frequency harmonics in the data Yi, which results in smoothing
of the fit f̂N . A useful interpretation of shrinkage parameter λj

is that it represents the effective degree of freedom for the jth
coefficient estimate β̂j . One can thus define the effective degrees
of freedom (EDoF) for the entire fit f̂N as

EDoF(λ) =
N−1∑
j=0

λj . (8)

This definition follows from the fact that for a linear smoother,
EDoF of a fit is formally defined as tr(H), where H is the matrix
that connects the fitted values Ŷ to the data Y as Ŷ = HY . For the
present nonparametric regression method, H = UDUT , where
U is the orthonormal basis matrix (Equation (5)), and D ≡
diag(λ0, . . . , λN−1). This implies tr(H) = tr(D) = ∑N−1

i=0 λi .
In the present formalism, the discrepancy between the (un-

known) regression function f and its estimator f̂N is measured by
the inverse-noise-weighted squared loss function L(λ), defined
as

L(λ) =
∫ 1

0

(
f (x) − f̂N (x)

σ (x)

)2

dx.

Here, σ 2(x) is the (known) variance of the data Y at x, which
accounts for the heteroskedasticity of the data Y. The loss L
is considered a function of the vector of shrinkage parameters
λ ≡ (λ0, . . . , λN−1)T that determine the regression estimator
f̂N via Equation (4). Risk R(λ), which is the expected value
of L(λ), can be written as a sum of two non-negative terms;
namely,

R(λ) =
∫ 1

0

(
f (x) − E(f̂N (x))

σ (x)

)2

dx

+
∫ 1

0
E

[(
f̂N (x) − E(f̂N (x))

σ (x)

)2
]

dx.

These two terms represent, respectively, the integrated squared
bias and the integrated variance of f̂N (x), both weighted
by 1/σ 2(x). Optimal smoothing is achieved, in principle, by
minimizing R(λ) with respect to λ. Generally speaking, too little
smoothing leads to a fit f̂N with low bias and high variance, and
too much smoothing yields a fit with high bias and low variance.
Minimal risk or optimal smoothing therefore can be thought of
as a balance between the bias of f̂N and its variance.

The risk function R(λ), unfortunately, depends on the un-
known regression function f, and therefore needs to be estimated.
A particular estimator of this risk, which is of the SURE (Stein’s
unbiased risk estimator; Stein 1981) kind, takes the following
form:

R̂(λ) = ZT D̄WD̄Z + tr(DWDB) − tr(D̄WD̄B), (9)

where Z ≡ (Z0, . . . , ZN−1)T , D ≡ diag(λ0, . . . , λN−1), D̄ =
IN − D, B = UT ΣU/N is the covariance of Z, and IN is the
N×N identity matrix. The positive (semi)definite weight matrix
W is defined as

Wjk =
∑

l

Δjklwl, (10)

where wl is the lth coefficient in the expansion (1/σ 2(x)) ≈∑N−1
j=0 wjφj (x) and, for the cosine basis (Equation (2)),

Δjkl =
∫ 1

0
φj (x)φk(x)φl(x) dx

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if #{j, k, l = 0} = 3,

0, if #{j, k, l = 0} = 2,

δjkδ0l + δjlδ0k + δklδ0j , if #{j, k, l = 0} = 1,

1√
2
(δl,j+k + δl,|j−k|) if #{j, k, l = 0} = 0.

We denote the optimal shrinkage obtained by minimizing risk
R̂(λ) by λ̂. The best NSS shrinkage λ̂NSS is obtained simply by
evaluating risk R̂(λ) for each of the (N + 1) NSS shrinkage
vectors and choosing the one with the least risk. Monotone
shrinkage usually results in a lower risk than the NSS shrinkage
because of the greater freedom available in the monotone set
of shrinkages. We will discuss risk minimization subject to
monotonicity constraints (Equation (6)) in Section 2.3.

Figure 1 illustrates the contrasting behavior of the nonpara-
metric risk (red curve) and the WMAP 1-year likelihood func-
tion (green curve; Verde et al. 2003) for the WMAP 1-year data
(Hinshaw et al. 2003b), as a function of the EDoF of all NSS fits.
This figure is motivated by the fact that cosmologists, by and
large, are better-acquainted with parametric likelihood-based
methods. Each integer value on the horizontal axis represents
one NSS fit, from the zero function at EDoF = 0 to the fit
that simply interpolates through the data (EDoF = N ). Optimal
smoothing for NSS shrinkage occurs at EDoF = 12 where the
nonparametric risk function attains its minimum over the NSS
set of fits. The likelihood function, on the other hand, keeps on
improving with the EDoF indefinitely.

