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Introduction

DNA sequencing technologies have provided a quantitative foun-
dation for our understanding of evolution, which was previously 
based on logical, yet empirical, observations.1 The chronology of 
the development of computational techniques has closely followed 
innovations in biotechnology. Pairwise alignment algorithms of 
nucleotide sequences, both global2 and local,3 were enhanced 
to incorporate multiple sequences from related proteins.4-7 Such 
multiple sequence alignment (MSA) methods enabled visual-
ization of evolutionary pathways through phylogenetic trees.8,9 
While considerable divergence in sequence often resembles 
noise and masks true relationships, structural conservation in 

Phylogenetic analysis of proteins using multiple sequence alignment (MSA) assumes an underlying evolutionary 
relationship in these proteins which occasionally remains undetected due to considerable sequence divergence. 
Structural alignment programs have been developed to unravel such fuzzy relationships. However, none of these 
structure based methods have used electrostatic properties to discriminate between spatially equivalent residues. We 
present a methodology for MSA of a set of related proteins with known structures using electrostatic properties as an 
additional discriminator (STEEP). STEEP first extracts a profile, then generates a multiple structural superimposition 
providing a consolidated spatial framework for comparing residues and finally emits the MSA. Residues that are aligned 
differently by including or excluding electrostatic properties can be targeted by directed evolution experiments to 
transform the enzymatic properties of one protein into another. We have compared STEEP results to those obtained 
from a MSA program (ClustalW) and a structural alignment method (MUSTANG) for chymotrypsin serine proteases. 
Subsequently, we used PhyML to generate phylogenetic trees for the serine and metallo-β-lactamase superfamilies from 
the STEEP generated MSA, and corroborated the accepted relationships in these superfamilies. We have observed that 
STEEP acts as a functional classifier when electrostatic congruence is used as a discriminator, and thus identifies potential 
targets for directed evolution experiments. In summary, STEEP is unique among phylogenetic methods for its ability to 
use electrostatic congruence to specify mutations that might be the source of the functional divergence in a protein 
family. Based on our results, we also hypothesize that the active site and its close vicinity contains enough information to 
infer the correct phylogeny for related proteins.
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such cases have provided the basis for evolutionary kinship. For 
instance, MSA techniques are not applicable to the serine and 
metallo-β-lactamase superfamilies due to significant sequence 
divergence.10-14 Lately, rapid strides in crystallization techniques 
have fueled progress in structural alignment methods, both for 
pairwise15-20 and multiple21-28 proteins.

The program MAPS (an extension of the program TOP),28 
which has been used for the structural analysis of metallo-β-
lactamases,12 first superimposes the proteins and then computes 
the phylogeny based on structural similarity of the main and 
side-chain atoms. A widely used methodology for structural 
alignment (MUSTANG) uses a simple dynamic programming 
algorithm for all pairs of structures and applies a robust scoring 
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phosphatase.33,34 STEEP superimposes the proteins based on 
the active site motif specified in one of the proteins by extract-
ing matching scaffolds using CLASP, thus pruning out unre-
lated proteins which are known to affect the quality of MSA 
results.35 It then considers the reactive atoms of the residues in 
the superimposed cluster while matching the distance, and as 
an additional option uses electrostatic criteria to prune out non-
congruent residues, and emits the MSA for the set of proteins. 
Such a constrained alignment highlights the conserved residues 
from an electrostatic perspective as well. Comparison of these 
alignments could form the basis of mutations in directed evolu-
tion experiments that intend to endow the desired protein with 
certain enzymatic properties.36

We have compared results obtained with STEEP to those 
obtained from a sequence based MSA program (ClustalW),4 
and a structural alignment method (MUSTANG)22 for a set of 
chymotrypsin serine proteases. We have also generated phyloge-
netic trees for the serine and metallo-β-lactamase superfamilies 
from the STEEP generated MSA using PhyML,8 and corrobo-
rated the accepted relationships of proteins in these two super-
families.10-14 Interestingly, using electrostatic congruence as a 
discriminator led to a functional classification instead of a true 
evolutionary relationship. We observe that Trp154 in class D ser-
ine β-lactamases (SBL) and signal transduction proteins is spa-
tially equivalent to Glu166 in class A SBL but lacks electrostatic 
congruence. Although this critical Trp154 has been mutated to 
Gly, Ala, and Phe with resulting poor catalytic efficiencies and 
reduced stability,37 we propose that a mutation to Glu might 
show functional similarity to class A SBLs by mimicking the 
Glu166.38 In summary, STEEP is a multi-faceted methodology 
that generates evolutionary and functional relationships in a 
set of related proteins, a multiple superimposition and proposes 
mutations based on electrostatic properties that might endow the 
enzymatic functionality of one protein to another. Thus, it helps 
in narrowing down critical mutations that would be expected to 
shape the functional plasticity of any given enzyme superfamily, 
especially in cases where sequence divergence has left little traces 
of any relationship.

