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What Can the Answer be?
2. Reciprocal Basis and Dual Vectors

V Balakrishnan

At the end of Part I of this series I stated that concepts such as
reciprocal basis vectors, dual spaces and co-vectors could be
motivated from simple considerations starting from well-known
identities in elementary vector analysis.

Let us begin with the resolution of an ordinary vector  v in three-
dimensional (Euclidean) space according to

v = i vx + j vy + k vz   .

What are  vx, vy and vz in terms of  v ? Clearly, vx = i . v, vy = j . v,
vz = k . v. Therefore, if  we introduce the  projection  operator
Px  = ii (no dot or  cross in between the two vectors!), and
‘operate’ with it on the arbitrary vector v by taking the dot
product, the result ii . v  is defined to be precisely  i ( i . v ) =i vx,
the component  or part of  v that lies along the unit vector  i.
Similarly, we have projection operators  Py = jj and  Pz = kk.  The
unit operator (the operator that leaves any vector v unchanged) is
evidently just the sum of  all the projection operators, namely,

(1)

We usually express vectors as a sum of   basis  vectors  which
are mutually perpendicular and of unit length. In some
situations, such as the description of crystals, it is necessary
to use basis vectors which have any length and any angle
between them. Solving for the coefficients in such an
expansion introduces the concept of  reciprocal vectors  or
dual vectors. They are the natural language to use in
describing phenomena periodic in space, such as waves
and crystal lattices. Generalisation of this concept to infinite
dimensions leads to Dirac's notation for quantum states.
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I = Px + Py + Pz = ii  + jj + kk.

Thus Eq. (1) expresses the fact that

v = I . v = i ( i . v ) + j ( j . v ) + k (k . v ).

We now ask the question: what is the counterpart of Eq. (3) in the
case of oblique axes defined by three arbitrary, non-coplanar
vectors a, b and c (Figure 1), instead of the rectangular axes
defined by  i, j and k?

Once again, we can arrive at a solution by asking what the answer
can possibly be. Writing

v = α a + βb + γc,

we observe that the coefficient α cannot involve any overlap1 of v
with either b or c; β cannot involve any overlap of v with either
c or a; and γ cannot involve any overlap of v with either a or b.
Therefore α must be proportional to that part of  v  which lies
along (b × c), i.e., to [(b × c) . v].  Similar conclusions hold good
for β and γ. Hence

v = λ a [ (b × c) . v] + µb [(c × a) . v] + νc [(a ×  b) . v],

where the scalar factors λ, µ and ν are yet to be determined. The
equivalence of all directions in space (the  isotropy of space)
suggests that  λ, µ and ν must be equal to each other. This is easily
borne out by setting  v = a, b and c in turn. We find immediately
that λ = µ = ν = 1/ [(a× b) . c]. [Here we have used the cyclic
symmetry of the scalar triple product, namely, (a × b) . c =
(b × c) . a = (c × a) . b.] Therefore

v =  a[(b × c) . v]  + b [(c × a) . v]  + c [(a × b) . v]   .
               [(a × b) . c]

(4)

(5)

(6)

Figure 1 Oblique axes
defined by a set of three
arbitrary non-coplanar
vectors a, b and c.

1 Overlap here means 'dot

product' (also called 'scalar

product' or 'inner product' ). This

step in the argument can be

understood in more detail as

follows. Let us keep α  fixed and

vary β   and  γ. The vector   v then

varies over a plane parallel to

the b-c. plane. All vectors  in

this plane have the same value

of α, but their projections on the

b-c plane vary, so α cannot

depend on those. It can only

depend on the projection onto

a vector normal to the b-c plane,

that is, b × c.

(2)

(3)
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There is another, equally instructive, way to arrive at Eq. (6). We
begin with the well-known vector identity

u × (b × c) = b(u . c) – c (u . b).

(A proof of Eq. (7) based on general arguments was given in Part
I.) Now suppose  u is itself of the form  u = v × a.  Substitution
in Eq. (7) gives

(v × a) ×   (b × c) = b [(v ×  a) . c] – c[(v × a) . b].

The vector representing the quadruple cross product on the left-
hand side is thus a linear combination of the vectors  b and c. It
therefore lies in the plane formed by these two vectors. However,
we could as well have written  b × c=d, in which case

 (v × a)  × (b × c)  = (v × a) × d
 = a (v . d) – v (a . d)
 = a [v . (b × c)] – v [a . (b × c)].

