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QuantificationofSignalingNetworks

P. K. Vinod1 AND K. V. Venkatesh1,2

Abstract | Studies in living system in the past several decades have generated qualitative

understanding of the molecular interactions resulting in large networks. These networks were

essentially deciphered by breaking the components of a cell through a reductionist approach.

Biological networks comprising of interactions between genes, proteins and metabolites

co-ordinate in the regulation of cellular processes. However, understanding the cellular function

also requires quantitative information including network dynamics, which results due to an

inherent design principle embedded in the network. Interactions within the network are well

organized to form a definite regulatory structure, which in turn exhibits different emergent

properties. The property of the network helps the cell to achieve the desired phenotypic state

in a controlled manner. The dynamics of the network or the relationship between network

structure and cellular behavior cannot be understood intuitively from the interaction map of

the network. Computational methods can now be employed to study these networks at

system level. The field of systems biology looks at integrating the interaction maps obtained

through molecular biological approach. Various studies at the system level have been reported

for pathways namely chemotactic response in bacteria, cell cycle and osmotic signaling in yeast,

growth factor stimulated signaling pathways in mammals. This review focuses on

understanding signaling networks with the help of mathematical models.

1. Introduction
Understanding biological responses at a system
level by incorporating information from genetic,
signaling and metabolic networks represent a
great challenge in modern biology. With the
availability of high throughput genomic and
proteomic data, it has become possible to map
the cellular networks involved in a phenotypic
response.1–4 Such mapping of the network strongly
depends on computational modeling techniques
to interpret the data and define the connectivity
in a network.5–8 Biological networks are organized
into modules of protein–protein, protein ligand and
protein DNA interactions embedded with feedback
and feedforward loops to form signaling and gene
regulatory networks. The interactions within the
network affect one or more components and are

non-linear in nature.9,10 Cells respond appropriately
to diverse signals by coordinating complex network
of protein and gene interactions. The dynamics of
these interactions determine the cellular behavior
to varying extracellular conditions, which are not
best understood from just the wiring diagrams
of the biological networks. Therefore, there is
a growing need to understand the relationship
between the network structure and the resulting
cellular behavior.11–15 A system level analysis is
required to study the emergent properties of
the network such as robustness, bistability and
oscillations, which enables the cell to respond in
a controlled and specified fashion.16–19 Feedback
regulation prevalent in the biological networks is
a key mechanism that give rise to the functional
properties of the network.20,21
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Recent studies have shown that biological
networks have imbedded in them the design and
control strategies which are also utilized in typical
engineering systems.12,22–24 Understanding the
design principles of biological network can help in
modifying and constructing biological networks
with desired properties.25,26 This essentially means
a paradigm shift from evaluating interaction
map of a network to quantifying the network
interactions for gaining operational insights into
the cellular regulation. Quantification of biological
network requires construction of mathematical
models to best describe the operation of the
network.27–30 Modeling and simulation of signaling
networks are becoming increasingly popular with
models developed based on the quantitative
experimental information of individual components
such as time course data, dose response curves,
protein concentrations and binding constants.31–36

Mathematical models provide a window to study
the dynamics, control and design principles of
a system, which eventually helps the system to
achieve the desired state. Models developed can be
effectively used to predict the network behavior,
which can be subjected to experimental verification
and further refinement. Such comprehensive
understanding based on quantitative experiments
and computational modeling to gain insights into
the physiology of a cellular process is termed as
systems biology.37–41 In this review, we provide an in
depth understanding needed to study and quantify
signaling networks with examples taken from well-
defined signaling pathways in yeast and mammalian
systems. We draw attention to basic building blocks
present in the pathways, various emergent properties
of the network, modeling techniques and analysis
methods employed in pathway modeling.

2. Building blocks of the signaling network
Signaling network is an integrated system of
multiple signaling pathways, which co-ordinate
together in the regulation of cellular behavior.
Signaling network sense the input changes in
the environment and transmit the signal into
the nucleus to regulate gene expression. A
signaling pathway comprises of membrane receptors,
GTP binding proteins, allosteric interactions,
protein–protein interactions, cycles of covalent
modification of proteins, such as phosphorylation–
dephosphorylation cycles and translocation of
proteins across the nuclear membrane (Fig. 1).42,43

Membrane receptors function upstream to sense
the environmental cues and also to generate the
signals required for the activation of cascade
of proteins in the cytoplasm. This helps to
relay the signal and to activate gene expression

inside the nucleus. Receptors are transmembrane
proteins which undergo conformational changes
or dimerization or autophosphorylation upon
ligand binding to propagate the signal into the
cell. The cytoplasmic domain of the receptor
functions to signal downstream through GTP
binding proteins. This receptor domain also serves
as a phosphorylation site for the downstream kinase,
which typically constitutes a feedback. G proteins
are transformed from GDP to GTP bound state
to activate the signaling cascades. This is typically
composed of cycles of covalent modification of
proteins and allosteric interactions, which relay
the signal to the downstream target, mostly a
transcriptional activator to drive the expression
of specific genes.

Covalent modification of a protein is catalyzed
by enzymes, which receives the input for turning
on or off a cascade (Fig. 1). For example, a
phosphorylation cycle coordinated by a kinase
and phosphatase forms a part of majority of
signaling pathways. Furthermore, the downstream
information is fed back to the upstream for
controlling the flow of information either through
activation (positive feedback) or inhibition
(negative feedback). In addition, signaling pathways
gets additional inputs from other pathways
resulting in cross-activation or cross-inhibition for
integrating and processing multiple/parallel input
information.44 The downstream protein kinase
initiates the nuclear events involving transport
of the kinase from the cytoplasm to nucleus,
which depends on the specific import and export
factors. The transported protein can function as a
transcriptional activator or as an inhibitor or can
activate other proteins for regulating the expression
of genes, which represents the final outcome of the
network.

3. Steady state and dynamic properties of
signaling network

The output characteristic of signaling network in
response to an input stimulus depends on the
network structure, which is capable of exhibiting
different emergent properties. The input–output
characteristic of the network provides insights into
the network properties that are well understood
either as function of time or independent of time.
In response to an input, the network behavior can
shift from one state to a new state, which remains
invariant with time or can exhibit a transient
behavior before returning to the original state. A
state which is invariant with time is termed as
steady state, but can vary depending upon the
strength of the input stimuli. The transient behavior
is termed as a dynamic response of the network
with respect to an input stimulus. In the following
section, we discuss the different network properties
and the regulatory structures, which are capable of
exhibiting these properties.
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Figure 1: A simple schematic representation of a signaling pathway. Binding of ligand (such as growth
factor/nutrients) to the membrane receptor activates the receptor to undergo autophoshorylation. Receptor
activates G-proteins, ‘G1’ (such as Ras2) through exchange of GTP from GDP via phosphorylation of
adapter protein complex, M1-M2 (such as Grb2-Shc). This event triggers the sequential activation of
protein cascades ‘P1’, ‘P2’ and ‘P3’ (such as MAPKKK, MAPKK and MAPK) through phosphorylation.
Phosphatase deactivates the cascade through dephosphorylation. The activated protein ‘P3’ translocate into
the nucleus to activate the gene expression. In addition, P3 exerts a positive feedback by activation of
upstream kinase and a negative feedback by preventing the phosphorylation of the receptor.
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3.1. Ultrasensitivity
Cells are subjected to constant change in
environmental cues and have to respond by
triggering appropriate levels of signaling response
based on the strength of the stimulus. Thus, for

a given input signal, an output response can
be determined at steady state. This relationship
between input–output responses can be obtained
either through experiments or through simulations.
For example, a typical Michaelis Menten response
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indicates that for a continuous change in the
input signal, the output response increases and
later saturates in a hyperbolic fashion. However,
signaling pathways can yield input–ouput response
where there is threshold to activate and a steep
rise beyond the threshold.45 Such an input–output
response converts a continuously varying (graded)
input stimulus into a binary (switch like) response,
which depends upon the regulatory structure of the
network. Ultrasensitivity is a term used to describe
such a sensitive response.46,47 Hills equation is
typically used to quantify the sensitivity of the
signaling pathway based on the stimulus dose
response curve. The equation was originally used to
empirically describe allosteric activation/inhibition
of proteins.48 The Hills equation is defined as,

f =
(

InH

K nH
0.5 + InH

)
(1)

where ‘f ’ represents the fractional activation
of output response with varying input ‘I ’ and
nH represents Hills coefficient. The input signal
required for 50% activation of the network is termed
as the half saturation constant (K0.5). Depending
upon the value of Hills coefficient, the shape of the
stimulus response curve changes from hyperbolic to
sigmodial, indicating the measure of steepness of
the curve. The Hill coefficient is computed based on
the fold change in input stimuli required to take a
response from 10% activation to 90% activation

nH = log(81)

log( I90
I10

)
. (2)