Results

Chymotrypsin serine proteases. Serine proteases are grouped 
based on structural homology and are then further sub-grouped 
into families with similar sequences.39,40 The two major families, 
chymotrypsin and subtilisin, are a classical example of conver-
gent evolution where the catalytic Ser-His-Asp triad shows very 
similar geometry in the structurally different chymotrypsin and 
subtilisin families.41 We chose a set of eight proteins (PDBids: 
2ALP, 1SGT, 1TGS, 2SGA, 1PPF, 3EST, 3RP2 and 1TPP) for 
analysis based on previous work on serine proteases,42 barring 
one (PDBid:5CHA) which did not complete APBS electrostatic 
analysis (Tables S1 and S2). The motif from a trypsin protein 
(PDBid:1SBT)—(His57, Asp102, Ser195)—was chosen for rep-
resenting serine proteases. CLASP analysis using this query motif 
detected significantly congruent scaffolds in each of the proteins 
(Table 1).

scheme obviating the need for troublesome gap penalties.22 A 
recent method uses many informative features (torsion angles, 
secondary structure, residue type, surface accessibility, etc.) to 
guide the alignment.29 An innovative technique for alignment 
allows local flexibility between fragments which might be physi-
cally impossible under rigid body transformations and restores 
geometric consistency at the end.30 Another multiple protein 
alignment method (MISTRAL) uses the minimization of an 
empirical energy function of the relative rotations and trans-
lations of the molecules.31 However, such methods have not 
addressed the problem of identifying residues which, although 
spatially equivalent, have diverged from a stereochemical and 
electrostatic perspective resulting in functional plasticity.

In the current work, we present a methodology for generating 
the MSA of a set of related proteins with known structures, using 
electrostatic properties as an additional discriminator - Structure 
and electrostatic potential based multiple sequence alignment 
(STEEP). We demonstrate that residues identified by comparing 
the alignments obtained by including and excluding electrostatic 
properties can be targeted by directed evolution experiments to 
transform the enzymatic properties of one protein into another. 
We also show that the active site vicinity contains enough infor-
mation to infer correct kinship in a set of related proteins.

Previous work by our group has established the spatial and 
electrostatic congruence in cognate residue pairs of the active 
site in proteins with the same functionality - CataLytic Active 
Site Prediction (CLASP).32 CLASP was used to unravel a serine 
protease scaffold in alkaline phosphatases,32 and a scaffold rec-
ognizing a β-lactam (imipenem) in a cold-active Vibrio alkaline 

Table 1. Potential and spatial congruence of the active site residues in 
proteins from the chymotrypsin superfamily

PDB ab ac bc

2ALP D 4.7 3.1 6.2

PD −13.6 −86.5 −72.9

1SGT D 5.5 3 8

PD 4.2 −120.4 −124.5

1TGS D 5.2 2.6 7.3

PD 31.6 −85.8 −117.4

2SGA D 4.6 3 6.2

PD 59.1 −123.6 −182.6

1PPF D 5.4 2.5 7.3

PD −29 −103.7 −74.6

3EST D 4.6 3.2 6.4

PD −3.7 −124 −120.3

3RP2 D 5 3.1 6.5

PD −51.9 −136.4 −84.5

1TPP D 5.5 2.7 7.6

PD −83.9 −162.5 −78.6

The active site atoms are HIS57NE2 (a), ASP102OD1 (b) and SER195OG 
(c). D = Pairwise distance in Å. PD = Pairwise potential difference. 
The electrostatic potential is in dimensionless units of kT/e where k is 
Boltzmann’s constant, T is the temperature in K and e is the charge of an 
electron.
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We next used ClustalW to generate the alignment (Fig. 2E) 
and the phylogenetic tree (Fig. 2G) for the same set of proteins. 
We used the sequences obtained from the PDB files, and not the 
complete fasta sequence, to ensure a fair comparison with STEEP 
and MUSTANG. MUSTANG results also showed similar align-
ments (Fig. 2F) and phylogenetic trees (Fig. 2H). For example, 
all three methods suggest that the protein groups (2ALP-2SGA), 
(3EST-3RP2) and (1SGT-1TGS-1TPP-1PPF) are closely 
related. Qualitatively, the structural alignment obtained from 
MUSTANG (Fig. 1B) was better than that from STEEP (Fig. 
1A), but the active site residues in STEEP were less dispersed 
since STEEP aligns the proteins based on the active site residues. 
Table 2 shows the RMSD values for the pairwise comparison 
of a protein (PDBid:1TGS) with all other proteins. Cα atoms 
that are within 2 Å of each other are considered to be equivalent. 
However, it is seen that STEEP comparisons resulted in a better 
overall fit when each amino acid was represented by the Cα atom 
rather than the reactive atom (a much smaller RMSD and more 

