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Abstract. We present closed expressions for the characteristic function of the first

passage time distribution for biased and unbiased random walks on finite chains and
. continuous segments with reflecting boundary conditions. Earlier results on mean
first passage times for one-dimensional random walks emerge as special cases. The
divergences that result as the boundary is moved out to infinity are exhibited explicitly.
For a symmetric random walk on a line, the distribution is an elliptic theta function
'tha(‘c1 goes over into the known Lévy distribution with exponent 1/2 as the boundary
tends to oo, :
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1. Introduction

There is considerable current interest (Weiss 1966, 1981; Montroll and West 1979;
Seshadri et al 1980; Gillespie 1981; Seshadri and West 1982) in the classic problem
of the first passage time in one-dimensionalrandom walks owing to its diverse appli-
cations in physical problems: for example, the calculation of reaction rates in chemi-
cal processes, chemical dissociation induced by surface catalysis, optical bistability,
decay of metastable states, etc. In general, such applications require the estimation
of the mean first passage time for diffusion in the presence of specific potentials. In
this paper, our aim is to present exact results for a simpler situation that takes account,
however, of certain physical circumstances common to most applications. Thus, we
study a random walk on a bounded set with perfectly reflecting boundaries, so that
there is no ‘leakage of probability’. We consider both discrete and continuous sets
(finite chains or line segments). Further, we allow for an arbitrary uniform bias in
the random walk — thus simulating the effect of a constant external field, or a finite
temperature in the case of spectral diffusion, etc. Finally, we present closed-form
expressions for the characteristic function of the first passage time distribution. The
corresponding mean and variance can be deduced from this. The known results for
the mean first passage time on the (semi-) infinite chain or line emerge, of course, as
special cases of the expressions obtained here. Our primary result for the charac-
teristic function follows from a lengthy calculation the outlines of which are sketched
in the Appendix; the structure of the final result will be seen to comply with that
required by a formal theorem on the first passage time problem for Markov processes
(Darling and Siegert 1953), Our result facilitates an analytic examination of the
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effects of the finite ‘probability-conserving’ boundary and of the superposed drift on
the distribution of the first passage time.

The standard procedure (Pontryagin et al 1933; Stratonovich 1963) used in solving
first passage time problems for a continuous Markov process whose conditional
density satisfies a Fokker-Planck equation is via the solution of the adjoint equation.
Our procedure, however, will be to present first the results for random walk on a
discrete chain (a somewhat more difficult case), and then to pass to the continuum
limit. We shall exploit for this purpose our recent exact solution (Khantha and
Balakrishnan 1983) of the biased random walk problem on finite chains, obtained in
the context of the frequency-dependent hopping conductivity in a bond-percolation
model as well as the study of a spectral diffusion problem. '

2. Biased random walk on a finite chain

We consider first a biased random walk on a finite chain with site label m = 0, 1,
.., N (the lattice constant a being set equal to unity for convenience), via nearest-
neighbour jumps at an average rate 2 and respective a priori probabilities (1 4+ g)/2
and (1 — g)/2 for jumps to the right and left, with — 1 < g < 1. The end points
of the chain are reflecting boundaries. Let Q (m, t[m,) dt be the probability of
reaching m for the first time in the time interval (¢, 4 d¢) starting from m, at ¢ =0,
where 0 < m; < m < N. (The solution for m,> m can be deduced from this with the
help of a symmetry present in the problem.) Let P(m, ¢ | m,) denote the conditional
probability of finding the walker at the point m at time ¢, given that she starts from
mgatt = 0. Then, because the simple random walk under consideration is a Markov
chain¥*, Q is related to P via the Siegert equation (Siegert 1951; Montroll and West
1979)

: .
P (my, t|my) = J- P(my,t—1t'|m) Q(m,t' |mg) dt', my<<m <my. (1)
0 o

Hence, in terms of the corresponding Laplace transforms,

Q (| o) = P (mmy, u | mo) | P (my, u| m), my <m <y, @

where u is the transform variable. Analytic continuation to u = iw will now yield
the characteristic function of the distribution Q (m, ¢ | mp) since the latter is defined
only for positive values of . The first passage to the point m from a point my < m
(with 0 <my <m << N) involves the consideration of a random walk in the restricted
range [0, m] with an absorbing barrier at m. (We have already specified that 0 is a

reflecting barrier.) Though P (my, u | my) depends explicitly on m, and N (the loca-