For a response with a Hills coefficient equal to 1,
81 fold change in input is required to reach 90%
of maximum response, which represents a typical
hyperbolic Michaelis Menten response. With Hills
coefficient greater than 1, response tend to become
sigmodial, indicating the sensitive nature of the dose
response, which is defined as ultrasensitivity. The
response curves that are less steeper than Michaelis
Menten curve are termed as subsensitive responses
(Fig. 2(a)). The input–output response can be
analyzed for activating a pathway by increasing
the input concentration (switching on) or for
deactivating a pathway by decreasing the input
concentration (switching off). A system that yields
the same dose–response curves, irrespective of
whether the system is switched on or off, is termed to
be monostable. Mathematically, this implies that for
a given input signal, the system has only one stable
steady state that can be attained (Fig. 2(a)). Different
sources in signaling pathways are shown to produce

ultrasensitive response. Positive cooperativity of
allosteric protein is shown to be ultrasensitive.
Similarly, multistep effect when the same effector
acts at more than one step in a pathway is also shown
to be a source of ultrasensitivity.45,49 Goldbeater
and Koshland in a landmark paper have examined
the steady state behavior of a simple covalent
modification system and demonstrated the existence
of zero order ultrasensitivity.46 This is defined as
steep change in the modified protein concentration,
when modifying enzymes are saturated by their
protein substrate. Furthermore, multistep effect
can combine with zero order effect to enhance the
sensitivity of biochemical systems controlled by
covalent modifications.50

Earliest effort to gain system level understanding
of ultrasensitivity in signaling pathways was
demonstrated by Ferrel and co workers.51,52 It
has been demonstrated that the ultrasensitivity in
mitogen-activated protein kinase (MAPK) cascade
(Fig. 2(b)) in Xenopus oocytes can convert graded
stimuli into all or none response.51 MAPKKK was
shown to exhibit hyperbolic behavior, whereas
the MAPKK and MAPK were shown to exhibit
sigmodial behavior with Hills coefficient of 1.7,
and 4.9, respectively. Zero order effect and dual
phosphorylation of both MAPK and MAPKK make
MAPK pathway highly sensitive. Furthermore,
analysis of individual oocytes maturation in
response to progesterone demonstrated a response
with Hills coefficient of 35, indicating that the
MAPK cascade was highly ultrasensitive.53 This
marked increase in the intrinsic sensitivity of MAPK
cascade was due to the presence of positive feedback
loop embedded in the cascade, which increased
the abruptness of the response. Ultrasensitivity in
MAPK cascade can function to filter out noise and
as well help the cells to switch between discrete states
without occupying an intermediate state. Recently,
mathematical simulation of interlinked positive
feedbacks revealed that linking slow to fast positive
feedback creates a “dual time” switch, which is
rapidly inducible and also provides resistance to
noise in the upstream components of the signaling
pathway.54 In general, ultrasensitivity offer cells
with many advantages, which primarily depends on
the different sources capable of introducing non-
linearity into the system. It defines a threshold for
‘switching on’ or ‘switching off ’ of a response. This
does not mean that the cells always convert the
graded input into switch like output. Sources such
as the presence of negative feedback can counteract
and convert the non-linear system into linear to
make the response graded. Further, cells are also
shown to respond both in a binary and graded
fashion.55,56
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Figure 2: Ultrasensitivity in signaling pathways. (a) The response curves of the network with respect to the
input, which shows different sensitivities ranging from a subsensitive response with nH = 0.5 (blue),
hyperbolic response with nH = 1 (dark yellow) and ultrasensitive response with nH = 2 (red), nH =
4 (green) and nH = 6 (pink). (b) Schematic representation of MAPK pathway, which consist of MAPKKK,
MAPKK and MAPK. Input to the cascade involves activation of kinase of MAPKKK, which undergo single
phosphorylation to activate MAPKK through dual phosphorylation. MAPKK in turn dual phoshorylate MAPK
to activate the signaling response. MAPK exerts a positive feedback through activation of kinase of
MAPKKK. The magnitude of activation of MAPKKK, MAPKK and MAPK is also under the control of
respective phosphatase (P’Pase).
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3.2. Amplification
Signaling pathways have to sense and respond
to small changes in the extracellular conditions.
Networks are known to respond even under
weak input stimulus. Such capability to respond
in principle arises from the ability of signaling
pathway to amplify a weak stimulus. Signaling
pathway amplify the initial stimulus received by
the signaling receptor in the course of signal
transduction. Signal amplification increases along
the cascade and the amplification at particular step
depends upon the signal amplitude of the preceding
step.30 Amplification in a phosphorylation–
dephosphorylation cycle of a signaling cascade also
depends on the ratio of counteracting kinase to
phosphatase reaction rates. The reaction rate of
phosphatase should to be lesser than kinase to bring

about signal amplification. A dose response plot
for activation at each step of cascade with respect
to input stimulus shows a shift in the curve to
the left as the signal is relayed from the receptor
to the most downstream effector (Fig. 3). The
half saturation constant (K0.5) is used to quantify
amplification. A shift towards right is indicative
of signal deamplification. Ratio of half saturation
constant of the dose response curves can give a
measure of fold change in amplification, which is
given by equation (3).

Fold change in amplification= K0.5 (upstream)

K0.5 (downstream)
(3)

where K0.5(upstream) and K0.5(downstream) are
half saturation constants with respect to upstream
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and downstream components of a signaling pathway,
respectively. The activation of MAPK pathway
in Xenopus oocytes demonstrates a 30 fold
amplification in MAPKK and 100 fold amplification
in MAPK with respect to the upstream kinase,
MAPKKK.51 Cascading of signal through multiple
steps as seen in MAPK pathway not only increases
the sensitivity of the signal, but also helps in
amplifying the weak signal. The fold change in
amplification is relevant only for the weak input
signals, which starts to decrease with increasing
strength of stimulus. At higher value of the stimulus,
the upstream gets saturated implying that there is a
threshold beyond which the amplification is lost.30

For example, in Fig. 3, the upstream gets saturated
(more than 90%) at higher input value. Under this
input value, the downstream is also at saturation
indicating no role for amplification. Amplification
helps the cells to respond to the smallest variation
in the environment, thereby helps the cell to sense
and respond to a broad range of stimulus strength.
However, such a property of signaling pathway can
also lead to amplification of noise .57

3.3. Bistability
The dose response curves for certain pathways
demonstrate distinct curves for “switching on” and
“switching off” of the system, unlike a monostable
response. Such responses yield two stable steady
states for a given input concentration. The nature
of such responses is discontinuous all or none
type, which depends on the feedback regulation
prevailing in a signaling pathway. A system that
can toggle between two alternative stable steady-
states but cannot rest in an intermediate unstable
state is said to be bistable.58 Cell signaling systems
containing positive feedback loops or double
negative feedback loops are shown to exhibit
bistable behavior (Figs 4(a) and 4(b)).21 The
positive feedback should be ultrasensitive to produce
two thresholds, one for switching on and other
for switching off. Furthermore, a bistable system
also exhibits some degree of hysteresis, where the
system will remain switched on even below the
threshold value of stimulus required for switching
on (Fig. 4(d), red color). However, the system
switches off at very lower stimulus value. Therefore,
a bistable system has the potential to remember
the stimulus long after it has been removed.59

Outside the stimulus range over which bistable
state exists, the system become monostable and the
point at which bistability disappears is termed as
bifurcation point. Early examples of prokaryotic
systems which were shown to exhibit bistability
were l phage lysis/lysogeny decision and Escherichia
coli lac operon.60 Bistable response of l-phage is

primarily due to two mutually repressing proteins
(double negative feedback), CI and Cro, which
maintain the lysogeny and lytic states of l-phage,
respectively. Positive feedback regulation in lac
operon is shown to exhibit bistable behavior.58

Furthermore, Xenopus oocytes in addition to
all or none type response of oocytes maturation to
progesterone, also shows irreversibility on removal
of the signal, progesterone. With the removal of
the input signal the feedback itself can sustain
the response of the network.61,62 The regulatory
circuit of Xenopus oocytes consisting of Mos,
MEK, and p42 MAPK with positive feedback
of p42 MAPK on Mos accumulation exhibits
a bistable response, which becomes irreversible
with increase in the strength of positive feedback
(Fig. 4(d), pink color). Similarly, the positive
feedback regulation of Jun N-terminal kinase (JNK)
cascade in response to progesterone is also shown
to exhibit bistability.63 Such positive feedback
based memory module function typically in cell
fate decision. Furthermore, Kholodenko and co-
workers have demonstrated bistability at single stage
of MAPK pathway through regulatory structure
involving multisite phosphorylation catalyzed by
different kinases and dephosphorylation reactions
catalyzed by same phosphatase (Fig. 4(c)).64 This
feature can exhibit bistability in MAPK cascade even
in the absence of positive feedback loop. Thus, it
can be seen with gradual increase in strength of the
feedback, the system switches from hyperbolic to
sigmodial (ultrasensitive) to bistable to hysteresis to
irreversible response.58,59

3.4. Oscillations
Periodic oscillations represent the most prominent
type of rhythm encountered in biological system.
Non-linear nature of signaling can make the system
unstable and thus system tend to oscillate with
an amplitude and duration away from the steady
state. Such change in dynamic behavior is termed as
Hopf Bifurcation.65–67 Negative feedback regulation
forms the major source of oscillation in signaling
cascades (Fig. 5(a)).19,20 Usually, a negative feedback
plays a role in homeostasis by turning off the
signal after activation (transient behavior), which is
termed as desensitization effect or adaptation.32,68