The structural profile was used to generate a multiple super-
imposition of the proteins (see Materials and Methods), and 
provided a single frame of reference for comparing the proteins 
with STEEP (Fig. 1A). Since all the structures could be superim-
posed, we proceeded to finding the residues from other proteins 
in the set which were spatially close to residues of the template 
protein. Figure 2A and Figure 2C show the alignment and the 
cladogram using only spatial constraints. The alignment (Fig. 
2B) and the cladogram (Fig. 2D) taking electrostatic congruence 
into consideration resulted in a different phylogeny from the one 
generated using just spatial constraints. Later, we show for ser-
ine β-lactamases (SBL) that this relationship suggests functional 
relationships rather than true evolutionary kinship. For example, 
classes A and C SBLs appear as sister taxa when using electrostatic 
congruence as a discriminator, and it is known that both classes 
A and C SBLs have the ability to hydrolyze cephalosporins. This 
is a reasonable finding considering that electrostatic fields have a 
direct bearing on specificity and functionality.

Figure 1. Superimposing multiple proteins based on the homologous active site scaffolds for trypsin serine proteases. (A) STEEP generated super-
imposition, where each amino acid is represented by a user defined reactive atom. (B) MUSTANG generated superimposition. It can be seen that 
MUSTANG generates a better overall superimposition, but the active site residues are less dispersed after the superimposition by STEEP. (C) STEEP 
generated superimposition, where each amino acid is represented by the Cα atom.
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(PDBid:1E25).45 While searching for matches, Ser130 was 
matched with either Ser or Tyr to accommodate the variability 
seen in various SBLs. The set of proteins analyzed consisted of 
three structures from each of the classes A, C and D of SBLs and 
penicillin binding proteins (PBP), and two structures from signal 
transduction proteins (Tables S3 and S4). CLASP queried the set 
of proteins using the active site motif, and detected significantly 
congruent scaffolds in each of the proteins (Table 3). Thus, these 
residues represent a structural profile for the serine β-lactamase 
superfamily.

In MBLs, classes B1 and B3 possess a binuclear active site that 
requires one or two Zn2+ ions (Zn1 and Zn2 site) for full activ-
ity.44 Subclass B2 enzymes are catalytically active with one Zn2+ 
ion,46 while the binding of the second zinc ion has been shown to 
have inhibitory effects.47 The active site profile for MBLs was cre-
ated from two residues each from the Zn1 (His118 and His196) 
and Zn2 (Asp120 and His263) ligands. The set of proteins ana-
lyzed consisted of three structures from each of the classes B1 
and B3, a structure each from the class B2, glyoxalase II and a 
methyl parathion hydrolase (Tables S5 and S6). As expected, we 
detected significantly congruent scaffolds in each of the proteins 
(Table 4). It is this spatial and electrostatic congruence that has 

equivalent residues (Fig. 1C; Table 2). Since the STEEP method-
ology is directed at identifying active site residue equivalence, it 
does not intend to obtain the best global superimposition. Thus, 
by default the amino acids are represented by their reactive atoms 
(when this applies).

To summarize, we show that STEEP generates similar phy-
logenies as obtained from sequence alignment (ClustalW) and 
structural alignment (MUSTANG) programs by considering res-
idues in the vicinity of the active site, and also generates a super-
imposition comparable to the one generated by MUSTANG by 
simply aligning the active site residues.

Serine and metallo-β-lactamase superfamilies. β-lactamases 
inactivate antibiotics by hydrolyzing the amide bond of the 
β-lactam ring. The Ambler classification has four classes—classes 
A, C and D have a nucleophilic serine at the active site (SBL),43 
while MBLs or class B β-lactamases are metallo-enzymes requir-
ing zinc for their activity, and have been further divided into three 
subgroups - B1, B2, and B3 - based on sequence homology.44

SBLs are characterized by three conserved motifs [SXXK, 
(S/Y)X(N/V) and K(T/S)G].43 We constructed the active 
site motif (Ser70, Lys73, Ser130, Lys234) by choosing at least 
one residue from each of the three motifs from a class A SBL 