*The non-Markov case, inlparticular the one in which the sequence of steps exhibits a memory in
time as governed by a renewal process with a non-exponential pausing time distribution, is of interest
in its own right. Some results for mean first passage times in such ‘continuous time random walks’
on an infinite chain have been given in Weiss (1981) using a generalised master equation. 'We have

recently obtained an exact solution for Q- in the case of a general CTRW by other methods. These
results will be reported separately (Balakrishnan and Khantha 1983).
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tion of the boundary on the right), one would expect the dependence on m, and N

to cancel out in the ratio on the right side of (2): é (m, u | my) must depend only on
my, m and the reflecting barrier at the origin; as 0 <<m, < m, the effects of any
boundary at a site to the right of m will not appear in Q (m, t| m).

The mean first passage time from m, to m is given by

E[(t(my>m)]=— lim & Q (m,ulm)|ou, (3)

u—>0

while the second moment is

E [t2 (my > m)] = ulimo o? @/ o ut, 4

provided these limits exist. As E [t], E [t2], etc. diverge in certain simple situations
corresponding to random walks on an infinite chain (see below), it is advantageous
and instructive to derive first the exact results for a finite chain and then pass to the
appropriate limit carefully so as to bring out the origin of these divergences.

As already mentioned in § 1, we now employ in (2) the solution we have obtained

for P (m, u | my) (Khantha and Balakrishnan 1983). The derivation of this solution
is outlined in the Appendix. It turns out that the result can be written very com-
pactly if we identify certain convenient variables. Accordingly, let us characterise
the bias by the parameter a =arc tanh g, so that the ratio of the probability of a
jump to the right to that of a jump to the leftis (1 4 g)/(1 — g) = exp Ra) =f. We
further define the quantity £,=arc cosh (1 -+ #/2W), and finally introduce the
variable ¢ defined by cosh ¢ = cosh &, cosh a = (1 4 u[2W)/(1 — g*)*2. (As the
Laplace transform is initially defined (is analytic) in a right half plane in w, it is
appropriate to use hyperbolic functions. Note also that £ - £, when there is no

bias). Then, for 0 < m, my < N, our answer for P reads
P (m, u|mg) = fm-mo12 [sinh (N—m,, -+ 1) &€ — Vfsinh (N —m,)¢]
X [\/fsinh (m.+1) é—sinh m_ £]/[usinh £sinh (N+1) €], (5)

where m,, = max (m, m,) and m_ = min (m, m,). This representation of P is in
conformity with a general theorem on the structure of the Laplace transform of the
conditional probability density for a temporally homogeneous Markov process

(Darling and Siegert 1953; Siegert 1951). According to this thorem, P (m, u [ mg)
for such a process can always be written as a product of a function of m and a
function of m,. The proof of the theorem is based on the Siegert equation given
earlier, and is valid for solutions on finite or infinite intervals. Our solution for

P (m, u|my) in (5) is explicitly a product of two such factors: one of them is a func-
tion of m., (and the right boundary at N), while the other is a function of m_ (and
the left boundary at 0).
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Substitution of (5) in (2) yields, for 0 < my <m (< N), -

V/f sinh (my 4 1) & — sinh m, 5

\/fsmh (m—}— 1) ¢ —sinh m § ©

O (m, u | mg) = fim-mo2 [

This is (after a straightforward analytic continuation to u = iw) the desired result
for the characteristic function of the first passage time distribution in the presence of
a reflecting barrier at the point 0. For a first passage from m, to m with 0 <m, <
m < N, the barrier at N is irrelevant, as already stated. The effect of the bias is
measured by the deviation of the quantity f from unity, or, more accurately, of a
from zero (recall that f= exp (2a)). For instance, in the application of the random
walk model to the problem of spectral diffusion (Alexander ez al 1978, 1981) at a
finite temperature 7, involving the non-radiative transfer of energy among a set of
energy levels in a system with level spacing A, the parameter o is equal to A/KT.
The unbiased case then corresponds to the 7' co limit in which all the levels have
equal occupation probabilities.