2.2. Confidence Set Around the Fit

Conventional regression methods provide a confidence band
around the fit that quantifies the uncertainty in the fit. In con-
trast, this nonparametric methodology quantifies the uncertainty
surrounding the nonparametric fit in the form of an elegant con-
struct, namely, a (1 − α) confidence set at a pre-specified confi-
dence level 0 � (1 − α) � 1. The (1 − α) confidence set for the
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Figure 1. Nonparametric risk (red curve) and −2 log(likelihood) (blue curve) as
functions of the EDoF (Equation (8)) for the NSS fits to the WMAP 1-year data.
This illustrates the contrasting behavior of the two quantities. Optimal smoothing
occurs at EDoF = 12 where the nonparametric risk attains its minimum over the
NSS set of fits. The likelihood function, on the other hand, keeps on improving
with the EDoF indefinitely. log(likelihood) values were computed using the
WMAP 1-year likelihood code (Verde et al. 2003). The blue (left) and red (right)
vertical scales on the plot are associated with the nonparametric risk and the
−2 log(likelihood), respectively.

(A color version of this figure is available in the online journal.)

coefficient vector β is defined as

DN,α = {
β : (β − β̂)T W (β − β̂) � r2

α

}
, (11)

which is centered at the vector of estimated coefficients β̂, and
the confidence radius rα is given by

r2
α = τ̂ zα√

N
+ R̂(̂λ). (12)

Here, zα is the upper α quantile of the standard normal
distribution, and

τ̂ 2/N = 2tr(ABAB) + ZT QZ − tr(QB), (13)

with Q = 4(ABA + WDBDW − 2ABDW ) and A = DW +
WD − W . In practice, the risk estimator (Equation (9)) and/or
τ̂ 2 (Equation (13)) may turn out to be negative for particular
data/covariance matrix realizations. In such cases, the squared
confidence radius (Equation (12)) may be negative (or may not
be 0 for α = 0). For minimization purposes, the risk estimator
(Equation (9)) is adequate and appropriate (Beran & Dümbgen
1998). For confidence radius purposes, we suggest the following
modifications to avoid the negativity problem:

R̂+ = ZT D̄WD̄Z + max{0, tr(DWDB) − tr(D̄WD̄B)}
τ̂ 2

+/N = 2tr(ABAB) + max{0, ZT QZ − tr(QB)} (14)

r2
α+ = max

{
0,

τ̂+zα√
N

+ R̂+

}
.

At worst, this adjustment will make the confidence radius bigger,
resulting in, e.g., wider confidence intervals, but more conser-
vative inferences. Similar modifications have been suggested in
Beran & Dümbgen (1998), Beran (2000a), and Genovese et al.
(2004).

The corresponding confidence set on the true regression
function f is given by

BN,α =
⎧⎨⎩f (x) =

N−1∑
j=0

βjφj (x) : β ∈ DN,α

⎫⎬⎭ . (15)

The quadratic form of the inverse noise-weighted loss function
and the fact that the weight matrix W is positive (semi)definite
implies that both confidence sets DN,α and BN,α are ellipsoidal
in shape. For any functional T of the spectrum f, such as location
or height of a peak or a dip, the (1 − α) confidence interval is
defined as

IN,α =
(

min
f ∈BN,α

T (f ), max
f ∈BN,α

T (f )

)
. (16)

Moreover, prior information that the true regression function f
belongs to a subset PN,α of the confidence set DN,α (e.g., f has k
peaks over the range of x-values represented in the data) can be
incorporated in the analysis by replacingDN,α withPN,α∩DN,α .
This methodology further provides the formal assurance that,
asymptotically,

1. BN,α (DN,α) will contain the true spectrum f (true coefficient
vector β) with probability � (1 − α), and

2. confidence intervals IN,α on any number of functionals
T (f ), computed from the confidence set BN,α , will be
simultaneously valid at the same confidence level (1 −
α), and that these will trap their corresponding true but
unknown values with probability � (1 − α).

2.3. Risk Minimization Subject to Monotonicity Constraints

In this section, we show how the risk function R̂(λ)
(Equation (9)) can be minimized subject to the monotonic-
ity constraints 1 � λ0 � λ1 � . . . � λN−1 � 0. The risk
function corresponding to the unweighted loss function (W =
IN ) has a simple weighted-sum-of-squares form, and can be
minimized exactly and efficiently using the pooled adjacent
violators (PAV) algorithm (Robertson et al. 1988). While the
risk function corresponding to the inverse-noise-weighted loss
function (W 
= IN ) is still quadratic in λ, it can no longer be
expressed as a weighted sum-of-squares and the PAV algorithm
cannot be used to minimize it.

