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Abstract. 'We solve analytically the problem of a biased random walk on a finite chain of
‘sites’ (1,2,..., N) in discrete time, with ‘myopic boundary conditions’—a walker at 1 (or N)
at time n moves to 2 (or N — 1) with probability one at time (n + 1). The Markov chain has
period two; there is no unique stationary distribution, and the moments of the displacement
of the walker oscillate about certain mean values as n— oo, with amplitudes proportional
to.1/N. In the continuous-time limit, the oscillating behaviour of the probability distribution
disappears, but the stationary distribution is depleted at the terminal sites owing to the
boundary conditions, In the limit of continuous space as well, the problem becomes identical
to that of diffusion on a line segment with the standard reflecting boundary conditions. The
first passage time problem is also solved, and the differences between the walks with myopic
and reflecting boundaries are brought out.

~ Keywords. Random walk; myopic random walker; periodic Markov chain.
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1. Introduction

In an unbiased random walk on a regular lattice, the walker is usually assumed to
jump from a site m to any of the g nearest-neighbour sites with an a priori probability
1/9. An interesting situation arises in a random walk on a disordered lattice, such as
a percolation cluster (the well-known ‘ant-in-the-labyrinth’ problem (de Gennes 1976;
Straley 1980)). Owing to the disorder, the number of nearest-neighbour sites may
vary randomly from site to site. A walker at site m may jump to any of the g,, available
nearest-neighbour sites with a probability that continues to be 1/g (the ‘blind’. ant),
or with probability 1/g,, (the ‘myopic’ ant) (Mitescu and Roussenq 1983; Stauffer
1985). The latter situation may be expected to induce some extra correlations in the
random walk. There is a considerable amount of literature on the subject, dealing
especially with numerical simulations (Mitescu and Roussenq 1983; Pandey et al
1984). While there is evidence to show that the blind and myopic ants belong to the
same universality class (Seifert and Suessenbach 1984; Stauffer 1985), the two random
walks differ in detail in several respects.

By far the simplest situation in which one can examine analytically the differences
between ‘myopic’ and ‘ordinary’ random walks is a random walk on a finite chain
of sites (1,2,..., N). At each non-terminal site m (i.e., m=2,..., N — 1), the walker jumps
(at the next time step) to the neighbouring site (m — 1) or (m + 1), the total probability
of a transition out of the site m being equal to unity. At site 1 (respectively, N), a
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myopic walker would jump at the next transition to site 2 (respectively, N — 1) with
probability one, as sites 1 and N have just a single nearest-neighbour each. In contrast,
the reflecting boundary conditions one usually imposes (in ‘probability-conserving’
random walks without traps, absorbers, exit points, etc.) imply, in the present instance,
that the walker has a non-zero probability of remaining at site 1 (or N) after the next
time step. This difference in the behaviour of the walker at the terminal sites enables
us to understand, in a simple model that can be solved analytically, at least some of
the interesting features of a myopic random walk. In a slight abuse of language, we
shall refer to myopic (as opposed to reflecting) boundaries or boundary conditions,
although it is the walker who is myopic.

We solve the problem of a myopic random walk on a finite linear chain in discrete
time, and in the presence of a uniform bias. There is no unique equilibrium distribution.
We examine the asymptotic behaviour of the probability distribution, and also that
of the mean displacement and the mean squared displacement of the walker. In
contrast to the case of reflecting boundaries, these quantities oscillate asymptotically
with amplitudes proportional to N~!, the inverse of the system size. Although the
oscillatory behaviour disappears in the continuous-time limit, and a unique equilibrium
distribution is reached asymptotically, this distribution displays a depletion at the
terminal sites 1 and N because of the boundary conditions. In the limit of continuous
space as well, the differences between myopic and reflecting boundary conditions
disappear altogether. The first passage time from one site to another is also studied,
providing further insight into the role played by myopic boundary conditions in the
random walk.