Under perfect adaptation, increasing the strength of
the stimulus increases the magnitude of the response
but decreases the rise time and duration of signaling
before resetting to the prestimulus condition with
the influence of negative feedback (Fig. 5(b)). The
height of the peak measures the signal amplitude,
width of the peak measures the signal duration
and the rise time measures the time required
to attain a maximum response. However, the
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Figure 3: Amplification in signaling pathways. The response of the network with respect to the activation
at different levels in a cascade (input). Dotted curve represents the response curve with respect to the
activation of the upstream component in the cascade. Shift in response curves towards the left (red, pink)
of the dotted curve represent the increase in fold change in amplification from upstream to downstream
of a cascade. Similarly, a shift towards right (violet, green) of the dotted curve indicates deamplification, a
decrease in fold change in amplification from upstream to downstream of a cascade.
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oscillation arises primarily with introduction of time
delay in negative feedback, with larger time delay
producing sustained oscillation (Fig. 5(c)), while
shorter time delay producing damped oscillation.
(Fig. 5(d)). Such kind of oscillators is termed
as negative feedback oscillators.69,70 Moreover,
both positive and negative feedbacks are shown
to exhibit oscillatory behavior called relaxation
oscillators (Fig. 6).70 Positive-feedback makes a
dynamic system bistable, which act as a threshold
and a delayed process involving negative feedback
forces the system to switch between alternate states,
thereby generating oscillations. The property of
oscillation is shown to be crucial in the regulation of
circadian clock, cytosolic free calcium (Ca2+), cyclic
AMP production and cell cycle regulation.65,66,69

There are excellent reviews by Tyson et al.
(2003) and Kholodenko (2006) illustrating different
oscillators.19,71

Furthermore, Kholodenko has demonstrated
that the combination of a negative feedback
and ultrasensitivity in MAPK cascade can bring
about sustained biochemical oscillations.20,72 In
mammalian cells, extracellular signal-regulated
kinase Erk (MAPK) activates phospholipase-A2 and
phosphorylates MAPKKK/SOS, creating positive
and negative feedback circuits, respectively in
MAPK pathway.20,72 Bhalla and co-workers have
demonstrated that the MAPK cascade can operate
with one (monostable) or two (bistable) stable states
in growth factor-stimulated signaling network.17,72

With addition of negative feedback loops, such as

MAPK phosphorylation of MAPKKK and MAPK
activation of MAP kinase phosphatase (MKP-1),
the authors were able to generate the oscillatory
behavior only under extreme non-physiological
parameter values.73 In fact, it was demonstrated that
positive and negative feedback in MAPK cascade
provide bistability and flexibility in switching
between bistable and monostable states.72 Recent
work has demonstrated that even in the absence
of negative feedback, a multistage MAPK cascade
with single stage capable of producing bistability
can produce oscillatory behavior.74 Interestingly,
experimental study demonstrate that Erk MAPK
activation demonstrates damped oscillation, which
could possibly be due to the negative feedback
involving MAPK activation of phosphatase, MKP-
1.75 Such damped oscillations with system resetting
to prestimulus level can be interpreted as adaptation.
In fact, negative feedback regulation in MAPK
pathway is shown to generate signal adaptation.76

Thus, it can be observed that the negative feedback
regulation of signaling pathways is capable of
bringing about adaptative and oscillatory behavior.

3.5. Robustness
Robustness is a fundamental property of the
biological system required to maintain its function
in the face of perturbation and uncertainty.77–79

It is also an inherent feature of evolvable complex
system. Moreover, robustness is only linked to
maintain the cellular function under perturbation
rather than to maintain a steady state as in the
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Figure 4: Bistable response of signaling pathways. Different regulatory structures capable of eliciting
bistable response are (a) positive feedback (b) Double negative feedback (c) dual phosphorylation with
different kinase and same phosphatase. (f) Response curve with respect to input under varying strength of
positive feedback. With increase in strength of positive feedback the response changes from subsensitive
(blue) to bistable (green and red) to irreversibility (pink). The degree of hysteresis, which is the difference in
the threshold for switching on and off vary between the bistable curves. Green curve show smaller degree
of hysteresis than red curve (dotted arrow).
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case of homeostasis. However, robustness and
homeostasis becomes identical if maintaining a
steady state is required for a particular cellular
function. Thus, robustness can manifest in moving
the system to a prestimulus steady state or to a
new steady state to maintain the cellular functions
irrespective of perturbations. This indicates that the
compensatory mechanism present in the network
design make the required adjustments to overcome
perturbations. Major source of system perturbation
include environment and allelic variability, which
influence multiple parameters in the network.
Robustness is achieved through different means such
as feedback control, modularity, and redundancy.
Control circuits involving positive and negative
feedback play a principle role in maintaining the
function in face of uncertainties. Positive feedback
is needed for producing bistable or sensitive
state, which can clearly distinguish the function

from the non-stimulated state. This is required
to maintain the robust cellular decision in wake
of noise and fluctuations in the input stimuli.
Negative feedback function to reduce the differences
between the response output and set point, thereby
help to dampen the noise and insulate against
perturbation.77,78

In a landmark paper by Barkai and Leibler
(1997) on bacterial chemotaxis, the authors have
demonstrated that property of adaptation is
robust to variations in the biochemical parameters
of the network (Fig. 7(a)).16 A bacterium is
able to modify the tumbling frequency under
wide range of attractant concentration, to move
along the gradients. This adaptative feature
is shown biochemically as a result of change
in the methylation state of a receptor, which
functions to compensate the effect of variation
of chemoattractants concentration on tumbling
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Quantification of signaling networks REVIEW

Figure 5: Oscillatory behavior of the signaling pathways. (a) Simple regulatory motifs comprising of negative feedback, which are
capable of exhibiting different network behaviors. (b) Adaptation is the transient behavior of the network, with response always
resetting to the prestimulus level under different strengths of stimulus (S1, S2, and S3). (c) Oscillation with amplitude decreasing with
time to reach a steady state is referred to as damped oscillation. (d) Oscillation with uniform period and amplitude is referred to as
sustained oscillation.
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frequency (Fig. 7(b)). Quantitative model developed
based on chemotaxis network showed that the
precision of adaptation is maintained under
different perturbation, which is a direct consequence
of the network architecture involving negative
feedback at the level of receptor methylation.80

A control analysis on this model suggested the
involvement of integral feedback control. The
time integral of the difference between actual
output and set point is fed back into the
system via the methylation state of the receptor.81

Moreover, systems having multiple feedbacks are
also demonstrated to function towards maintaining
robust response. Multiple feedback comprising of
three distinct negative feedbacks in tryptophan
regulatory network of Escherichia coli offer robust
adaptation to variation in system parameters
while maintaining rapid response to achieve
homeostasis.82

Further, modularity of system, which involves
encapsulation of function in modules, helps to

maintain the function in event of damage to one
module. Similarly, redundancy helps to protect
against the failure of specific component through
alternate mechanism or back up strategy. Robustness
is shown to play a role in the performance of
the regulatory circuit of lambda phage decision,
regulation of glutamine synthetase (GS) in E. coli
and also with tricyclic enzymes cascades, as seen in
MAPK pathway.83–85 Although, robustness helps
the system to maintain specific function to wide
range of perturbations, it also becomes a setback
in case the system needs to adapt differently under
unexpected perturbations.86 Such associated trade-
offs also needed to be addressed in the study for
robustness.

3.6. Crosstalk
Signaling pathways, specific to a phenotypic
response rather than being discrete and separate
units are wired to interact with each other,
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Figure 6: Relaxation oscillator. Positive feedback is coupled to slow negative feedback to yield relaxation oscillator. The activated
(phosphorylated) protein ‘M2’ activates the activator kinase yielding a positive feedback and also inhibits the synthesis of the activator
kinase yielding a negative feedback. Positive feedback produces a threshold, whereas negative feedback force the system to oscillate.
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Figure 7: Robustness of signaling network. In Chemotaxis pathway binding of attractants to chemoreceptors decreases the methylation
of the receptor, which is required to activate the kinase CheA through autophosphorylation. CheA activates CheY, which interacts with
the flagellar motors to help in tumbling. CheZ inactivates CheY through dephosphorylation. In addition, CheA activates CheB, which
demethylate the receptor thereby constituting a negative feedback. (b) The behavior of the network with step input of
chemoattractants at 4 min, 8 min, 12 min and 16 min. The methylation of the receptor increase continuously with step input yielding
a robust adaptive response involving CheY activation under wide range of attractant concentration. However, the extent of adaptation
depends on the saturation limit of receptor.
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which is termed as crosstalk. This helps the
cell to process wide range of inputs and to
trigger appropriate response using limited and
shared components inside the cell. However, such
integrated network also has the potential to
produce undesirable response. Cross inhibitory
mechanism function to insulate the pathways from
non-specific activation.87 In addition, signaling
pathways are capable of preventing spillage of

signals to other pathways through other insulating
mechanisms such as combinatorial signaling and
compartmentalization, which are unique to a
pathway.88,89 Combinatorial signaling requires
more than one input to activate the output
response. Compartmentalization prevents the
shared component from activating the pathway
localized in different compartments of the cell.
Similarly, sequestering and activation function of
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scaffold, can limit cross activation. On other hand,
cross activation can also help to amplify a weak
signal, provided multiple signals are required to
activate a single phenotypic response. However,
this property becomes insignificant in presence
of a strong stimulus. Quantification of degree of
crosstalk can elucidate its role in establishing a
phenotypic response. Crosstalk is best understood
as a ratio of activation of component by intrinsic
(input) stimulus to extrinsic (crosstalk) stimulus
with respect to the final output response of the
pathway, which is given by equation (4).90