The same vector is therefore a linear combination of the two
vectors  a and v, and thus lies in the plane formed by them. As the
four vectors v, a, b and c may be chosen quite arbitrarily, this
appears to be paradoxical. However, we must now recall that
these are vectors in three-dimensional space,  in which no more
than three vectors of a given set of vectors can be linearly independent,
i.e., non-coplanar. In other words, if the vectors a, b and c are a
linearly independent set, the fourth vector  v must  be expressible
as a linear combination of these, precisely by equating the
expressions found in Eqs. (8) and (9) and solving for  v. The
result, after once again using the cyclic symmetry of the scalar
triple product and some rearrangement, is precisely Eq. (6). This
is the counterpart of the resolution in Eq. (3) of an arbitrary
vector  v along orthogonal axes. The answer to our problem of
resolving a vector  v in an arbitrary basis  a, b, c is thus

(8)

(9)

(7)

In three

dimensional

space, no more

than three vectors

of a given set of

vectors can be

linearly

independent.



SERIES ⎜ ARTICLE

9RESONANCE ⎜ October  1996

v = a (A . v) + b (B . v) + c (C . v),
where

A = b × c ,  B = c × a ,  C = a × b         ,
         V                   V                  V

with V = (a × b) . c. The notation V arises from the fact that the
modulus  of  (a × b) . c  is  the  volume  of  the  parallelopiped
formed by the vectors  a, b and c. The vectors  A, B and C form
the so-called reciprocal basis. The terminology is most familiar in
crystallography: if  a, b, c are the primitive basis vectors of a
lattice, A, B, C are the basis vectors of the ‘reciprocal’ lattice. It is
immediately verified that

A .  a = B . b = C . c = 1,

which helps explain why the term ‘reciprocal basis’ is used; also,

A . b = A . c = B . a = B . c = C . a = C . b = 0.

In fact, the reciprocal basis is defined in books on crystallography
by Eqs. (12) and (13); the solutions are just the vectors in (11). It
is easy to check that the general formula of Eq. (10) reduces to Eq.
(3) in the special case of an orthogonal basis.

In what space do the reciprocal basis vectors  (A,  B,  C) ‘live’? If
the original basis vectors (a, b, c) have the physical dimensions
of length,  Eqs. (11) show that  (A, B, C) have  the physical dimen-
sions of (length)-1. In crystallography and solid state physics this
fact is used to define a ‘reciprocal lattice’ in wavenumber space,
in which  (A, B, C) are the primitive lattice vectors. Why does
one do this? It is not my intention to go into  crystal physics here,
but two good reasons (among several others) may be cited. In
crystal physics, we have to deal very frequently with periodic
functions, i.e., functions that satisfy  f (r) = f (r + R) where R is
any lattice vector  ma + nb + pc,  and where m, n and p take on

(12)

(13)

(10)

(11)



SERIES ⎜ ARTICLE

10 RESONANCE ⎜ October  1996

integer values. Such a function can be expanded in a Fourier
series of the form

f (r)=∑  f G exp (iG . r).
 
G

The summation over G runs over precisely the vectors of the
reciprocal lattice, i.e.,  G = hA + kB + lC, where (h, k, l) are inte-
gers. The second noteworthy point is that the Bragg condition
for diffraction (of X-rays, electrons, neutrons, etc.) from a crystal
is expressible in a very simple form in terms of  G, namely,
2 k . G = G2  (where  k is the wave  vector of the incident beam).
Likewise, the Laue conditions for diffraction maxima reduce to
just  G . a = h,  G . b = k, G . c = l  (which follow directly from
Eqs. (12) and (13) and the definition of G).

We are now at a point where the concepts  of   ket and bra vectors
can be introduced naturally. Going back to Eq. (1), we note the
following. Any vector v can be  represented in the form of  a
column matrix according to

v  =
  

v

v

v

x

y

z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 
= 

1

0

0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

vx    +
0

1

0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 
  

vy  + 

0

0

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 
 
vz .

(Here and in what follows, we shall freely use the ‘=’ symbol
between an abstract quantity and its  representation in any form.)
To save space, let us write (1 0 0)T for the column matrix

1

0

0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

. T stands for ‘transpose’. In this way of representing vectors,

therefore,

i = (1 0 0)T,  j = (0 1 0)T,  k = (0 0 1)T.

(14)

(15)

(16)
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We could also identify these with unit ket vectors denoted by
⏐e1〉, ⏐e2〉  and ⏐e3〉 respectively.  Operating on  a general vector
v = (vx, vy , vz)

T,  the projection operator  Px  = ii introduced
below Eq. (1) must yield the component  i vx = (vx 0 0)T. This is
achieved if we identify  Px  with the 3×3   matrix (1 0 0)T  (1 0 0).
In other  words, the  i  on the left in  ii  really stands for the
column vector (1 0 0)T  or the ket vector ⏐e1〉, while the  i on the
right stands for the row vector (1 0 0) – it is now natural  to
identify it with the  bra  vector 〈e1⏐. The operator  Px  is therefore
⏐e1〉 〈e1⏐;  similarly, Py = ⏐e2〉 〈e2⏐ and Pz = ⏐e3〉 〈e3⏐. The
‘resolution of the identity’, Eq. (2), reads

⏐e1〉 〈e1⏐ + ⏐e2〉 〈e2⏐ +⏐e3〉 〈e3⏐ = I.