It can be shown that, disregarding terms that do not depend
on λ, the risk function R̂(λ) (Equation (9)) can be written as

R̂(λ) = 1

2
λT Hλ − λT h,

where Hjk = 2zj zkWjk, h = (H − V )(1, 1, . . . , 1)T , and
Vjk = 2WjkBkj . H and V are both manifestly symmetric.
Positive (semi)definiteness of W implies that H is a positive
(semi)definite matrix, implying that R̂(λ) is a convex function.
The system of linear inequality constraints 1 � λ0 � λ1 �
. . . � λN−1 � 0 implies that the constrained region (Figure 2)
has a convex trianguloidal shape determined by flat surfaces. The
original risk minimization problem can therefore be formulated
as the following equivalent convex quadratic minimization
problem:

Minimize R̂(λ) = 1

2
λT Hλ − λT h

subject to Cλ � (0, 0, . . . , 0)T (17)

and 0 � λi � 1 for all i,

where C is the (N − 1) × N matrix

C =

⎡⎢⎢⎢⎢⎣
−1 1 0 . . . 0 0 0

0 −1 1 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 . . . −1 1 0
0 0 0 . . . 0 −1 1

⎤⎥⎥⎥⎥⎦ .
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Figure 2. Trianguloid-shaped admissible regions, marked by red lines, for the monotonicity constraint 1 � λ0 � λ1 � . . . � λN−1 � 0 for N = 2 (left) and 3 (right).
The (N + 1) vertices of the trianguloid correspond to the (N + 1) NSS fits, with the origin corresponding to the zero function, and the vertex (1, 1, . . . , 1) corresponding
to the function that exactly interpolates through the data. Surfaces with constant value p of the EDoF (Equation (8)) are hyperplanes of the form

∑N−1
i=0 λi = p.

(A color version of this figure is available in the online journal.)

An additional linear inequality or equality constraint of the form

N−1∑
i=0

λi � q or
N−1∑
i=0

λi = q, (18)

where q constrains the EDoF of the fit (0 < q � N ), can
easily be accommodated in this formulation. This reformulation
of the monotone risk minimization problem makes it possible
to use standard minimization methods (Pshenichny & Danilin
1978; Powell 1985; Goldfarb & Idnani 1983) and computational
tools (Schittkowski 2007; Vanderbei 1999) for convex quadratic
minimization problems subject to linear constraints and simple
bounds.

2.4. Obtaining a Smoother Monotone Fit That is
Closer to Cosmological Expectations

To motivate the discussion in this section, consider the full-
freedom monotone fit to the WMAP data sets obtained as above
(green curves in Figures 3 and 4). By full-freedom monotone fit,
we mean the fit that minimizes risk over the entire monotone-
admissible region (Figure 2) without any restriction on the EDoF
of the fit. This fit turns out to be quite wiggly especially at
the high-l end because of the high noise variance here. Such
wiggliness implies the presence of high-frequency components
in the fit, which in turn implies a large number of EDoF in the
fit.

Without cosmological pre-conditioning (i.e., from a com-
pletely agnostic and data-driven perspective) and when viewed
in relation to the data, it is clear that this fit is not at all unreason-
able, given the high noise levels at the high-l end. However, all
cosmological models suggest far smoother shapes for the angu-
lar power spectrum. In the context of the present methodology,
one candidate for a smoother fit is the NSS fit (i.e., one that has
the minimal risk over the set of (N + 1) NSS fits). Indeed, this
possibility has been exploited, e.g., in Genovese et al. (2004).
However, the NSS fit (see the blue curve in Figures 3 and 4)
may also turn out to be somewhat unsatisfactory with respect to
cosmological expectations (and, some times, also with respect
to trends reflected in the full-freedom monotone fit). This is
primarily because of the limited freedom available in the NSS
class. Note again that the NSS fit is not entirely unreasonable
from an agnostic viewpoint.

The monotone set, on the other hand, offers the possibility of
harnessing local minima in the risk function that are constrained
to lie in appropriate “smoother” subsets of the full monotone
set. This may be achieved in two distinct ways that may be
combined for greater effect.

1. By imposing one of the additional constraints
(Equation (18)) on the EDoF of the fit. Examples of such
restricted-freedom monotone fits are the red curves in
Figures 3 and 4.

2. By truncating the expansion (Equation (3)) to p number of
coefficients (p < N ) and then performing monotone risk
minimization over this subset of the full monotone set.