Measure of crosstalk, C = Ri

Re
(4)

‘Ri’ and ‘Re’ represents the intrinsic and extrinsic
stimulus, respectively. If the activation of output
response of one pathway by another pathway’s input
is more than its own signal input (C < 1), then the
crosstalk is strong. While C > 1 indicates absence
of crosstalk and thus, the pathway is perfectly
insulated. Such a measure of crosstalk is termed
as fidelity of the pathway.88 Another measure of
crosstalk is specificity, which is defined as the ratio
of desirable output to non-desirable output. If the
pathway is activated by its own signal and but does
not affect the output of other pathway, then the
specificity is infinite or complete. However, with
some cross activation the specificity will be finite.
For measure of specificity less than one, input signal
to one pathway cross activate the output response of
other pathway more than its own output response.
In general different insulating mechanisms work
towards increasing the specificity and fidelity of a
signaling pathway.88

The above section on emergent properties of
the network co-relates the network properties with
the different regulatory structures present in the
network. Such relationship can be best understood
through quantification of the network, which
requires construction of mathematical models. In
next section, we discuss the different quantification
methods and analysis, which can be employed to
study signaling networks.

4. Quantification methods and analysis
The objective of the mathematical modeling varies
from predicting the dynamics of the system in
response to a stimulus to understanding the
emergent properties of the network. The choice
of the quantification methods depends on the
availability of the information that can be used
to build a model. Due to scarcity of quantitative
data from experiments, mathematical models
of the biological systems have to depend on
the qualitative/semi-quantitative data such as

western blot data. Input–output relationship of
the network can be measured experimentally and
the mathematical model can be constrained to
predict system parameters to match experimental
observation. The choice of some parameter values
depends on the experimental data obtained from
wild type and mutants, while the rest has to be
fixed based on parametric sensitivity analysis (see
below). Models provide an ideal platform to test the
effect of concentration and operating parameters, to
study the effect of network perturbation (in-silico
mutation), to analyze the roles and contributions
of different interactions, to predict the emergent
properties of the network and to identify the
missing information. In general, a mathematical
model developed should be able to generate valid
hypothesis which can drive future experiments.
Considering the complexity of biological system, it
will be better to build models for smaller modules
of the network before integrating the modules.
This helps to study the role and contribution of
individual modules towards the network response.
Moreover, building a complicated model such as
the stochastic models is tedious and hence can be
attempted only after considering the continuum
approximations of the system.

Quantification of signaling network involves
representing the set of elementary reactions
of allosteric interaction, covalent modification,
feedback interactions and transport of proteins
as a system of chemical reactions. Chemical kinetic
rate equations are used to describe elementary
reactions. Each rate equation represents ordinary
differential equation (ODE), which specify variation
of component concentration with time. In a well
mixed or homogeneous system, the solution of ODE
with concentration as continuous variable forms
the basis of deterministic modeling.36

dC

dt
= VG −Vc . (5)

The concentration of component C depends on
the generation (VG) and consumption (VC) rate
of the component, which in turn depends on
the stoichiometry and kinetics of the reaction.
Reaction can be zero order (synthesis), first order
(degradation) or non linear, typically second order
reactions or Michaelis Menten type kinetics. The
kinetics selected should be appropriate for the type
of biochemical reactions, in most cases the mass-
action kinetics are appropriate (equation (6)).

A+B ⇔ C

Va = kb ×C − kf ×A×B. (6)
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However, in enzyme catalyzed reaction with
substrate concentration much higher than enzyme
concentration (saturation) Michaelis Menten
kinetics should be applied.

V = Vmax

(
Sn

K n
m +Sn

)
(7)

‘Vmax ’ represent the maximum reaction rate,
‘S’ represents the substrate concentration, ‘K m’
represents Michaelis Menten constant for the
enzyme and ‘n’ indicates the degree of non-linearity.
Dynamic behavior of signaling pathways can be
studied by solving a set of coupled non-linear
ordinary differential equations (ODEs) representing
the individual components of the system, which is
given by

dC

dt
= N .V (8)

where component concentrations of the network is
represented as C =[c1c2c3 . . .cn]T and reaction rates
of the network (flux distribution) is represented
as V = [v1v2v3 . . .vm]T . Individual reaction rates
depends on the kinetic description of the reaction
involving regulation of enzymes and kinetic
parameters. Further, N represents the stochiometric
matrix, where rows of the matrix correspond to
network components and columns of the matrix
correspond to reactions with each element of
the matrix is the stochiometric coefficient of a
component in the associated reaction. N is invariant
against time, kinetics and concentrations. Dot
product of N and V results in Jacobian matrix,
which can be solved numerically. Such formulation
of the network is termed as kinetic modeling of
signaling pathways. Kinetic modeling of biochemical
reactions can be simplified considerably if the overall
reaction is studied with the aid of the quasi-steady-
state or equilibrium approximations. Steady state
behavior of the system can be obtained by setting the
derivatives of all concentrations zero and solving a
set of non linear algebraic equations simultaneously.

dC

dt
= 0 (9)

Steady state modeling approach provides insights
into the emergent properties of the network and
also helps to identify the role and contribution of
individual regulatory structures.

In deterministic approach, the dynamics of
system is studied only with variation in time
but not space. The localization of components
in different compartments influence the response
characteristics, hence a compartmentalized ODE

needs to be formalized. The same component
in different compartments is treated as separate
species and transport across the compartments
are modeled as fluxes. Compartmental ODE
modeling can capture the dynamics of spatially
restricted reactions, however with assumptions
that the transport rate across the compartment
is at slower rate and the compartment is well
mixed. However, such assumption does not hold
good for non-homogenous systems, where there is
explicit dependence of variable on spatial distributed
processes such as diffusion reaction. The dynamics
of signaling pathway in relation to variation in
space and time can be best described using a partial
diffusion equation (PDE).19 The concentration
of the components in a compartment depends
on the independent variables, such as diffusion,
and biochemical reactions, which are described by
diffusion-reaction equation.

∂C

∂t
= D

∂2C

∂x2
+ v (10)

where D represents the diffusion coefficient, C is
the concentration of the component, t is the time,
x is the spatial variable and v represents the rate
of generation and consumption of the component.
Nonlinear PDE requires more parameters as
compared to ODE and also need to specify the
boundary conditions in addition to the initial
conditions. Moreover, solving PDE requires more
computation and also time as compared to ODE.

Furthermore, in a deterministic approach the
system is considered to be macroscopic, well
mixed and the reaction is continuous. This is
a simplification of the chemical reaction, which
actually involve discrete, random collision between
molecules. Moreover, the biochemical reaction
occurs inside the cell, where the volume is
small. Chemical reaction becomes deterministic
in nature, if the reaction occurred at numerous
times per generation, which average out the
randomness. However, many biological reactions
occur infrequently leading to fluctuations, which
can be attributed to the stochastic nature of
the reaction. Lesser numbers of molecules and
limited diffusion due to the structural organization
of the cell contributes towards the fluctuation
of biochemical reaction. Stochastic modeling
approach involves predicting the probability of
collision between molecules resulting in reactions at
discrete time intervals. The discrete probability
distribution of reaction as function of time is
described by chemical master equation (CME).91

There are numerous stochastic approaches for
modeling reactions, but they are difficult to
implement analytically and researchers resort to
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numerical studies. One key simulation technique
is the stochastic simulation approach to chemical
reactions developed by Gillespie (1977) through the
stochastic simulation algorithm (SSA).91 However,
stochastic representations are complicated in
nature and hence the system can be modeled
as continuous reactions before attempting using
stochastic simulations.

Other methods based on qualitative discrete
framework is Boolean networks, where variables
are quantified as binary output, i.e. on or off and
the value of the one variable is functionally related
via a logical rule to the values of other variable.92

Dynamics of the system is generated by updating the
Boolean function, which causes system transition in
accordance with logical rules. In a logical regulatory
map, each node represents a protein or gene and
arc (directed edges) with signs (positive/negative)
representing the interaction. Each interaction is
characterized by a source and target which is labeled
by an integer (a threshold). This indicates the
specific condition under which the interaction takes
place. If the value of the source variable is equal to
threshold, the interaction is said to be functional
and their actions are described by logical parameters,
which defines the activation of target. The dynamics
of the system is represented by the state transition
graph, where nodes represent the states of the system
and arc represents the transition between the states.