The component vx, which we saw was simply the scalar or dot
product  i . v,  is now written  as the ‘inner product ’ 〈e1⏐ 〈v〉
where  we have used the ket vector ⏐v〉 to denote the vector
v = (vx,  vy,  vz)

 T.  We can then go on to generalize this idea of ket
vectors and their  "adjoint bra vectors"  to  n-dimensional Euclidean
spaces, and then to infinite-dimensional Hilbert spaces. The
whole treatment provides an admittedly heuristic, but easily
digested, method of introducing the machinery of linear vector
spaces (e.g., for quantum mechanics) to students of physics
whose background in this regard comprises little more than
some familiarity with elementary matrix analysis — the situation
most commonly encountered.

Let us now translate our findings for oblique axes to this language
of ket and bra vectors. Writing  a, b and c as the ket vectors ⏐a〉,
⏐b〉 and ⏐c〉 respectively, Eq. (12) suggests at once that the
reciprocal basis vectors  A,  B and C are in fact to be identified
with bra vectors  〈A⏐,  〈B⏐ and 〈C⏐. Equation (12) is the
statement that the corresponding inner products are normalized
to unity, i.e.,

〈A⏐a〉 = 〈B⏐b〉 = 〈C⏐c〉 = 1.

(17)

(18)
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The expansion of an arbitrary vector  v in Eq. (10) reads, in this
language,

⏐v〉 = (〈A⏐v〉)⏐a〉 + (〈B⏐v〉)⏐b〉  + (〈C⏐v〉)⏐c〉.

In other words, the resolution of the identity given by Eq. (17) for
orthogonal coordinates is now replaced by

⏐a〉 〈A⏐ + ⏐b〉 〈B⏐ + ⏐c〉 〈C⏐ =I.

The space spanned by the reciprocal basis vectors A, B and C
(more generally, by bra vectors) may be regarded as a kind of  dual
of the original space spanned by the vectors  a, b and c. [This
statement is a bit loose and glosses over certain technical details,
but is quite acceptable at the present level of rigour.] It turns out
that we can prove that the dual space is actually  isomorphic to the
original space, provided the latter is finite-dimensional (in our
case, it is three dimensional). ‘Isomorphic to’ does not mean
‘identical with’, of course, but it does mean that the properties of
the two spaces are essentially the same. This isomorphism between
a linear vector space and its dual space  may sometimes be valid
even for infinite-dimensional spaces. A common but nontrivial
example in physics occurs in elementary quantum mechanics:
the position space wavefunction of a particle moving in one
spatial dimension is a member of the linear vector space of
square-integrable functions (of one real variable x ∈ R). Its
Fourier transform has a physical interpretation as the
corresponding wavefunction in momentum space. This is also
square-integrable, and is a member of an isomorphic vector space
of square-integrable functions (of one real variable, p ∈ R).

We have seen how ‘reciprocal’ vectors (in a ‘dual’ vector space)
arise naturally if we work with an oblique set of axes. The
distinction between the original space and the dual space exists
in any case, but it may be blurred in the case of an orthogonal
basis set like (i, j, k) in a real vector space because the reciprocal

(19)

(20)
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basis appears to coincide with the original basis. When faced
with a non-orthogonal basis set, the usual practice in quantum
mechanics is to construct an orthogonal basis by, say, the Gram-
Schmidt procedure. In crystallography, however, the structure
of the lattice may force us to stick to the non-orthogonal basis as
the natural and more useful one, supplemented, as we have seen,
by the reciprocal basis. It must be remembered that we have been
working in three-dimensional Euclidean space for the greater
part. What if the number  of  dimensions we have to deal with is
not equal to three? (For one thing, the ‘cross product’ of two
vectors is a vector only in three dimensions!) What if the space
itself is curved? Do vectors and reciprocal vectors (or  bra vectors),
living in the dual vector space, have anything to do with the
distinction between contravariant  and covariant  vectors, (or
‘upstairs’ and ‘downstairs’ indices),  tangent  and cotangent  spaces,
and maybe even the Lagrangian and Hamiltonian formalisms in
classical mechanics? The answer is ‘yes’, implying that some
profound aspects of the physical world are lurking behind the
simple geometrical questions we have been discussing. We shall
touch upon these matters in the next part of this series.
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