In practice, such a smoother restricted-freedom monotone
fit can be obtained by gradually reducing the value of q
(Equation (18)) starting from the EDoF of the NSS fit until
all low-amplitude, high-frequency wiggles in the fit disappear.
Generally, the resulting fit has a lower risk than the NSS
fit with EDoF = q and is manifestly consistent with trends
captured by the full-freedom monotone fit. We find it useful to
present (or consider) all three fits (NSS, full-freedom monotone,
and restricted-freedom smoother monotone) together; this helps
build a realistic picture about estimated trends in the data and
thereby about the shape of the underlying true spectrum. Like
the NSS fit, the smoother restricted-freedom monotone fit will
generally be more biased than the full-freedom monotone fit.
This greater bias, however, is partially compensated for by a
larger risk which results in a larger confidence radius value
(Equation (12)), a larger confidence set, and therefore more
conservative inferences.

2.5. Probing the Confidence Set for Uncertainties
on Features of the Fit

In this paper, we need to probe the confidence set for a fit for
two purposes: (1) for validating cosmological models against
a nonparametric fit (see Section 3.2) and (2) for finding the
uncertainties on specific features of the fit such as peak heights
and locations, and below we describe our method to scan and
sample the confidence set for the latter. Our particular method
for probing the confidence set for determining uncertainties on
features of the fit is based on the following observations.
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Figure 3. Nonparametric fits for WMAP 1- (top) and 3-year (bottom) data sets. x- and y-ranges are identical across plots. Green: full-freedom monotone fit
(EDoF ≈ 80.2, 76.5, respectively); blue: NSS fit (EDoF = 12, 10, respectively); red: restricted-freedom monotone fit (EDoF ≈ 9.4, 9.5, respectively); solid gray:
best ΛCDM-based parametric fit; dashed gray: power spectrum for an HΛCDM model. See Table 1 for details of model-based power spectra.

(A color version of this figure is available in the online journal.)

1. The confidence set DN,α on the vector of coefficients
(β0, . . . , βN−1), by construction, is centered at the vector
of estimates (β̂0, . . . , β̂N−1).

2. The confidence interval defined in Equation (16) requires
locating extreme variations in any functional T of the power
spectrum f ; e.g., location or height of a peak. The largest
possible variations in T will be located as far away from the
center of the confidence set as possible, i.e., on its surface.

3. Cosmologically meaningful and sufficiently smooth varia-
tions in the fitted spectrum Ĉl are most likely to be located
in the projection of the full confidence set onto the lowest
M dimensions.

We therefore generate a uniform sample from the projection
of the full confidence set surface onto the lowest d dimensions,

where 2 � d � M , with M � 23. For convenience, we use
the smoother restricted-freedom monotone fit for this purpose,
with the justification that the confidence set corresponding to
the full-freedom monotone fit happens to be nested inside that
for this fit, for all four data realizations. The Cholesky fac-
torization W = uT u is used to transform the original confi-
dence ellipsoid DN,α (whose principal axes may not be aligned
with coordinate directions in the β-space) into a sphere of the
form {ψ : ‖ψ − ψ̂‖2 � r2

α}, where ψ = uβ and ψ̂ = uβ̂.
The surface of this ψ-sphere can be efficiently sampled with
uniform density using a standard algorithm (Section 3.4.1.E.6
on p.130 of Knuth 1981), and then transformed back into
β-space, preserving uniformity of density because of the lin-
earity of the transformation. From a sufficiently large sample
of such variations of the power spectrum, we further selected

6



The Astrophysical Journal, 745:114 (12pp), 2012 February 1 Aghamousa, Arjunwadkar, & Souradeep

0 200 400 600 800 1000 1200

0
20

00
40

00
60

00

l

l(l
+

1)
C

l
2π

WMAP 5

0 200 400 600 800 1000 1200

0
20

00
40

00
60

00

l

l(l
+

1)
C

l
2π

WMAP 7

Figure 4. Nonparametric fits for WMAP 5- (top) and 7-year (bottom) data sets. x- and y-ranges are identical across plots. Green: full-freedom monotone fit
(EDoF ≈ 60.4, 102.9, respectively); blue: NSS fit (EDoF = 13, 20, respectively); red: restricted-freedom monotone fit (EDoF ≈ 14.4, 14.1, respectively); solid gray:
best ΛCDM-based parametric fit; dashed gray: power spectrum for an HΛCDM model. See Table 1 for details of model-based power spectra.