Mathematical model can also be constructed
only based on the stoichiometry of the biochemical
reaction called as stochiometric model. This
model is useful when mechanistic details and
kinetic parameters are not available. Topological
structure of the reaction mechanism indicating
which species are linked by reactions forms
the basis of stochiometric modeling. Such an
analysis is widely used in analyzing the metabolic
networks, which essentially function along with
the signaling network to convert the nutritional
input into cellular response. The stochiometric
modeling approach is also demonstrated to be
useful for analyzing the signaling network from the
perspective of input–output relationship, crosstalk,
measure of redundancy, contribution of individual
reactions in signaling pathways and evaluation of co-
related reaction rates.93 Such properties essentially
depend upon the network structure. This approach
effectively involves formulating stochiometric
matrix of the signaling network based on the
reactions of the network involving allosteric binding,
dimerization and phosphorylation reactions. In
stoichiometric modeling approach, quasi steady
state approximation is employed (equation (11)).

0 = N .V . (11)

Stoichiometry matrix N captures the structural
relationship between the network components. This
results in system of linear equations, which can
be solved using linear optimization techniques.
However, this often results in infinite number
of solutions. To obtain appropriate solution it is
necessary to constrain the optimization based on
objective functions. Signaling network is subjected
to mass balance and thermodynamic constraints to
generate a set of systemic pathways that can fully
characterize a network.93 However, major drawback
of stoichiometric models is the limited predictive
power due to lack of regulatory information, which
can only be included in the formulation of a kinetic
model.

The models formulated based on the above
stated methodologies can be analyzed by subjecting
the model to perturbation in order to understand
the influence of component concentrations and
model parameter values on the overall response
of the network. Such an approach is termed as
parametric sensitivity analysis. Systemic behavior
is evaluated with respect to variation in single
parameter or multiple parameters, to evaluate
the key parameters in the network and to study
robustness of the network. Variation of multiple
parameters results in multidimensional analysis
with sensitivity of network behavior varying in
space. Such an analysis provides a global view of the
network behavior with operating zones based on the
minimization of objective function. The solution
space is represented by hills and valleys, with valleys
representing the less sensitivity region in response
to variation in parameters. Primary goal will be to
find global minima of the objective function using
global optimization techniques such as monto carlo
simulation.94 Such optimization techniques can also
used to estimate the parameters from experimental
results. Moreover, the reference parameter set of the
network can be defined and test parameter sets can
be generated by random variation of parameters.
The sensitivity of the global response can be plotted
against the distance between the reference and test
parameter set to get a scatter plot, which gives the
measure of robustness of the network.

Dynamic analysis methods such as stability
and bifurcation analysis are often used to identify
the qualitative changes occurring in a non-linear
dynamical system with respect to parameter
variation.67,95 The dynamics of the system changes
qualitatively either with system returning to original
steady state called stable steady state or become
unstable or shift to new steady state under
perturbation. Such qualitative change in the location
and stability of steady states is determined by
the parameter values of the system with different
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possibilities emerging in different parameter ranges.
Bifurcation analysis trace down the qualitative
changes which occurs at points in the parameter
space called bifurcation points. The most common
bifurcations in biochemical networks is saddle node
bifurcation and hopf bifurcation, which usually
leads to bistability and limit cycle oscillations,
respectively. The set of non-linear differential
equation is solved at steady state and the stability of
steady state is determined based on the eigenvalues
of Jacobian matrix.

4.1. Modeling tools and environment
Simulation of biological system depends on the
powerful numerical analysis methods to retrieve the
solution of set of non-linear mathematical equations
(ODEs, PDEs, stochastic, algebraic equations).
Biological analysis software is publicly available
for deterministic and stochastic simulations and
for model analysis such as parameter estimation,
parameter sensitivity analysis and bifurcation
analysis. The details of the software are available
in www.sbml.org. Majority of them are graphical
user interface (GUI) based modeling environment
and provides an opportunity for user with limited
computational and mathematical background to
simulate the biological systems. Biological models
can also be analyzed using general mathematical
programming environment such as MATAB and
MATHEMATICA.96,97 The modeling environments
also provide a provision to translate the developed
mathematical models into Systems Biology Markup
Language (SBML), which facilitates the exchange of
models among the modeling community.

5. Yeast Systems biology
Yeast Saccharomyces cerevisiae offers an excellent
eukaryotic model system to understand the
design principles involved in control of different
physiological response. Increasing wealth of
experimental and computational data and the
ease with which the genetic manipulation can be
made makes it an attractive model organism to
quantify and test hypothesis. The most well studied
signaling pathway in yeast are MAPK pathway,
which consist of three protein kinases MAPKKK,
MAPKK and MAPK acting sequentially. There are
functionally multiple MAPK pathways involved in
regulating mating, filamentous growth, cell integrity,
and osmotic stress.98 These MAPK pathways
share components and co-ordinate/crosstalk with
other pathways in regulating the phenotype.
Several experimental and theoretical works have
addressed how MAPK pathway achieves specificity
towards particular phenotype.87,99 However, little

is known about the relevance of the crosstalk of
MAPK pathway with other pathways involved in a
phenotype. Furthermore, MAPK pathways involved
in mating, osmotic and filamentous growth are well
characterized and are subjected to mathematical
modeling. In this section, we will be discussing in
brief the modeling of yeast MAPK pathways and the
insights gained into the principle of operation.

5.1. Mating pheromone pathway
Yeast MAPK pathway is experimentally shown to
demonstrate a graded response in the presence of
pheromone.100 This is in contrast to the behavior
of MAPK pathway in Xenopus oocytes, which
demonstrated a all or none type response in the
presence of progesterone. This demonstrates how
homologous signaling pathways have different
signaling characteristics. In yeast mating pathway,
the mating signal, α factor pheromone bind and
activates receptor Ste2, which in turn activates
the release of hetrodimer G protein, Gbγ through
removal of GDP from Gα. These events trigger
the MAPK cascade, which are bound to a scaffold
protein Ste5. The MAPK cascade includes Ste11
(MAPKKK), Ste7 (MAPKK) and Fus3 (MAPK).
Phosphorylated Fus3 signals to the downstream
effectors for induction of gene expression necessary
for mating, cell cycle arrest and polarized growth in
the direction of pheromone (Fig. 8(a)).98,101 The
transcriptional response to pheromone signal is
mediated by Ste12, which binds to pheromone
response element present in the target genes.
MAPK pathway is subjected to feedback regulation
involving multiple positive and negative feedbacks,
the significance of which is slowly being addressed
through mathematical modeling. The pathway
design, in general ensures the downregulation
of the pathway after successful activation of
target processes.101 Negative feedback regulation
of pheromone pathway exist at multiple levels,
which includes (1) binding of pheromone leading to
receptor ubiquitination and degradation; (2) GTP
hydrolysis by Sst2, which in turn is activated by
Fus3; (3) Dephosphorylation of Fus3 by protein
phosphatases Ptp2, Ptp3, and Msg5; (4) α factor
pheromone degradation facilitated by Bar1, which
is under the transcriptional control of Ste12;
(5) Expression of inhibitors Msg5 and Sst2 is also
under the control of Ste12 and (6) Ste11 (MAPKKK)
undergoes ubiquitination and MAPK dependent
degradation. Similarly, positive feedbacks are shown
to be functional such as (1) synthesis of receptor Ste2
and Fus3 controlled by Ste12 and (2) autoregulation
of Fus3 and Ste12. In general, transcription by
Ste12 affords multiple feedback loops (Fig. 8(a)).
The dynamic model of pheromone pathway was
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developed by Kofahl and Klipp (2004), which best
describe the time course of phosphorylation of
different proteins, complex formation, phenotype
of different mutants, time scales in which different
feedback proceeds and have also predicted the
duration of several signals.102 Furthermore, prolong
stimulation by pheromones have shown to decrease
the activity of the pheromone pathway, which
indicates the desensitization effect. This property
helps the cell to resume vegetative growth after
growth arrest in the presence of mating signal.
Computational model also indicated the important
negative feedback loops required to desensitize the
mating signal, thereby helping in having a perfect
adaptation. Furthermore, the quantification of
hetrodimeric G protein activation and de-activation
using in vivo experiments and mathematical model
provided a comprehensive understanding of G
protein coupled receptor (GPCR) regulation in
pheromone signaling.103