The mean first passage time corresponding to the characteristic function (6) is,

using (3),

E [t (m, ")1 legtg[( mg) — i ( f—f1) )] 0< mo<m) o)

A result equivalent to (7) is already known (see, e.g., Parzen 1962)* for a discrete-
time random walk on the set {0, 1, .., N }.

3. The continuum limit

The solution to the first passage time problem for diffusion on a finite segment
(0 < x < L) with reflecting boundary conditions can be obtained by proceeding
to the continuum limit of the foregoing. Let the lattice spacing a0, the bias
factor g0, the jump rate W — oo and the number of sites N - co such that the
following quantities are finite. the segment length L =1im Na, the diffusion constant
D = lim Wa?, and the drift velocity ¢ =1lim 2 Wag. (c > 0 signifies a drift to the
right, ¢ < 0 a drift to the left. We use the term bias for a random walk on a dis-
crete chain, and drift when referring to diffusion on a continuous line. Further, in
the discrete case, D = Wa? is the static diffusion constant on an infinite chain).
Alternatively, one may employ the continuum version of (2) after solving for the

Laplace transform P (x, u|x,) of the conditional probability density from the
Smoluchowski equation

(D d2jdx? — cdjdx — ) P = — § (x — x,), (8)

*In Parzen 1962 (see equation (7 29) therein), this result has been derived by solving the recursion
relation obeyed by E[t(1m, — m)] in the variable m,. (The numerator of the first factor on the right
in that equation should read p instead of g.)
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with the reflecting boundary conditions

(Ddjdx — ¢) P = 0, | ©)

at x =0 and L for all u. Let Q (x,2]x,) dt be the brobability of reaching the
point x for-the first time in the interval (#, ¢ + dt) starting from the point x, < x at

t=0. We find the following solution for Q:

8 (v, u x) = [R cosh (Rx,) + (c/2D) sinh (Rxo)] «

exple(—x)2D] O<%<x, (10)

where R = R(u) = (¢* + 4 u D)'2/2D. This last quantity can be recast in the form
R = (14 2ur)'2 [} where r = 2D/c* (= lim 1/(2W g*)) and XA = 2D/c (= lim a/g)
respectively define natural time and length scales for diffusion with drift. Q(x, fw | x,)
is the characteristic function of the first passage time distribution from x, to x (0 <x,
< x) in the presence of a reflecting barrier at the origin. As in the discrete case, the
barrier on the right at L is irrelevant in this context, and (10) is valid even for a first
passage from x, to x on a semi-infinite line [0, co] with a reflecting barrier at the
origin. : .

Using (3) and (4), the mean and variance of the distribution Q (x, #|x,) are found
to be respectively

E [t ()] = ("“_.T’fe.) +3rlexp (— 2x/) —exp (= 25N (1D)

and  Var k[t (x> )] = 7-[ {g + (’r + gg)exp (;- 2x/Aj

+ }3rexp (— 4x//\)§ - {x»xo}] . | . | (12)

4, Infinite random walks

According to Polya’s classic result (Polya 1921), the mean first passage time from
my to m (my, < m), or from x; to x (x, < x), for a random walk on a (semi-)infinite
chain or line is infinite if the bias (or drift) is zero; it is finite if the bias or drift is to
the right. (We shall comment shortly on what happens when the bias is to the left.)
For the discrete chain the emergence of these results is conveniently exhibited with
the help of the general formula in (7) if we first translate the origin to the
point— M and eventually let M - 4 co. When the bias is to the right 0 < g< 1,
orl < f< o,o0r0<a< o), we find

E [t (my~>m)] = (m— my)/(2Wg) + O [exp (— 2Ma)]

> (m—m)QW) (- w<my< m). (13)

e g
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The corresponding variance in the limit M- oo is
Var [t (my—>m)] = (m — mg)[(4W2g>)  (— oo <my < m). (14)

The continuum analogues of (13) and (14) for diffusion with a drift to the right
(c > 0) on an infinite line are obtained similarly, using (11) and (12). We find