(A color version of this figure is available in the online journal.)

those functions for which successive peaks and dips are sepa-
rated by at least 50 multipole moments l. This cosmologically
motivated selection criterion ensures that (1) the sampled func-
tions are sufficiently smooth, and (2) high-frequency wiggles
are not counted as peaks or dips when estimating uncertainties
on locations and heights of peaks and dips (see Section 3.3).
Based on cosmological considerations, we restricted the search
to functions with three peaks (WMAP 1-, 3-, and 5-year data) or
four peaks (7-year data). The set of functions thus sampled is
used to estimate uncertainties on specific features of the fit. As an
aside, we note that the confidence set construct and the formal
guarantees related to confidence intervals (Equation (14)) do
not necessarily imply a uniform density over the confidence set;
uniform sampling is used here as a convenient computational

device for scanning the confidence set surface in an unbiased
fashion.

3. RESULTS AND DISCUSSION

The four WMAP angular power spectrum data sets used in
this work, ΛCDM parametric fits for the CMB angular power
spectrum, and likelihood codes that produce their respective
Fisher (inverse covariance) matrices are obtained from the
WMAP data archive http://lambda.gsfc.nasa.gov/. For all four
data realizations, it turned out that (1) the weight matrix W
(Equation (10)) is numerically positive definite, and (2) the
confidence set for the full-freedom monotone fit is completely
nested inside that for the smoother restricted-freedom monotone

7
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Figure 5. Results of a probe of the confidence sets for the WMAP 1- (black), 3- (blue), 5- (red), and 7-year (green) nonparametric restricted-freedom monotone fits
(Figures 3 and 4) to determine how well the angular power spectrum is determined by the data alone. The quantity plotted for each data realization is the total vertical
variation at each l within the respective 95% (2σ ) confidence set, divided by the absolute value of the fit. This quantity is an approximate measure of how well the
angular power spectrum is determined by the data: values � 1 indicate that the fit is tightly determined by the data, whereas values � 1 indicate that the data contain
little or no information about the height of the angular power spectrum for that l. Disregarding the low-l region, the color-coded vertical lines indicate the approximate
l-value at which each curve rises above 1.

(A color version of this figure is available in the online journal.)

fit. It is worth noting that our nonparametric fits and confidence
sets are not too sensitive to the details of the covariance
matrix (this was also pointed out in Bryan et al. 2007). Most
computations were done using the R statistical computing
environment (R Development Core Team 2010). We used the QL
codes (Schittkowski 2007) for the monotone risk minimization
problem (Equation (17)). Our nonparametric fits, obtained using
the method outlined in Section 2.3, are shown in Figures 3 and 4
for the WMAP 1-, 3-, 5-, and 7-year data sets.

3.1. How Well is the Power Spectrum Determined
by Data Alone?

Considering that the noise in all four data sets is highly
heteroskedastic and noise levels are especially high for large
l, it would be useful to make an assessment of how such noise
in the data affects local uncertainties in the fitted spectrum and
to quantify how well the angular power spectrum value at each
l is determined by the data.

To this end, we compute, for each data set, the approximate
95% confidence interval on each Ĉl using 5000 function
variations from the confidence set as outlined in Section 2.5.
The length of this vertical confidence interval at given l,
divided by the absolute value of the fit, |Ĉl|, provides an
approximate indication of how well each Ĉl is determined via
the following interpretation: a value � 1 indicates that the fit
is well determined by the data, whereas values � 1 imply that
the data contain little or no information about the height of the
power spectrum. This approach, which is inspired by the boxcar
probe approach of Genovese et al. (2004), has the practical
advantage of not having adjustable parameters (i.e., the boxcar
width) in the procedure.

In Figure 5, we plot this height, scaled by the value of the
fit, as a function of the multipole index l, for all four data
realizations. We see that the range of l-values over which the
fit is well determined expands consistently between 1-, 3-, and
5-year data realizations, from l ≈ 546 (1-year), to l ≈ 667 (3-
year), to l ≈ 804 (5-year). On the other hand, while the l-range
of the data expanded substantially between WMAP 5 and 7, the
information contained in the data does not appear to have grown
proportionately beyond l ≈ 842 for the 7-year data.