2. The random walk

2.1 The transition matrix

Consider a random walk (RW) in discrete time n(=0, 1,2,...) on thesites m=1,2,...,N
of a finite linear chain. The walker makes nearest-neighbour hops with probabilities
Prim—»m+ 1)=pform>2,Pr(m—»m—1)=gq for m< N — 1, where p + q= 1. Since
the walker is myopic, Pr(1 =2)=Pr(N =N — 1) = 1. The probability of the walker
remaining at any site for more than a time step (sometimes called the sojourn
probability at a site (Murthy and Kehr 1989)) is thus zero. Let P,(m) be the probability
that the walker is at site m at time n, and let P, denote the column vector with elements

(P,), =P, m), m=1,2... ,N. (1)

Then the random walk is a Markov chain (Cox and Miller 1972; Feller 1972) with
transition matrix M:

P,.,=MP, (n=0,12,..) (2
where M is a tridiagonal matrix with

Mpyiim=p (m#1), My =1,
Mm,m+1=q (m;éN——l), MN—I,N=1' (3)

F .
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A myopic random walk on a finite chain 493

We note that, in contrast, the transition matrix for a (biased) RW on a linear chain
with standard reflecting barriers at the ends has M,; = p, My_, y= g, and moreover
M, =(1—-p)=g, Myy=(1 —q)=p. These nonzero diagonal elements at the ends
arise because the walker can remain at site 1 or site N after a time step, after ‘bouncing
back’ from the reflecting barriers imagined to be at positions 1/2 and N + § respectively.
They are mainly responsible for the differences between the walks with reflecting and
myopic boundaries.

The stochastic matrix M is irreducible and is not symmetric even in the unbiased
case p = q. Its eigenvalues are

Ao=1,2,=2(pq)"*cosb, (r=1,...,N—2),Ay_,=—1, (4)
where ‘
0, =rn/(N —1). (5)

(In contrast, the eigenvalue spectrum for reflecting ends is given by A, = 1, 4, = 2(pq)*/?
cos(rn/N), r=1,...,N — 1) The Frobenius-Perron theorem (Gantmacher 1959; Cox
and Miller 1972) applied to M leads at once to the following conclusions:

The Markov chain is positive recurrent: each site m is visited infinitely often by
the walker, with a finite mean time between successive visits. The existence of two
eigenvalues (4, Ay—;) with unit modulus makes the Markov chain periodic, with
period two: if the walker is at any site at time n, a return to that site is possible only
at times n+ 2, n+4,.... The reason is that the probability of remaining at any site
after a time step is zero. (In the reflecting-barrier case, the non-zero sojourn probability
at a terminal site suffices to make the walk aperiodic.) Owing to the periodicity above,
there is no unique equilibrium or stationary distribution given by lim,_, , P,. Instead,
the walker alternates between even-numbered and odd-numbered sites in successive
time steps, retaining in this sense some memory of the starting point. These remarks
will be made more precise shortly. '

2.2 Oscillatory asymptotic behaviour

The determination of the right and left eigenvectors i, and ¢! of the matrix M
is sketched in the Appendices. In terms of these, the solution to (2) is

P,=MPo= Y Ao}V, 6)
r=0

for an arbitrary initial distribution P,. Therefore, when n becomes very large,
P,.-+(¢8Po)ll/o +(— 1)"(¢L_1P0)11’N—1, (7)

because A} — 0 for the remaining (N — 2) eigenvalues. As shown in Appendix A, the
elements of ¢! and ¢},_, are given by

imy=1, ¢l _ (m)=(—1""" )
Therefore ¢piP, = Po(1) + --+ + Po(N) = 1. It is convenient to define the ‘cyclic subsets’
of sites C=(1,3,5,...) and C' =(2,4,6,...), and call

S P,(m)=P,(C), T P,(m)=P,(C), | 0

meC meC’
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with of course P,(C)+ P,(C')=1 for each n. Further, we find (see Appendix A) that
the elements of Y, and ¥y, are given by

| v/o(m>=§<-l;]v—_—’i—_—_—§m)qfv-m-1pm*2nm, o

Yy—1(m)={(—1)"" o (m), (11)
where

ni=p fMm=1QR<m<N-1), ny=gq ' (12)

Using the foregoing, the asymptotic behaviour of the probability is as follows:

. (2P (Cro(m), meC

Jim P 2"("’)“{21’5(0)%(;71), meC, .
.  [2Po(C)olm), meC
lim P 2"“('”)‘{21)2(@:/,:@), meC.. (14

In particular, if the random walk starts from a definite site mq, Po(m) = 0y, m,- Then
the conditional probability P,(m|m,) has the asymptotic behaviour

P, (m|mg) = [1+ (= 1" ™m0 Jyo(m). (15)

It is easily verified that iy ,(meC) = Zy,(meC’) = 1/2, so that the normalization of
P,(m|my) is retained in (15). The oscillatory behaviour implied by (15) is smoothed
out by taking a time average: from the explicit solution for P,(m|m,) to be presented
further on, we can show that

i (1/n) 3, Py (nlmo) = i), (16)

The oscillatory behaviour of P, is seen most clearly from the relationship
Py (C)=P,.1(C')=P,.,(C) (17)

which is valid for all n. This relation is evidently true because the sojourn probability
at any site (including the end points) is zero, and there are no absorbing barriers.
Equation (17) can also be established formally from the solution for P,, eq. (6): writing

Y, (C)y = Z¢,(meC) and ¢,(C') = Zy,(meC’), the relation My, = 2,3, can be used to
show that :

O =, (C), A (C)=,(C) )

for each eigenvalue. (We do not need to use the explicit solution for ¥, in doing so,
merely the relation p + g = 1.) Equation (17) follows at once.

2.3 Exact solution for P,(m|mg)

For a random walker starting from a specific site m, at time 0, the conditional
probability to be at site m at time n is given by .

Py(nimo)= 3. 22410l (m (19

T T,
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It is convenient to separate the r =0 and » = N — 1 contributions to the sum. Using
the relations (8) and (11), we have

: N-2
Py(mmo) =[1 4 (= 1)""™* ™ o (m) + Zl A7 §l(mo ), (m). (20)
We see that the limit quoted in (16) follows because |A,| < 1 for 1 <r< N —2.

Unbiased random walk: In this case, p=g=1/2 and 4, = cos 8, = cos(rn/(N — 1)).
Using the expressions found in the Appendices for the eigenvectors of M , We obtain

, 0
Pymimo) = 1)[1 +(= e

N-2
+2 ) cos"f,cos(my— 1)6,cos(m — 1)0,:', (21)
r=1

where

1 Sm,mosN
and :
0, =0y=1/2, 6,=1for2<m<N-—1. (22)

We note that P,(m|m,) is not identically equal to P,(m,|m) in general on a finite
chain, even in the absence of bias. On the other hand, since the chain has no preferred
end (in the unbiased case), we must have the symmetry

P,(m|my) = P,(m'|my) (23)
where
m=N+1-—m, mo=N+1—m,. (24)

This follows from our solution on observing that cos(m’ — 1)6, = (— 1) cos(m — 1)8,

and 6,,, =0,,, for I<m<N.

Biased random walk: Using the eigenvectors found in the Appendices, we get

1 - - -m- n-+m-+mo
Pn(m|m0)=§77m<;w__ll)‘_'_%ht7>l7m 2gN=m=1[] 4 (= 1)rtmmo]
2 N=? (2./pgcosb.)

* (N=-1) N RI r; (1 —4pgcos®9,)

A(mo)A(m) (25)

where 7, is as defined in (12), and

A(m) = psinm8, — gsin(m — 2)6),, (26)

~or, in a form that displays the correction to the unbiased case more clearly,

A(m) = (sin8,)[cos(m — 1)6, + (p — g)cot B, sin(m — 1)6, ]. (27)

It is easy to verify that P,(m|m,) is unchanged on letting m—m, me—my and
simultaneously interchanging p and gq.
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2.4 The mean displacement

The proper definition of the mean displacement of the random walker in n steps is
as follows: Starting from a uniformly distributed initial point m,, we require the mean
value of j =m — mg. Thus

m)> =(1/N) 3, (m—mo)P,(m|m), (28)

which reduces to ‘

jm)y =(1/N) }, mP,(m|mg) — (N + 1)/2. ~ (29)
The factor 1/N in (28) represents the distribution of m, for both biased and unbiased
walks. It is clear intuitively that {j(n)) must vanish identically in the absence of bias.
This is established quite simply from (28) by changing variables to m’ and mj, in the
summations, and using the symmetry expressed in (23).
For the biased walk, we can write down an explicit expression for {j(n)>. What is
of interest is its asymptotic (large n) behaviour. Using (15) for the asymptotic behaviour
of P,(m|my) and eq. (10) for y,(m), we find that