Elt (%] = (x—xp)le (— 0 < % < %), (15)
and Var [t (xg=>%)] = 2D (x — xp)/c® (— o < %o < %). (16)

When the bias is zero (g =0, f=1, a = 0), we find
E [t (my—>m)] > M (m — my)[W (=M <€ my < m), (17

which diverges linearly as M~>oo. On the other hand, for a bias to the left
(—l<g<0,0r0< f<l,or — w < a < 0),

E [t (my—>m)] - O [exp QM | ])] (—M <€ my < m), (18)

which diverges exponentially as the boundary is moved out to infinity on the left.
What is happening is best understood as follows. The characteristic function for
first passage on the (semi-) infinite chain is found from (6) by replacing m and m, by
m + M and m, + M respectively, and then taking the limit M - 4 co. We obtain

é(m u l mo) = fm-mg)/2 [u FOW—(+AuW 4 W g2)1/2:|m..mo

I W — g
| (19)

which is apparently valid for all fin 0 < f< 0,0or — 1< g<+1, ie for left,
right, or zero bias. Now, an examination of the general formula of (2) in the limit
u— 0 immediately reveals that

~ 1 ulPst (m)) _
G (m0|my) = lim gm} 1, 20)

so that the Siegert equation ensures that the first passage time distribution is in-
herently normalised according to

[ am t|mp)de = 1. ' | 1)
J |

On the other hand, taking the limit # —0 cérefully in (19) yields

5 1,forf>1(org >0)
Q(m, 0| my) = { | 22)
fmm (< D, forf<l(org < O).
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The distribution is therefore not normalised to unity when the bias is to the left. The
resolution of the paradox lies in the fact that, when the bias is to the left, a passage
to the right (equivalently, absorption at a site m > my,) is not a certain event if the
chain extends infinitely far to the left: i.e..

[ otm t]m)dt <1 . (23)
0

in that case. Therefore the first passage time from myy to m > m, is not a proper
random variable in the sense of Darling and Siegert (1953), and its moments do not
exist. This circumstance appears to have been overlooked by Montroll and West
(1979), and hence the distribution function Q(m, ¢|m,) and the mean first passage
time obtained from. it (see equations (6.14) and (6.16) in Montroll and West 1979) are
not valid when the bias is to the left.* For the sake of completeness, let us record
the (known) expression for the first passage time distribution on the (semi-) infinite
chain when the bias is to the right or is absent. This is the inverse transform of

(19):
Q(m, t | mg) = [(m — my)]t] f a2
exp (— 2 W' 1) Lym, [2 Wt (1 — 2] (— o0 < 1y < ). (24)
Here I, is the modified Bessel function of order r,and 1 <f< wor0 <g< 1, as
already explained. One may verify that the first moment of this distribution is

(m — my)|(2Wg) when 0 < g < 1 and infinite when g =0, in accord with the
preceding remarks.

4. Symmetric random walks
Going back to the finite chain considered earlier, taking the limit g - 0 (f— 1) gives
very simple answers for unbiased or symmetric random walks. We find (for
0 < my < m as usual)

E[t(my—~m)] = [(m + $)* — (my + 3P1/2 W),

Var [t(m —~m)] = [(m + D — (my + DY/ W), (25)
and so on. The continuum analogues are, again with 0 << x; < X,

E[t(xy > x)] = (x* — x)/(2 D),

Var [t(xg—> x)] = (x* — x})/(6 D), etc. (26)

*There are also typographical errors in (6.10) and (6.13)-(6.16) of that reference: e.g., n /(1 — %)
should be replaced by its reciprocal in several places. -
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The characteristic function é in (6) itself reduces in this case to

@(m » 4| mg) = cosh (m, + $)&, [ cosh (m +HéE 0 < my< m), (27)

where cosh &, = (1 + u/2W) as alreadydefined. The first passage time distribution
can then be written as ‘ :

: o0
QUm, t| mg) = (1/6) exp (—2W1) Y (= 1) [a, {L, 2 W?)
e r=0
+ 1, Q WO} + @ my -+ 1) I, Q W], - Y ).
where @, =(m—my) + Q@m-+1)r, by=a,+ 2my + 1. 9
The continuum version of (27) is |
3 (%, u| x;) = cosh (uxi/ Dy joosh wD}2 0 <% <.  (30)