3.2. How Well is the ΛCDM Model Supported by a
Model-independent, Nonparametric, Data-driven Analysis?

In each of the four plots in Figures 3 and 4, we have also
included parametric fits based on the ΛCDM (Hinshaw et al.
2003b, 2007; Nolta et al. 2009; Larson et al. 2011) and HΛCDM
(Primack et al. 1995; Primack & Gross 2001) models (see the
figure caption for details). The parametric ΛCDM-based fits
turn out to be quite close to the respective nonparametric fits
wherever the data are precise. This is remarkable considering
that our nonparametric method does not rely on any cosmolog-
ically motivated prior information whatsoever. Moreover, the
parametric ΛCDM-based fit appears to get closer to the respec-
tive nonparametric fit across the four WMAP data releases. The
closeness of a parametric fit (Clmin , . . . , Clmax ) to the correspond-
ing nonparametric fit (Ĉlmin , . . . , Ĉlmax ) can be measured through
the distance

d(C, Ĉ) ≈
√√√√ 1

N

lmax∑
l=lmin

(
Cl − Ĉl

σl

)2

.
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Table 1
Distances of Two Model-based Power Spectra from Our Nonparametric Fits

Data ΛCDM HΛCDM

1-year 0.1540 0.1493
rα = 0.3679 16.70% 15.87%

3-year 0.1462 0.2057
rα = 0.3653 14.52% 29.03%

5-year 0.1419 0.3552
rα = 0.3563 19.66% 94.82%

7-year 0.1238 0.3550
rα = 0.3551 9.08% 94.98%

Notes. These are the distances of two model-based (ΛCDM
and HΛCDM) power spectra from our nonparametric (full-
freedom monotone) fits. The HΛCDM model (Primack
et al. 1995; Primack & Gross 2001) considered here for
illustrative purposes is defined by a small neutrino fraction
(Ωνh

2 = 0.00275) with corresponding adjustment to the
dark energy content (ΩΛ = 0.729756), and the rest of
the parameters (including zero curvature) being identical to
that of the best ΛCDM model (Larson et al. 2011) for the
7-year data (power spectrum generated using the CAMB
software; Lewis et al. 2000). ΛCDM-based fits used are the
best parametric fits for the corresponding data realization
(Hinshaw et al. 2003b, 2007; Nolta et al. 2009; Larson
et al. 2011). rα is the confidence radius at α = 0.05 (i.e.,
95% confidence level ≡ 2σ ). Percentages reported are the
confidence levels corresponding to these distances; these can
be interpreted as asymptotic probabilities with which the
corresponding parametric fit is ruled out as a candidate for the
true but unknown spectrum. Note the dramatic progression,
as the data become precise, of (1) how this HΛCDM model
is pushed to the boundary of the confidence set, and (2) how
the ΛCDM model gets closer to the nonparametric fit.

Using Equation (12), this distance can be further expressed as
the smallest confidence level α beyond which the parametric fit
is rejected as a candidate for the true spectrum.

Table 1 lists distances of parametric fits based on the two
cosmological models (ΛCDM and HΛCDM) from the nonpara-
metric full-freedom monotone fit for the corresponding data
realization (see the caption for specific details and description).
The progression of distance values between a parametric ΛCDM
fit and the corresponding nonparametric fit clearly shows that
the two are getting closer as the data become precise. In contrast
to this, the angular power spectrum generated by the particular
HΛCDM model considered, which is almost as strong a con-
tender for the true power spectrum as the ΛCDM fit with respect
to the 1-year confidence set, is progressively pushed away to the
boundary of the 95% confidence set for the 7-year confidence
set. Visually, this trend can be understood on the basis of the
differences between the HΛCDM power spectrum and the non-
parametric fit (e.g., differences in the heights of the first peak; see
Figures 3 and 4) that result in pushing this particular HΛCDM
model out of the confidence set. Given the formal guarantees
of this methodology (Section 2.2), the WMAP 7-year data thus
rules out, at ≈95% confidence level, the particular HΛCDM
model considered.

3.3. Uncertainties on Locations and Heights of Peaks and Dips

We now consider the problem of determining uncertainties on
the locations and heights of peaks and dips in the nonparamet-
rically fitted spectrum. The motivation for this exercise comes

from the fact that peak locations and heights contain valuable
information about cosmological models and parameters (Doran
& Lilley 2002; Durrera et al. 2003).

Following the prescription outlined in Section 2.5, we sam-
pled a set of 5000 function variations from the confidence set for
each data realization. Peak and dip locations and heights were
recorded for each peak and dip over this set of functions. This
results in an empirical scatterplot that is indicative of the joint
distribution of location and height for each peak or dip, under
the assumption of uniform surface density on the confidence
set DN,α .

Figure 6 shows the results of probing the 95% confidence
sets for uncertainties on peaks and dips, as outlined above, with
5000 acceptable function variations for each data realization.
The box around a peak or a dip represents the largest horizontal
and vertical variations in the scatter. In accordance with the
confidence interval defined in Equation (16), these form the
95% confidence intervals on the location and height of a peak/
dip. Table 2 lists these confidence intervals together with 95%
confidence intervals on peak height ratios.