5.2. Effect of scaffolding
The pheromone pathway is highly dependent on
the scaffold protein Ste5, which tethers Ste11
(MAPKKK), Ste7 (MAPKK), and Fus3 (MAPK) to
form a complex. This helps to keep the kinases
and their substrates in close proximity, as well
as to prevent the influence of phosphatase. Such
a function of Ste5 also prevents the crosstalk
with other MAPK pathways.99 Phosphorylation
on the scaffold is shown to occur in a processive
manner, whereas in the solution phosphorylation
occurs through distributive fashion.104 Processive
mechanism involves only one collision for multiple
phosphorylation, whereas distributive mechanism
involves multiple collision with same kinase
with each step contributing towards single
phosphorylation. Interestingly, in model of Xenopus
MAPK pathway, dual phosphorylation of MAPKK
and MAPK were considered to occur in a distributive
fashion.51 However, with the assumption of
processive mechanism for phosphorylation reduced
the predicted Hill coefficient from 1.7 to 1.3 for
MAPKK and from 4.9 to 1.5 for MAPK.51 This
indicates that the steepness of the dose response
depends upon the mechanism of phosphorylation.
Hence, scaffold can function to reduce the Hills
coefficient of signaling pathways. However, this
need not be the case as the dephosphorylation in
scaffold are precluded due to sterical obstruction
of the phosphatase, which can make the response
sensitive. Furthermore, increased concentration
of kinases and scaffold together produce a zero
order effect leading to a sensitive response. Thus,
concentration of the scaffold, the substrate, and
the phosphatase concentration play an important

role in determining the Hill coefficients of the
MAPK pathway. Most importantly, presence of
a negative feedback can make the dose response less
sensitive, thereby transmitting the mating signal
in a linear (graded) fashion in addition to its
role in signal desensitization.105 It is also possible
that the presence of scaffold protein in yeast may
account in part for the dramatic differences in
the performance of Saccharomyces and Xenopus
MAP kinase cascades. Adding to this debate is a
recent study which shows that the yeast pheromone
pathway exhibits a bimodal gene expression in
a specific range of pheromone concentrations,
resulting from the combination of bistability in
pheromone induced gene expression and stochastic
noise.106 MAPK mediated activation of Ste12
upregulates the expression of mating-induced genes
forming positive feedback loops to exhibit bistable
behavior.

5.3. Osmotic pathway
Microorganisms in their natural environment
are often subjected to osmotic stress (change
in the activity of water), which makes them
to employ molecular mechanism required for
osmoadaptation. Signal transduction pathways
involved in osmoadaptation sense the osmotic
changes and transmit the signal to trigger
appropriate gene expression. During hyperosmotic
shock, decrease in activity of water leads to
dehydration of cells. This is overcome by
physiological response involving accumulation
of osmolytes such as glycerol, which helps to
regain the cell volume and turgor pressure.68

Osmoadaptation in yeast is shown to involve a well
characterized MAPK pathway called HOG pathway,
which controls the accumulation of glycerol. Hog1
(MAPK) is shown to activate the expression of GPD1
and GPP1, whose products are enzymes involved in
glycerol synthesis. Closing of glycerol regulated Fps1
channel also controls its accumulation inside the cell.
Sln1 and Sho1 are the upstream sensors and they
function as independent branches in the control
of activation of HOG pathway (Fig. 8(b)).68,107

These two branches have redundant function and
are shown to have different sensitivity to osmotic
stimulation, which is postulated to help the cells
to respond over wide range of osmotic stress. Sln1
branch is shown to be sensitive to osmotic changes
and responds in a linear fashion, whereas Sho1
branch respond in all or non fashion operating
with a threshold for activation.68 Sln1 and Sho1
regulate the activation of Psb2, which functions
as MAPKK towards the activation of Hog1. Sho1
binding to Psb2, brings together the Ste20 and Ste11
(MAPKKK), which leads to the activation of Ste11
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Figure 8: Yeast systems biology. (a) Pheromone signaling involving α factor mediated activation of MAPK cascade with different
feedback regulations. (b) Osmotic signaling involving two branches, Sho1 and Sln1 (phosphorelay module) with multiple negative
feedback regulation through phosphatase activation and desensitization of receptor. (c) Filamentous growth network involving multiple
pathways cAMP-PKA, MAPK and TOR pathways co-ordinate together in the regulation of FLO11 under nitrogen limitation. TOR
pathway controls the general stress response (STRE) and translational regulation of G1 cyclins through Tap42. Double negative feedback
look in TOR pathway leads to bistability in filamentous growth network.

(a) (b) (c)

and Psb2. Other than MAPKK function, Psb2 also
functions as a scaffold for Sho1 branch. Interestingly,
this raises the question whether scaffold dependent
activation of Sho1 branch can lead to graded
response instead of all or none response. Sln1
is a negative regulator of the HOG pathway,
which is activated under hypo osmotic condition
and inactivated during hyperosmotic condition.
Sln1 branch contain phosphorelay module of
Sln1-Ypd1-Ssk1. Inactivation of Sln1 leads to
dephoshorylation of Ssk1 via Ypd1. This leads to
the activation of MAPKKKs Ssk2/22, which in turn
activate Psb2. Moreover, Hog1 mediated effects
are transient due to the effect of multiple negative
feedbacks loop, which offers a perfect adaptation
(Fig. 8(b)).68 Osmoadaptation in yeast offer an
interesting network to systematical analyze through
mathematical modeling to gain further insights into
the network operation involving multiple feedbacks.

A comprehensive dynamic model of osmotic
signaling was developed by Klipp et al, which serves
as a tool for studying osmoadaptation.108 The
model is able to predict the dynamic operation
of the several processes such as (1) crucial role of
closing of Fps1 channel leading to initial increase in
glycerol accumulation using basal level synthesis of
glycerol (2) higher glycerol concentration depends
on the glycerol production with increase in glycerol
synthesizing enzyme Gpd1, which leads to long
term adaptation and (3) phosphorelay module of
three components Sln1, Ypd1, Ssk1 demonstrate a

switch like response, which depends on a number
of components. Furthermore, simulations and
experiments demonstrated that the accumulation of
glycerol plays a major role in the downregulation
of the HOG pathway by way of biophysical effects
such as cell swelling and increase in turgor pressure,
which have the effect on Sln1 activation and Fps1
opening. Less significant effect of phosphatase Ppt2
concentration was observed on the downregulation
of HOG pathway through deactivation of Hog1.
However, the phosphatase is required for reversing
the system quickly with downregulation of HOG
pathway to sensitize the system for any further
increases in osmotic shock. The major drawback
of the model was that the effect of Sho1 branch
was not included and the need for redundant
pathways in osmotic signaling was not analyzed.108

Moreover, Sho1 branch was recently confirmed to
have negative feedback regulation directly through
inactivation of Sho1 by Hog1, however the relevance
and need of this negative feedback with respect to
the negative feedback exerted by turgor pressure
requires investigation.109 Both pheromone and
osmotic MAPK pathways bring about transient
response due to the presence of multiple negative
feedback loops. However, in osmotic signaling
the feedback does not desensitize the sensor for
further activation by osmotic signal, whereas the
negative feedback in pheromone signal desensitize
the receptor to prevent further activation.101 This
stem from the fact that the Sln1 sensor can switch
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between activated and deactivated state depending
upon the turgor pressure to adapt perfectly.68

However, in pheromone signaling the receptor
gets degraded by feedback mechanism and re-
synthesis depends on the removal of pheromone.
This difference in adaptive principle is indicative of
the relative importance of the signaling pathways
towards cell’s survival.

5.4. Filamentous growth network
Diploid yeast Saccharomyces cerevisiae respond
to nitrogen starvation by invoking filamentous
growth, which helps them to forage for nutrient
and reach an environment conducive for growth.
This adaptive mechanism is under the control of
complex signaling network of multiple signaling
pathways, cAMP-PKA, MAPK and TOR pathways,
which are global regulators involved in multiple
function inside the cell (Fig. 8(c)).110,111 These
pathways integrate to control the expression of
FLO11, a flocculin gene involved in filamentous
growth through multiple transcriptional activators
Flo8p, Ste12, Tec1 and Mss11. However, little is
known in terms of how these pathways integrate
the environmental signal into gene expression.
Experimental and steady state modeling approach
have helped to unravel the operating principle
governing the conversion of nutrient signal into
FLO11 expression.

Mathematical model of cAMP and MAPK
pathways have been constructed to study their role
and contribution towards FLO11 expression.112

Further, the effect of crosstalk on the signaling
pathway and expression of FLO11 were also
analyzed. FLO11 expression demonstrated a highly
sensitive response with respect to cAMP-PKA
pathway activation, whereas a subsensitive response
to MAPK pathway activation. The sensitive nature
of FLO11 expression is attributed to an inhibitor
of FLO11, Sfl1 inactivated by cAMP-PKA pathway,
which brings about a switch like behavior to FLO11
expression. Experimental evidence from Fink’s
group suggests that Sfl1 also plays a role in bringing
heterogeneity in FLO11 expression.113 Furthermore,
crosstalk from MAPK pathway helps in amplifying
the cAMP-PKA at upstream of the network and also
functions at the gene level to amplify gene expression
through helping in cooperative binding of Flo8.
Experiments have demonstrated that the steady state
expression of FLO11 was bistable over a range of
inducing ammonium sulphate concentration based
on the preculturing condition.114 Further, yeast
switched from FLO11 expression to accumulation of
trehalose, a response dependent on the expression of
stress-responsive element (STRE) genes controlled
by transcriptional activator Msn2/4, with decrease in

the inducing concentration to complete starvation.
The analysis included a steady state modeling of
the integrated network including the ammonium
sulphate transport and sensing functions. Mep2, an
ammonium sensor functions upstream of cAMP and
MAPK pathway to sense and transport ammonium
sulphate. Similarly, TOR pathway functions as
intracellular sensor for nitrogen and has functions
to maintain the vegetative growth of the cell.
The double negative feedback loop in the TOR
pathway is shown to elicit a bistable response, which
differentiate between vegetative growth, filamentous
growth and STRE response.114 Negative feedback
on TOR pathway functions to restrict the expression
of FLO11 under nitrogen starved condition and
also on re-addition of nitrogen to starved cells
(Fig. 8(c)). In general, these global signaling
pathways respond with specific sensitivity to regulate
the expression of FLO11 under nitrogen limitation.
Such differences in sensitivities of different pathways
help to differentiate between multiple phenotypes
using global signaling pathways.