Inversion of the transform yields (Oberhettinger and Badii 1973) = -

. | D & )
Q(x, t]xo)zz_._@_ 1(52
2x

D% 0 < xp < X), €2Y)
X 0%

ey

where 6, is the-elliptic theta function of the first kind. As before. if we shift the
origin to the point — L and let L become very large, we can find the form of the
‘correction’ to the known result for an infinite line (see, e.g., Feller 1966; It6 and
McKean 1974) owing to the introduction of a (distant) boundary. We get

Q(x, t | xg) = (% — X%o)(dm D342 exp [— (x = X)*/(4D1)]
4 0fexp (= L}/D0)],- - (L LX<x) (32

The term that survives when L — -+ oo is the familiar one-sided Lévy distribution
(in the time t) with exponent 1/2, all of whose moments diverge. To get an idea of
the effect of introducing a reflecting barrier, we have plotted in figure 1 the first
passage time distribution function for drift-free diffusion on a line. Curve (a) is the
Lévy distribution that applies when the line extends infinitely far to the left of the
starting point x,. Curve (b) represents the other extreme in which the confining
barrier is at x, itself. All other intermediate cases, in which the barrier is at a finite
distance to the left of x,, fall in between these two extremes.* The exponential fall
off as 1 — oo in the case of a finite barrier changes to a power law (~ ¢-%2) when
the barrier is moved out to infinity —causing, incidentally, the divergence of the
moments of the distribution. '

*For numerical accuracy, in the case of a finite boundary (as in figure 1b) one must use different
representations for the 6, function in different time regimes: for small #, an expansion in terms of
the form -3/ exp (— p,/ ¢); for large ¢, of the form exp (— A, #). ‘
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Figure 1, The normalized first passage time distribution function Q(y, 1| ae) for
unhiased giffusion on i line. Curve (a) G Lévy distribution) corresponds to diffusion
on an infinite line.  Curve (b), refited to an elliptic theta function, corresponds to a
reflecting barrier at the sturting point x, itself,  Both distributions are unimodal,
with the peak at ¢+ (x - x)¥(6 D). The total area under each curve is unity.
Curve (b) falls off exponentially as 7 - o, while (4) decays according to & power law,
l;mhf the abseissa and the ordinate in this figure are on logarithmic scales, to highlight
this fuct.

Finally, it is noteworthy that the Lévy diswibution given in (32) [or its discrete
counterpart in (24), with /.= Land g == 0)] is just (x — x,)/t [or (m — my)/t] times
the corresponding conditional probability density P(x, t|x,) [probability P(m, t[ my)]
for drift-free diffusion [symmetric random walk] on the infinite line [chain]. One
may ask whether this property is shared by any other type of random walk on the
infinite line or chain.  We have been able to show™ that, of the entire class of ‘conti-
nuous time random walks’, this property holds good only in the Markov case, 7.c.
only if the distribution of the pausing time between the steps of the random walk is
an exponential one, the situation considered in this paper. Remarkably enough,
however, there exist even more general types of temporally-correlated random walks
for which the property does hold good. And there are, too, ‘temporally fractal’
continuous time random walks for which a simple generalisation of the property
obtains. These results will be presented elsewhere.
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Appendix
P(m, t | m) for a biased random walk on a finite chain

We indicate in brief how the result quoted in (5) is derived. The conditional proba-
bility P(m, t| m,) for a standard random walk on a chain via nearest-neighbour
jumps obeys the master equation for a Markov process, namely,

;;P(m, t|my) = Wymeqy P(m+1,t|mg) + Wiy Plm— 1,1 | 79)

T (W""*'l»m + Wm‘ly m) P(m> tlmo), (A].)

where W,,, ' is the transition rate for a jump from m’' to m. We now specialise to a
biased random walk on the bounded set {0, 1, ..., N}, with reflecting boundaries at
0 and N, and the initial condition P(m, Oﬁ My) = 8y, m,» The Laplace transform of
the master equation can then be written in the matrix form