The following features of these results are worth pointing out.
As is well known, the first peak was very clearly resolved in the
1-year data itself. Our results are manifestly consistent with this
observation, in the sense that its box does not overlap with any
other box. However, the uncertainty on the first peak does not
shrink appreciably across the four data realizations. Further, our
results clearly indicate that the second peak is resolved cleanly
only in the 5-year data, whereas the third and fourth peaks are
not resolved completely even in the 7-year data.

3.4. Uncertainties on the Acoustic Scale (lA) and
Peak Shift (φm) Parameters

Consider the following relationship (Hu et al. 2001; Doran
& Lilley 2002) between the location lm of the mth peak, the
acoustic scale lA, and the shift parameter φm:

lm = lA(m − φm). (19)

Substituting the end-points of the 95% confidence interval
for the mth peak location, this relationship results in a hy-
perbolic band of allowed values in the lA–φm plane. Such
bands, derived from 95% confidence intervals on the first
three peaks (Table 2), are shown in Figure 7. Additional in-
formation from other sources is required to constrain these
bands to physically meaningful regions in the lA–φm plane.
For example, if we assume lA = 300 (Page et al. 2003) then,
based on the 7-year data, the 95% confidence intervals for
φm will be φ1 : (0.1600, 0.3767), φ2 : (0.0367, 0.3600), φ3 :
(−0.2167, 0.7300). Conversely, additional constraints on φm

could be used to generate a confidence interval on lA. From
a model-independent point of view, we note that the (lA, φm)
bands for different peaks m appear to overlap around φm ≈ 0
and 200 � lA � 400. We interpret this as a nonparametric re-
alization of the nearly harmonic structure of peaks in the CMB
power spectrum.

3.5. The Low-l Upturn from a Nonparametric Viewpoint

Another interesting feature in Figure 6 is the tiny but clearly
observable scatter for the very first dip at the low-l end. This
scatter corresponds to extreme power spectrum variations that
reside on the surface of the 95% confidence set and have
an upturn at low l values. In the ΛCDM cosmology, such
upturn at the low-l end is primarily the result of the integrated
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Figure 6. Nonparametric uncertainties on peak and dip locations and heights for the WMAP 1- (top left), 3- (top right), 5- (bottom left), and 7-year (bottom right) data
sets. The nonparametric fit displayed for reference is the restricted-freedom monotone fit in Figures 3 and 4. The number of acceptable function variations sampled
from the confidence set for each data realization is 5000.

(A color version of this figure is available in the online journal.)

Table 2
95% Confidence Intervals on Several Features of the Angular Power Spectrum

Data Peak Location Peak Height Dip Location Dip Height Peak Location Ratio Peak Height Ratio

1-year l1 : (186, 252) h1 : (4968, 6133) l1+ 1
2

: (378, 507) h1+ 1
2

: (1152, 2029) · · · · · ·
l2 : (440, 680) h2 : (1879, 3933) l2+ 1

2
: (494, 772) h2+ 1

2
: (−2929, 2868) l2/l1 : (1.953, 3.217) h2/h1 : (0.329, 0.724)

l3 : (559, 897) h3 : (41, 10733) l3+ 1
2

: (639, 900) h3+ 1
2

: (−11376, 9962) l3/l1 : (2.495, 4.385) h3/h1 : (0.0075, 1.906)

3-year l1 : (184, 254) h1 : (5130, 6199) l1+ 1
2

: (384, 456) h1+ 1
2

: (1402, 1917) · · · · · ·
l2 : (479, 606) h2 : (2172, 2997) l2+ 1

2
: (593, 856) h2+ 1

2
: (80, 2145) l2/l1 : (2.028, 3.000) h2/h1 : (0.380, 0.555)

l3 : (646, 977) h3 : (1506, 6045) l3+ 1
2

: (729, 1000) h3+ 1
2

: (−4501, 5113) l3/l1 : (2.761, 4.801) h3/h1 : (0.264, 1.082)

5-year l1 : (187, 251) h1 : (5249, 6301) l1+ 1
2

: (387, 445) h1+ 1
2

: (1489, 1934) · · · · · ·
l2 : (485, 596) h2 : (2306, 2955) l2+ 1

2
: (608, 793) h2+ 1

2
: (971, 2095) l2/l1 : (2.040, 2.963) h2/h1 : (0.381, 0.525)

l3 : (663, 982) h3 : (1863, 4635) l3+ 1
2

: (731, 1000) h3+ 1
2

: (−2978, 3157) l3/l1 : (2.883, 4.672) h3/h1 : (0.321, 0.833)