5.5. Budding cell cycle model
Molecular mechanism of cell cycle control in
budding yeast is well characterized. Cell cycle
involves processes such as DNA synthesis, bud
emergence, spindle formation, nuclear division
and cell separation. Progression through cell cycle
involves temporal gaps G1 and G2 (growing and
preparation) inserted between S phase (DNA
synthesis) and M phase (mitosis). There are multiple
control mechanisms which monitor the progress
through cell cycle called checkpoints. Cyclin
(Cln1-3 and Clb1-6) synthesis and degradation
play a principal role in coordinating cell cycle
regulation.115,116 Other main components are
cyclin-dependent protein kinase (Cdk) which form
complex with cyclins and phosphorylate specific
protein targets to induce both S and M phase
depending on the type of cyclin it binds (Fig. 9(a)).
Cdk/cyclin complexes can be downregulated by
inhibitory phosphorylation of the Cdk subunit
and by binding to a stoichiometric inhibitor
(cyclin-dependent kinase inhibitor (CKI)). The cell
cycle regulation has been subjected to extensive
mathematical modeling to gain insight into the
dynamics of cell division.116–118 An integrated
model developed by Tyson and co-workers is
available in the budding cell cycle homepage
(http://mpf.biol.vt.edu/research/
budding yeast model/pp/index.php).118

Cell cycle network structure has all the
ingredients to exhibit multiple properties such as
bistability, oscillation, irreversibility and robustness,
which provides sharp transition between different
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Figure 9: Budding yeast cell cycle regulation. (a) Cell cycle progression through G1, S, G2 and M phase
are coordinated through synthesis and degradation of cyclins. G1 phase is controlled by cyclins Cln1/2/3,
with Cln3 regulated by critical size of the cell and Cln1/2 synthesis regulated by Cln3. The transition from
G1 to S phase is governed by activation of cyclin Clb5, through inactivation of its inhibitor Sic1(CK1)/Cdh1
by Cln1/2. The transition from S to M phase occurs with accumulation of Clb2, which also occurs with
removal of its inhibitor Sic1/Cdh1, however with time delay. Clb2 decreases the synthesis of Cln1/2 and
Clb5. The exit from the mitosis is governed by activation of negative feedback through APC/Cdc20, which
brings about the degradation of Clb2. Cdc20 also activates Sic/Cdh1 through Cdc14 to inactivate Clb2.
APC/Cdc20 also degrades the Clb5 cyclin. (b) A bistable motif representing the switch between G1 and
S/M controlled by Cln/Clb5 and Sic1|I/Cdh1, respectively. (c) A relaxation oscillator involving alternate high
and low Clb2. (d) Negative feedback oscillator involving negative feedback regulation of Clb2 through
activation of APC/Cdc20.
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phases and also to maintain specific phase. Cell
cycle regulation exhibits a closed loop behavior of
switching the activity of mitotic Clb-Cdk1 from
low to high and maintaining the activity before
switching it back to low for the next round of
cell division.116 The basis for cell cycle regulation
is mutual antagonism between Clb-Cdk and the
inhibitors Sic1/Cdh1, which can yield multiple
steady state of G1 and S/M. Transition between
these states depends on the control system which
alter the strength of the feedback (Fig. 9(b)).116,118

Transition from G1 to S/M depends on the synthesis
of G1 cyclins, which can antagonize the inhibitors
Sic1/Cdh1, leading to activation of Clb-Cdk1.
G1 cyclins synthesis gets inhibited by Clb-Cdk1,
which also antagonizes Sic/Cdh1. Similarly, the
transition from S/M to G1 depends on the negative
feedback loop activated through APC-Cdc20 by
Clb-Cdk1 leading to its inactivation and activation
of Sic1/Cdh1. Checkpoints help in maintaining

G1 and M phase. G1 phase is maintained until the
inhibition of synthesis of G1 cyclins by cell’s critical
size condition and M phase is maintained with
delay in the activation of negative feedback. Cross
(2003) have shown that the cell cycle regulation
embeds both a negative feedback oscillator involving
negative feedback regulation of Clb-Cdk1 through
APC-Cdc20 and a relaxation oscillator involving
alternating high and low Clb (Figs 9(b) and (c)).69

However, both these oscillators are redundant in
their function to help in exiting mitosis (M/G1)
and can function independently. Such redundancy
can contribute towards the robustness of the cell
cycle. Interestingly, evidence from Xenopus laevis
also suggested that G2/M can function like toggle
switch, where Clb2-Cdk1 is involved in mutual
activation with Cdc25 (phosphatase) and mutual
inhibition with Wee1 (kinase) (Fig. 10). Bistability
in this module help to maintain a discrete M
phase.70,119 This is interesting considering the fact
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that the module of Clb-Cdk1 can exhibit bistability,
a steady state property and oscillation, a dynamic
property. Ferrel and co-workers have analyzed this
relationship using a simple computational model
and demonstrated that the module functions as
relaxation oscillator with positive feedback essential
for obtaining sustained oscillation, which was also
verified experimentally.120 Hence, negative feedback
loop can convert the bistability into a limit cycle
behavior with checkpoints serving as bifurcation
point, which makes cell-cycle network extremely
stable and robust for its function.

6. Mammalian signaling pathways
Extensive studies using mammalian cells have
deciphered signaling pathways involved in the
regulation of cell growth, survival, proliferation,
metabolism and apoptosis.121,122 Quantification of
pathways in the mammalian cells can be exploited
to understand pathogenesis of a disease state and
in identification of drug targets. Signaling through
receptor tyrosine kinases (RTKs) plays a central role
in the control of cellular processes. Malfunctioning
of RTK signaling functions leads to various disease
conditions such as cancer, chronic inflammatory
syndrome and diabetics.123,124 Epidermal growth
factor receptor (EGFR) and insulin receptor belong
to the family of RTKs, which upon stimulation
activates multiple interacting pathways such as
phospholipase C-γ (PLCγ), phosphatidylinositol
3-kinase (PI3K)-AKT/protein kinase B (PKB) and
extracellular signal-regulated kinase (ERK)/MAPK
pathways.121,122 Activated EGFR interacts with
adapter protein, growth factor-receptor-bound
protein 2 (Grb2) directly or through Shc, which
helps to couple the signal from EGFR with Ras. Grb2
releases the guanine nucleotide-releasing factor, Son-
of-sevenless (SOS), which catalyses the conversion of
GDP to GTP on Ras, resulting in Ras activation. This
in turn results in the activation of MAPK cascade,
namely Raf1, Mek1 and Erk (Fig. 11).

Several computational models of the EGFR-
MAPK signaling have been developed to understand
its dynamics.125,126 Earlier models were primarily
focused on the dynamics of the receptor trafficking
and ligand induced endocytosis, which predicted
the properties such as the robust proportional
control behavior of EGFR. Model describing
the signaling from receptor to the Ras GTPase
was developed by Kholodenko (1999) using
experimental information. Models of MAPK
signaling were developed by Bhalla (1999, 2002) and
Asthagiri and Lauffenburger (2001) demonstrating
bistability (positive feedback) and adaptive (negative
feedback) behavior, respectively.17,72,76 Brightman
and Fell (2001) showed through a quantitative

model that differential feedback regulation can
bring about transient and sustained activation
of MAPK in response to epidermal growth
factor (EGF) and nerve growth factor (NGF),
respectively.127 Interestingly, recent study confirmed
this hypothesis to show that the activation of
negative feedback by EGF leads to transient
response and activation of positive feedback
by NGF leads to bistable response.128 The
first detailed large-scale mathematical model
(http://web.mit.edu/dllaz/egf pap/) of the
basic EGFR signaling was developed by Schoeberl
et al. (2002), which described the effect of
receptor internalization on MAPK activation.129

Authors showed that the amplitude of MAPK
activation demonstrates a non-linear dependence
on EGFR. A realistic multi compartmental model
demonstrated the differential kinetics of EGFR
activation by EGF and transforming growth
factor-alpha (TGF-alpha), which was also verified
experimentally.130 Mathematical models were also
developed addressing the role of crosstalk between
MAPK and AKT/PKB pathways and how MAPK
output characteristics (time delay, signal amplitude,
duration of output) depended on the component
concentrations and parameter values.131,132

Another growth factor stimulated pathway
other than EGFR is the insulin pathway. Binding
of Insulin to its receptor activates PI3K/AKT
pathway in addition to MAPK pathway, to control
cell differentiation, protein synthesis and glucose
metabolism involving uptake of glucose and
glycogen/lipid synthesis.124 On insulin binding,
the receptor undergo autophosphorylation and
enhanced tyrosine activity to activate insulin
receptor protein (IRS1), which serves as a docking
site for the regulatory subunit of PI3K. This leads to
the activation of PI3K, which in turn phosphorylate
the phosphatidylinositol 3,4,5-trisphosphates (PIP3)
to activate 3-phosphoinositide-dependent protein
kinase (PDK)-1. Further, PDK1 and PIP3 activate
the downstream kinases Akt and protein kinase C
(PKC), which facilitate the translocation of glucose
transporter GLUT4 from intracellular compartment
of the cell to plasma membrane (Fig. 11).124,133

PTP1-B is a phosphatase that negatively regulates
the insulin signaling by dephosphorylating the
insulin receptor and IRS1. Insulin pathway is also
subjected to multiple feedback regulation involving
phosphorylation of PTP1B (positive feedback) and
IRS-1 (negative feedback) controlled by Akt and
PKC. Furthermore, Akt activates nutrient mTOR
signaling, which exerts a negative feedback on
insulin signaling.