. Np"™1—q""! 1 (N+1) [1*("1)N](“1)"(P—qj
i) - Pt T 2p—q - 2 + AN :

(30)

Thus for odd values of N, {j(n)) oscillates asymptotically about a mean value in
successive time steps, with an amplitude proportional to the bias and inversely
proportional to the size N of the chain.

2.5 The mean squared displacement
This is defined in an analogous manner, namely,

2> =(1/N) 3, (m—mg)*P,(m|m,). | (1)

m,mg

For simplicity, let us consider the unbiased case. We then have
Vo) =¥Yo(N)=12(N—1), Yom=1(N—1) 2<m<N-1) (32

The asymptotic behaviour of {j2(n)) is found to be

(=1y

200 o> L2 — __=0
G ~gN? =N+ )= e

[(—1DY2N -1 +1]. (33)

The mean squared displacement in this random walk therefore oscillates eventually
about the value (N? — N + 1)/6, with an amplitude 1/2(N — 1) for even N and 1/(2N)

for odd N. In contrast, for the usual reflecting boundary <conditions one finds that
(Khantha and Balakrishnan 1983) '

lim ¢j2(n)) =< (N? 1), (34)

n—+oo 6

A
i
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The generating function of {j*(n)>, given by 2 ,z"{j?(n)), can be computed from
our solution for P,(m|m,), and the discrete analog of a frequency-dependent diffusion
coefficient on the chain can be determined. We do not give these expressions here,
as they have no unexpected features.

3. The continuum limit

3.1 Random walk in continuous time

We find first the continuous-time limit of the random walk under consideration. This
is done in the usual manner. We assume that the jumps of the walker are uncorrelated
with each other, and are governed by a stationary Poisson process with a mean rate
2W. The probability of a transition out of any site in an infinitesimal time interval
At is then 2W At, while that of no jump out of the site in the same intervalis (1 — 2W At).
We note that a nonzero sojourn probability at a site thus appears in the limit of
continuous time, even if p + g = 1. This fact is responsible for the disappearance of
the oscillatory features of the discrete-time random walk that arise from the periodicity
of the Markov chain, once we pass to the limit of continuous time.

Denoting P,(m) by P(m,t) whete nAt =t, and taking the limit n— o0, At —0, we
get the following rate equation for P(t) = (P(1,%),..., P(N,)))T:

P@t)=2W(M — D)P(t), (35)

where I is the (N x N) unit matrix, and M is the same tridiagonal matrix as before
(eq. (3)). The Laplace transform P(u) is then given by

Pw) =@+2w—-2WM)~1P,
N-1
= L [u+ 2001 = 2)]7 (& Po),. : (36)

As already mentioned, the oscillatory behaviour of the probability distribution is no
longer present. The eigenvalue Ay_, = — 1 merely corresponds, now, to the fastest
(= 4W) of the relaxation rates governing the approach of the probability distribution
to a unique stationary value, given by

lim P(t) = Res P(w) =y, (37)
t= oo u=0)

As A,, ¢! and , have been found already, we have an explicit solution for P (m, t|my).
We write it down for the unbiased case:

5 |
P(m,t|mg) = (N;" 0 |:1 + (— 1)y tmogm 4wt

N-2
+2 Y cos(mg— 1)6,cos(m—1)6,exp {—2Wt(l — cos@,)}], -

r=1
(38)

where 1<m,my<N, and 6, =6y=1/2, 6,,=1 for 2<m< N —1. The asymptotic
stationary distribution is given by é,,/(N — 1) (as may be deduced directly from detailed
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balance): while the oscillatory behaviour is no longer present, the relative ‘depletion’
of the end points 1 and N in the stationary state owing to the myopic boundary
conditions continues to occur.