A P(u; my) = 8(my). (A2)

Here the mth element of the column vector f' (u; ) [or 8 (my)] is P (m, u | mg) [or
Omm]. The elements of the asymmetric, tridiagonal matrix A are given by

Amw = (u+2W) 8mm_' — W1 —g) 8piq,w — W + &) Sng, 1
Agw = [+ WL+ )] 8w’ — W(L — g) 8, J\ (A3)

Ayw == W+ 8)8yg,m + [+ W ({1 — )] 8w,

where 1 <m <N, 0 <m' <N, and the bias is parametrised by g, with — 1 < g< 1.
The (N -+ 1) eigenvalues of A are

o=ty h=u 4 2W [1—(1—g*) cos {rm|(N+1)}], r=1, ..., N,  (Ad)

with Ay corresponding to the steady-state solution. Using the right and left eigen- -
vectors of the asymmetric matrix A, we can construct a matrix that diagonalises A,

and thence the inverse A, This procedure yields, after all the algebra is done, the

result
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- 1A= 2 .
P@“”m@=;EL§%Q+XN+DfW%m?

i {\/fsjn (@N_{—_Jrl?l_’lr) — sin (;1:_”1)% {m—>mo}
=1 —2VFeos e+ f)[u 2 (1 — g% cos (Nr—: 1)]

0 < m,my <N), (A5)

where f= (1l 4 g)/(1 — g). The first term on the right represents, as may be guessed,
the transform of the steady-state solution. It is expedient to split this term mto
partial fractions and to combine it with the second term, to obtain

2
N+ 1)

.P(m, u I 7110) = '"BN,m 3N,mo -+ f(m-—mo)/z
u

N =

[u +2W (1 — g»)'2 cos (N’:_ 1)]—1.

sin ((m -+ l)iw)sin ((m0 + 1)rw> n 2W | sin< rar )
N+l N+1T /] ul+f) \N+1

L R = [ D

,g
n

i—'—l

A

N-+1 N 1

To find a closed form for P (m, u | m,), we must carry out the finite summations in
(A6). We have done this, with the help of several auxiliary trigonometric summation
formulas we have derived in a straightforward manner, and also the following for-
mulas (Hansen 1975):

[(N=Dj21
z cos (2m k m|N) N
2

= . cosech x cosech (Nx/2)
cosh x — cos (27 k/N)

cosh {(g —m-+ N [’]—1\;]) x% — ‘1_1cosech2 (x/2) — %(—— 1"

(1 + (— D¥) sech? (x/2), (A7)

((N=2)12)
z 0os (@kA1) mm|N) (— Dy Y cosech x sech (NVx/2).
cosh x — cos ((2k--1)=/N) 2

- sinh g(g—- m+ N [@

)] g e 0 = s o,

(A8)
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Here [a/b] stands for the largest integer less than (a/b). A great deal of algebra is
involved, but the end result is simply

. | ) = - fimemg)2 [(1 + fz smh (N —..T?)S ;inh (7m<:}—_ 1)5
4 sinh (N + 1) ELaw V7 sinh ¢
I¢1 . .
-+ ag—\/—f_ sinh (N — my, — m )¢ — sinh (N — m, — m_ — 1)5} ],

(A9)

where m., = max (m, my), m = min (m, m;,), and ¢ = cosh-1 [(1 4 u2W 1 — g?)-172],
as defined in the text. Further simplification leads to the surprisingly compact answer
quoted in (5), namely,

B(m, u|my) = (V"= [sinh (N — m,, + 1)é — V/Fsinh (N — m,)¢]
X [Vfsinh (m_ - 1)¢ — sinh m_£]/[(« sinh ¢ sinh (V- 1)¢]. (A10)

1)
When there is no bias (g = 0, or f'= 1), this becomes even simpler:

cosh (N — m, + )& cosh (m + ¢,
W sinh £ sinh (N + 1),

P(m, u|my) = , (A11)

where £, = cosh™ (1 + u/2W). This is, incidentally, the closed-form result for the

sum obtained as a solution for P in the bias-free case by Odagaki and Lax (1980) in
the study of a bond-percolation model.
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