7-year l1 : (187, 252) h1 : (5177, 6377) l1+ 1
2

: (390, 442) h1+ 1
2

: (1512, 1931) · · · · · ·
l2 : (492, 589) h2 : (2328, 3015) l2+ 1

2
: (623, 803) h2+ 1

2
: (1074, 2063) l2/l1 : (2.060, 2.887) h2/h1 : (0.386, 0.534)

l3 : (681, 965) h3 : (1871, 4119) l3+ 1
2

: (733, 1104) h3+ 1
2

: (−3111, 2709) l3/l1 : (3.000, 4.553) h3/h1 : (0.323, 0.732)

l4 : (815, 1193) h4 : (−1391, 7726) l4+ 1
2

: (951, 1200) h4+ 1
2

: (−11102, 6364) l4/l1 : (3.606, 6.047) h4/h1 : (−0.244, 1.340)

Notes. Negative values for heights and height ratios are a reflection of the high noise at the high-l end. Here, lm (hm) stands for the location (height) of the mth
peak, and l

m+ 1
2

(h
m+ 1

2
) denotes the location (depth) of the mth dip.

Sachs–Wolfe (ISW) effect and is seen in all parametric ΛCDM
fits in Figures 3 and 4. It would therefore be interesting to see
what could be said about the low-l upturn (and thereby about
the ISW effect) based on the nonparametric confidence set.

Note that our nonparametric fits, which are at the center of
their respective confidence sets, do not show a low-l upturn.
However, the 7-year parametric ΛCDM fit, e.g., does show
a clear upturn at the low-l end. This parametric fit is at a
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Figure 7. Confidence “bands” for the acoustic scale lA and the shift φm for the mth peak, as derived from the 95% confidence intervals on the first three peak locations
(Table 2) and Equation (19). Blue: φ1, red: φ2, and green: φ3. Top left: WMAP 1-year, top right: 3-year, bottom left: 5-year, and bottom right: 7-year data sets. Note
that these (lA, φm) bands for different peaks m appear to overlap around φm ≈ 0 and 200 � lA � 400: We interpret this as a nonparametric realization of the nearly
harmonic structure of peaks in the CMB power spectrum.

(A color version of this figure is available in the online journal.)

distance corresponding to a confidence level of about 10%
(≈0.12σ ; see Table 1) from our 7-year nonparametric full-
freedom monotone fit. This means that the confidence set
for the 7-year nonparametric fit contains spectra with a low-
l upturn at most as far away as the 7-year parametric fit. We
therefore conclude conservatively that the low-l upturn as a
feature of the CMB angular power spectrum cannot be ruled out
at any confidence level in excess of about 10% Actually, there
are indications in our results (not shown) that such upturned
variations of the spectrum may be much closer to the center of
the confidence set for the 7-year full-freedom monotone fit; this
needs further investigation.

4. CONCLUSION

In this paper, we have presented a comparative nonparamet-
ric analysis of the WMAP 1-, 3-, 5-, and 7-year data releases
for the CMB angular power spectrum, using a nonparametric
function estimation methodology (Genovese et al. 2004; Bryan
et al. 2007). In the context of this methodology, we have also
presented our own numerical formulation for minimization of
the inverse-noise-weighted risk function subject to monotonic-
ity constraints, and a prescription for obtaining monotone non-
parametric fits that are closer to cosmological expectations on
smoothness. For all data realizations, we have presented results
pertaining to the following questions. (1) How well is the an-
gular power spectrum determined by the data alone? (2) How

well is the ΛCDM model supported by a model-independent,
nonparametric, data-driven analysis? (3) What are the realistic
uncertainties on peak/dip locations and heights?

The motivation for the analysis presented here was to explore
what could be inferred about the CMB angular power spectrum
in a model-independent, data-driven manner. On the other hand,
the basic physics of the CMB is quite well established. It
would therefore be useful to connect a nonparametric/model-
independent analysis such as ours with the known physics of the
CMB angular power spectrum. This is reserved for the future.

To conclude, we have demonstrated in this paper the three-
fold utility of the nonparametric methodology used here for
cosmological function estimation problems: as a method with
sound formal guarantees, as a sanity-enforcing mechanism on
parametric model-based analyses, and as a method that allows
interesting inferential questions to be addressed and answered
in a data-driven manner.

M.A. is deeply indebted to Christopher R. Genovese and
Larry Wasserman for many enlightening discussions covering
all of statistics. Our R codes for computing the nonparametric
fit are based on original codes by Christopher R. Genovese. T.S.
acknowledges support from the DST Swarnajayanti Fellowship.
Insightful questions and suggestions from an anonymous referee
helped improve the overall presentation aspects of the paper and,
specifically, the method used in Section 3.1.
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