The summation (over r) can be performed to obtain closed-form expressions for
the transform P(m,u|m,) in both the biased and unbiased cases. These are somewhat
lengthy, and will not be given here. However, for the sake of explicit comparison with
the case of reflecting boundaries, let us consider the special case my=1, m=N for
the unbiased walk —i.e., the transform of the probability of starting at one end of the
chain and reaching the other at time t. Defining the variable

£ = cosh™ (1 +u/2W), (39)

we have found in earlier work (Khantha and Balakrishnan 1983) that, for reflecting
barriers at the ends of the chain,

P(N,u|1) = sinh &/usinh N¢. ) (40)
In the present case (of ‘myopic’ boundary conditions),

P(N,u|1) = 1/2Wsinh &sinh(N — 1)¢. (41)

3.2 Continuous space limit

Next, we may pass to the limit of continuous space as well as continuous time:
diffusion on a finite line segment [0, L] with “myopic boundary conditions”.
Introducing the lattice spacing a, we set mya = xo, ma=x, Na= Land Wa? =D (the
diffusion constant), and take the limit W — oo, a— 0 such that x,, x, L are finite. (For
simplicity, we shall present here only the unbiased case.) The probability density
P(x,t|xq) =1im(1/a)P(m, t|m,). From the fact that

lim2Wt(1 — cosb,) = r*n? Dt/L? , (42)

we find (using eq. (38)), in the case 2<mymy < N — 1,

P(x,t|x,) = (1/L) i cos(rnxy/L)cos(rnx/L)exp(—r2n2Dt/L?*) (43)

r=-—om

- for x,x€[0, L]. The corresponding Laplace transform (the Green function for this
diffusion problem) works out to

P(x, ulx ):COSh[(L_x>)\/ u/D]cosh [x. \/u/—D]
o JuDsinh[L./u/D] ’

where x . =min(x,, x) and x, =max(x,, x).

The density found above is correctly normalized, and the stationary density is 1/L,
as expected. In fact, the solution found above is precisely that obtained (Khantha
and Balakrishnan 1983a) in the case of unbiased diffusion on the line segment [0, L]
with reflecting boundary conditions, i.e., 9P/dx =0 at x = 0 and at x = L. In the limit
of continuous time and space, therefore, the difference between myopic and reflecting

boundaries vanishes altogether. This conclusion remains valid for biased diffusion as
well. |

(44)
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4. First passage times

Finally, we examine the differences between reflecting and myopic ends with regard
to the first passage time from m, to m(> m,). (The nature of the barrier at the other
end, N, is evidently irrelevant in this context.) Considering the discrete-time random
walk first, we note that general expressions are known (Murthy and Kehr 1989) for
the mean (and higher moments) of the first passage time required. For the sake of
illustration, let us consider first passage from one end of the chain to the other (mg=1,
m = N). Denoting the first passage time by t,y, we find the following results for the
mean {t;y ).
With a ‘myopic’ boundary at site 1, in the unbiased case we find

(tiwy =(N—=1)% (45)
while a reflecting boundary gives
(tiy»=N(N-1). (46)

For a biased random walk, we find in the myopic case

(N—1) 2pq
(r—q) * (p—q)

while a reflecting barrier leads to

(> =

[(a/pN~*—1], 47)

P
(r—q)

N N
iy ==+ ) 11 (48)
It is verified easily that {t;yDmyopic < {tinrer1s @5 We should expect on physical
grounds. ‘

In the continuous-time limit, we obtain exactly the same expressions as in (45)—(48),
multiplied by the factor (2W)~! which is the natural unit of time in the problem.
Moreover, a very compact expression can be derived for the Laplace transform of
the probability density Q(m, t|m,) of the time of first passage from m, to m, using the
renewal equation (Siegert 1951; Montroll and West 1979) P(m,,u|m,) = B(m,,u|m)
Q(m,u]mo)(mo <m<my) that holds good for the Markovian random walk under
consideration. Taking the unbiased case for illustration, we find the result (valid for