Quon and co-workers have carried out extensive
mathematical modeling of insulin signaling starting

Journal of the Indian Institute of Science VOL 88:1 Jan–Mar 2008 journal.library.iisc.ernet.in 19



REVIEW P. K. Vinod and K. V. Venkatesh

Figure 10: Integration of bistability and oscillation to yield a relaxation oscillator in G2/M phase in
Xenopus laevis. Bistability arises due to mutual activation and inhibition of cyclin Clb2 with Cdc25
(phosphatase) and Wee1 (kinase), respectively. Oscillation depends upon the negative feedback regulation
of Clb2 through activation of APC/Cdc20.
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with subsystem models such as insulin receptor
binding kinetics, receptor recycling and GLUT4
translocation.134–136 An integrated model was
developed by including these subsystems and also
post receptor signaling, which now serve as a tool
for studying insulin signaling.137 Model simulations
matched well with the experimental data and also
demonstrated the effects of feedbacks. The study
demonstrated that in the absence of feedbacks
the half saturation constant for GLUT4 and PI3K
increase slightly without much change in the
sensitivity of the response compared to the response
in the presence of feedback. Similarly, without
feedback the biphasic behavior of PKC activation
was lost. However, the role and contribution of
individual feedback was not analyzed. Recently,
a steady state model of the insulin pathway
demonstrated that GLUT4 translocation can operate
as a bistable switch with respect to insulin
concentration.138 The study demonstrated the effect
of component concentration and parameters of
insulin pathway on GLUT4 translocation, which
provided insights into the pathological conditions
such as insulin resistance. On other hand, negative
feedback regulation of insulin signaling can be
expected to give rise to an oscillatory behavior.
Such positive and negative feedbacks can function
together to make bistable or oscillatory behavior of
GLUT4 robust. Any modification to robust setting
either due to overactivation of the positive feedback
or negative feedback can result in a disease state.

Furthermore, Akt is involved in crosstalk with
tumor suppressor protein, p53, which control the
cell’s decision between survival and death. Akt
and p53 form a mutually antagonist circuit. p53
activates tumor suppressor gene PTEN (phosphatase
and tensin homolog), which inhibits PIP3 of Akt
signaling. On other hand Akt activates another
oncogene Mdm2, which inhibits p53. Interestingly,

p53 also activates Mdm2 (Fig. 12).139,140 This
forms the simple network of cancer relevant genes.
Computational model developed showed that the
network can exhibit bistable behavior producing
robust survival-death switch.141 Moreover, the
model predicted the apoptosis threshold and
network perturbation due to DNA damage and
Akt inhibition which can be experimentally tested.
Interesting, a simple mathematical model suggests
that the negative feedback between p53 and Mdm2
can bring about oscillation in p53 protein levels
in response to stress. This feature is proposed to
help the cells to repair the damaged DNA without
triggering apoptosis due to excessive activation
of p53.142,143 Different models discussed so far
have regulatory structures capable of eliciting both
oscillatory and bistable response, which can offer the
cell an advantage in terms of achieving the desired
phenotype. These properties can be expected to
be coupled (as seen in the cell cycle regulation) to
offer robust cellular response. The other signaling
pathways for which mathematical model have
been developed is Jak–Stat pathway, WNT/β-
catenin pathway, calcium–calmodulin network,
integrated signaling network in neurons and cell
death pathways.17,144–146

7. Conclusion and perspectives
Quantification of signaling pathways brings together
different qualitative and quantitative information
of individual proteins to gain a system level
understanding of cellular processes, which is
not evident from the interaction map. In the
current scenario, there is a vast pool of qualitative
information and limited amount of quantitative
information that are available to model biological
systems. Mathematical models are constrained by
the lack of quantitative data and have to depend
upon the assumption of parameters derived from
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Figure 11: Receptor tyrosine kinase (RTK) Signaling. Binding of growth factor (insulin) to insulin receptor
activates (PI3K)-AKT/protein kinase B (PKB) and extracellular signal-regulated kinase (ERK)/MAPK pathways.
PI3K-AKT signaling controls the translocation of GLUT4, a glucose transporter required for uptake of
glucose, protein synthesis through activation of mTOR signaling, glucose metabolism, cell survival and
proliferation. Insulin signaling is subjected to positive feedback through inactivation of phosphatase PTP1B,
which inactivates the signaling by dephosphorylating the insulin receptor and insulin receptor substrate
(IRS1). Negative feedback regulation involves activation of S6K1 and PKC-ζ, which phosphorylate serine
residues in IRS1 to prevent tyrosine phosphorylation of IRS1. S6K1 is activated by mTOR pathway, which is
controlled by insulin signaling pathway through inactivation of tuberous sclerosis complex, TSC1/2. mTOR
pathway is also controlled by nutrients and ATP independent of growth factor signaling. ERK signaling
involves activation of MAPK cascade, which controls cell cycle progression and proliferation. MAPK cascade
is subjected to positive feedback regulation through activation of PKC and negative feedback regulation
through phosphorylation of MAPKKK/SOS. In addition ERK pathway crosstalk with PI3K-AKT signaling
through activation of PI3K and inactivation of TSC1/2.
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biological intuition. With the help of method
such as parameter sensitivity analysis it has
become possible to explore the entire spectrum
of parameter space under which the network
behavior changes qualitatively. A mathematical
model, such as for the budding cell cycle comprising
of greater than 100 unknown parameters, was
successfully able to capture the dynamics of cell
cycle using qualitative information of different
mutants. The different examples in yeast and
mammalian system demonstrated that the system

design offer the cells to respond either in transient
or sustained manner. Signaling network exhibit
emergent properties, which help the cells to achieve
the desired phenotypic state in a controlled and
robust manner. The regulation of biological systems
through feedback control can offer the system
with different properties such as ultrasensitivity,
bistability, hysteresis, irreversibility, adaptation,
oscillation and robustness. However, the biological
control involving feedback regulation can also make
the system vulnerable under non-physiological
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Figure 12: Crosstalk between Akt and p53, central regulator of cells’s survival and death. Regulatory
circuit of Akt-p53 provide oscillatory behavior through negative feedback regulation of p53 by oncogene
Mdm2 and bistable behavior through mutually antagonist circuit involving Akt and p53
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conditions. For example, hyperactivation of positive
feedback makes reversible system irreversible and
hyperactivation of negative feedback can make
responsive system less sensitive. This is of bigger
significance, especially in understanding disease
states such as cancer and diabetes, a manifestation
also resulting from the hyperactivation of positive
and negative feedbacks in growth factor signaling
pathway, respectively.

Mathematical model which are discussed here
essentially demonstrated how different regulatory
structures in the signaling network function and
contributed towards the survival and growth of cells
under different environmental conditions. It should
be noted that the different regulatory structures
of the network only constitute the sub modules of
the network and need not necessarily influence
the network properties as a whole. Building
a mathematical model of the cellular process
allows the researcher to test these possibilities
through in silico mutation, which is experimentally
cumbersome. Model predictions narrow down the
targets and identify the presence of components,
which biologist can test or decipher in limited
time. The model validation through experiments
helps to refine the model and to increase the
predicting capability of the model. Such a process
involving experimental and modeling approach
should operate in a cyclic fashion to contribute
towards better understanding of cellular processes.

Molecular biology has and will continue to
decipher various interactions to yield a molecular
map through reductionist approach. It is becoming
clear that a cellular response cannot be completely
understood by just knowing the molecular map of
signaling networks. Quantification of these networks
at a system level is essential to understand cellular
functions. This implies that the future experiments
should strive at obtaining quantitative data at the
systems level. Theoretical methodologies must also
be developed to handle large number of interactions

between components and a rational approach in
analyzing system parameters. A integrative approach
of model development in hand with experimental
techniques will help in characterizing a cellular
function, which further can provide insights into
disease states and drug discovery. Future aim in
quantitative biology will work towards integrating
networks at genetic, signaling and metabolic levels
to obtain a cell level perspective.
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