1<mmy<N)
3 (m, ulmy) = cosh(m — 1)&/cosh (mg — 1)¢ f (49)

where cosh & = 1 4- u/2W as defined in (39). Given this closed-form expression for the
Laplace transform (or generating function) of the first passage time density, the various
moments of the first passage time can be computed in a straightforward manner. It
is of interest to note, finally, that the corresponding expression in the case of a reflecting
boundary is (Khantha and Balakrishnan 1983)

Q(m, ulmy) = cosh (m —$)¢/cosh (mo — 4)&. (50)

.
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5. Concluding remarks

We have already described, in the Introduction and in the subsequent sections, some
of the interesting features of the biased random walk of a myopic walker on a finite
chain. We note that other problems involving a finite Markov chain of period two
(ie., + 1and — 1 are the two eigenvalues of the transition matrix with modulus unity)
have been well studied, the most notable one being the Ehrenfest urn model (Kac
1947; Cox and Miller 1972). In the language of random walks, this model corresponds
to a myopic random walker on a finite chain of 2N + 1) sites, m= —N,..., + N,
such that there is a symmetric, site-dependent bias towards the central site 0, simulating
a harmonically bound random walker. The uniformly biased walk we have considered
has no such symmetry, of course. '

It is worth mentioning that the myopic boundary condition we have used may be
regarded as a combination of the usual reflecting boundary condition together with
an appropriate source term. At sites 1 and 2, for instance, we have P, (1)=4gP,(2),
P,.(2)=P,(1)+qP,(3). For the usual reflecting boundary (imagined to be implemented
by placing a reflector at the position 1/2), we would have P, ()= qP,(1) + qP,(2),
while P, ., (2) = pP,(1) + qP,(3). Hence the behaviour at the terminal site can be taken
into account by supplementing the standard equation P, (m)=pP,(m— 1)+
gP,(m+ 1), considered to hold good at m =1 as well, with the boundary condition
gP,(1)= pP,(0). Clearly, this does not suffice for the myopic random walk. What is
needed here is the boundary condition above together with a ‘source’ term S, = gP,(1),
to enable us to write the evolution equation as P, ;(m)=pP,(m — 1)+ qP,(m+ 1) +
S,(0m.2 — Op,1)- This helps us see, too, why the extra contribution vanishes in the
spatial continuum limit. On the other hand, the ‘myopic boundary’ we have considered
is sometimes simply called a reflecting boundary (Chandrasekhar 1943; Cox and
Miller 1972). (Of course, no confusion should arise once the transition matrix
concerned is specified explicitly.) We see, however, that it is really a combination of
a reflector and a source, in the sense described above. Another useful insight is afforded
by a comparison of the first passage time distributions, eqs (49) and (50). The latter
equation, valid for the reflecting barrier, shows explicitly how the physical situation
may be regarded as a reflector placed at the position 1/2. In contrast, eq. (49) suggests
that the myopic walker sees a reflector at the site 1 itself—in the sense that, having
arrived at 1, an attempt to reach site 0 bounces the walker off the reflector (at 1) into
the site 2. It is in this sense that the ‘myopic’ case we have considered can also be
called a random walk in the presence of reflecting ends.

Interesting new features emerge in niyopic walks in higher dimensions. Results on
such walks in two dimensions will be presented elsewhere.

Appendix A

Symmetrization of M and normalization of eigenvectors

The procedure we adopt is as follows. Let the (yet-to-be normalized) right eigenvector
corresponding to the largest eigenvalue (1, =1) of M be the column vector

Vo= (LYo ¥o03),.... o(N))". (A.1)

™
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By the Perron-Frobenius theorem (Gantmacher 1959, Cox and Miller 1972), all the
elements y,(m) can be chosen to be positive quantities. Consider the hermitian,
diagonal matrix S with elements

S = [Wo(m) 1128, (A.2)

Then V= S~IMS is tridiagonal, real and symmetric, with elements

Vi = [Wo (k)6 (m) 1'% M. (A.3)

V and M have the same set of eigenvalues, and the eigenvectors of V can be used to
form an orthonormal basis. If Vy,=4,y, then Sy,=v¢, and xS~ '=¢' are
the corresponding right and left eigenvectors of M. The normalization xfy, =1
implies ¢, = y'S~ %y, = 1, which can be used to normalize the eigenvectors of M
(the latter thus form a bi-orthogonal set of vectors):

Suppose

V= (1LY, ¥ (V)T (A.4)

is the unnormalized right eigenvector corresponding to the eigenvalue A.(r=
0,1,...,N —1). Then the left eigenvector is

&r=y"S72 = (LY * QMo @) .., Y * (NP5 (N). (A.5)

Hence the inner product ¢!y, (no summation over r) is

¢*w,—1+2|w AV (A.6)

=c,, say.

We then define the normalized eigenvector ¥, by
l/lr = w;/cra : (A7)
I =8,,. (A.8)

Of course, the normalization constant ¢, may be ‘apportioned’ between ¢! and
Y, in any manner we please, without affecting physical quantities—except that in the
case when the eigenvalue + 1 corresponds to a unique equilibrium distribution, the
right eigenvector i, must correspond to the actual probability distribution P, in the
limit n— oo, which means that we must have X,,i,(m) = 1. In the problem at hand,
this consideration requires us to normalize Y, and Yy _, according to ¥, = {y/co,
Wn-1=WVn-1/Cy-1- For uniformity, we normalize the rest of the eigenvectors as well
in the same manner, i.e., as in eq. (A.7).

so that

Appendix B

Expressions for the eigenvectors

The eigenvalues of M are found to be

do=1, Ay_1=—1, A =2(pg)'*cosh, (1<r<N-2), (B.1)
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where 0, = rn/(N — 1). It is easy to show that

Vo =(1,1/g,p/q%....p" a2 p" " 2/g" )T (B.2)
and that .
Wiy —1(m)= (= )"~ 1o (m). (B.3)
Hence S, = [Wo(m)]*/* 8, leads to the left eigenvectors
dr=woS7 =(11,....1) (B.4)
and
oL =1, =11 (=" (B.5)
Further,
, 2 pN—l _ qN—l
nglj’O:cO:qN—z( P—q (B6)
and also ¢y_; = ¢,. Thus the normalized eigenvectors /o and Yy, are given by
. _ ) ] ) ] ) .
Yo=7 ”ﬁ?pr‘iﬂ—l @~ %q" 3 pg" 4L PN AN TR, (B)
2\p" "' —q
- m) = (= 1" g m). | (B3)

For the rest of the eigenvectors (r=1,2,..., N — 2), we find
Y.(1) =1 (by construction), )
¥ (m) = (/p/a)"~*(1/p) [cos(m — 1)6, + (p — g)cot,sin(m — 1)6,]
2<m<N-1),
UN) = (— 1 (/ola) > )

The corresponding left eigenvectors ¢!(1 <r < N'— 2) therefore have elements

L (B.9)

¢t (m) = (/a/p)" ' [cos(m — 1)8, + (p — g)cotb,sin(m — 1)6,],

A <m<N). (B.10)
In particular,
61(1) = 1, §1(2) = 2(pg) "2 cos b, 1 (N) = (— 1 (/a/p)" (B.11)

Hence, for 1<r< N —2, the normalization constant c,= ¢!y, becomes, after
simplification,

(B.12)

_ 2
6 =(N— 1)(1_%%_@)_

2psin?6,

The corresponding normalized right eigenvectors are then given by y, =¥, /c,, as
indicated in (A.7).

For ready reference, we write down the expressions to which the results above

A g

W

‘rﬁ"

L
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reduce in the unbiased case p=q=1/2. We obtain

Co=cy-1=2(N—1), (B.13)
Vo =(N— 0 (1/2,1,...,1,1/2)7, (B.14)
Uy -1 (m)=(—1)"""o(m). ' (B.15)

The left eigenvectors ¢f and ¢}, _, remain the same as in the biased case, eqgs (B.4)
and (B.5). For the rest of the eigenvectors (1 <r <N — 2), we get

¢, =(N-1), . (B.16)
W, = =1 (1,2cos9,,...,2cos(N —2)0,,(— 1)7, (B.17)
¢! = (1,c080,,...,cos(N — 2)6,,(— 1)). ' (B.18)

Using the foregoing, the explicit solutions for P, (m|m,) written down in eqs (21)
and (25) follow in a straightforward manner.
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