Figure 2. Multiple sequence alignments using STEEP, ClustalW or MUSTANG, and phylogenetic trees generated using PhyML for the chymotrypsin 
superfamily. The active site motif is marked as ‘*’. The residues used to initiate STEEP were within a radius of 9 Å from the specified active site residues. 
(A) Alignment using spatial proximity using STEEP. (B) Alignment using spatial proximity and electrostatic congruence using STEEP. (C) Cladogram 
generated from (A). (D) Cladogram generated from (B). (E) Alignment using ClustalW. (F) Alignment using MUSTANG. (G) Cladogram generated from 
(E) (ClustalW). (H) Cladogram generated from (F) (MUSTANG).
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B3 evolved about two billion years ago before Gram-positive 
and Gram-negative eubacteria had diverged.14 The culmina-
tion of this work was achieved by applying structural methods 
to generate a phylogeny which corroborated the above hypoth-
eses, and also included other proteins from the MBL superfam-
ily (like human glyoxalase II and methyl parathion hydrolase).12 
Furthermore, human glyoxalase II and methyl parathion hydro-
lase were shown to be closely related to subclass B3. Figure 4E, F, 
G and H demonstrate that the STEEP results corroborate these 
hypotheses. The MBLs show much more electrostatic homogene-
ity than SBLs in the related classes (Fig. 4F and Figure 4H). The 
inhibitory effect of the binding of the second zinc ion in subclass 
B2 enzymes is also highlighted by the fact that Asn116 has spatial 
equivalence (Fig. 4E), but lacks electrostatic congruence with the 
corresponding histidine (His116) in the other subclasses B1 and 
B3 (Fig. 4F).

The MUSTANG generated phylogenetic tree for SBLs did 
not reflect the accepted relationship in the superfamily (Fig. 
S2A), since class A and class C enzymes were seen to be sister 
taxa, rather than of class A and class D enzymes.10 In fact, this 
relationship is similar to the functional relationship detected by 

been used to identify a scaffold recognizing a β-lactam (imipe-
nem) in a cold-active Vibrio alkaline phosphatase.34

Figure 3A shows the superimposition of the three class A 
SBLs, Figure 3B shows the superimposition of one structure each 
of the classes (A, C and D) SBLs, while Figure 3C shows the 
superimposition of a class A SBL, a PBP and a signal transduction 
protein. Likewise for the MBL superfamily, Figure 3D shows the 
superimposition of the three class B1 MBLs, Figure 3E shows 
the superimposition of one structure each of the classes (B1, B2 
and B3) MBLs, while Figure 3F shows the superimposition of 
a class B3 MBL, a human glyoxalase II and a methyl parathion 
hydrolase.

It can be seen from these superimpositions that the active 
site shape is conserved, while the proteins accommodate much 
greater structural changes in the peripheral regions. The super-
imposition of all proteins is shown in Figure S1. It was noted here 
that aligning only three residues has the effect of aligning the 
complete protein, highlighting that the protein sequence accepts 
only those mutations that do not violate the conserved structure 
(and electrostatic properties) of the active site. Thus, it is only 
logical to compare these proteins based on the conserved residues 
in the vicinity of the active site.

Figure 4A and Figure 4C in SBLs (Fig. 4E and 4G in MBLs) 
show the alignment and the cladogram, respectively, in the case 
when we ignore electrostatic congruence with the residues in 
the template protein. In the scenario where potential difference 
congruence is used as discriminator, we obtained the alignment 
shown in Figure 4B and the cladogram of Figure 4D in SBLs 
(Fig. 4F and 4H in MBLs) as the alignment and the cladogram.

It has been shown previously that class A and class D SBLs 
are sister taxa, and the divergence of the class C SBL predated 
the bifurcation of classes A and D SBLs.10 Figure 4C corrobo-
rates this hypothesis. Simultaneously, Figure 4C conforms to the 
known relationship between class D SBL and signal transduc-
tion proteins.48 Interestingly, the expected similarity in class A 
enzymes and some penicillin binding proteins (PDBid:1NZ0) is 
not apparent from the cladogram. The deletion of a segment from 
the sequence close to the active site in these PBPs makes it diffi-
cult for even structural programs to identify such relationships.49

Interestingly, when we constrained the MSA using electro-
static congruence criteria, a different relationship emerged (Fig. 
4D) which suggests that classes A and C SBLs are sister taxa. This 
dichotomy is explained by the fact that electrostatic homology 
often implies functional similarity—and it is known that both 
classes A and C SBLs have the ability to hydrolyze cephalospo-
rins, unlike class D SBLs which are specialized oxacillanases.10 
Thus, Figure 4D ought to be interpreted as indicating func-
tional relationship along with sequence/structural homology. A 
similar observation reveals PBPs and signal transduction proteins 
closer in Figure 4D as compared with Figure 4C, highlighting 
their functional similarity, namely their inability to hydrolyze 
β-lactams.

It has been shown that the B3 subclass of MBLs is dis-
tinct from the B1/B2 subclass based on sequence alignment.13 
Extending this work, it was proposed that functionality in B1/
B2 evolved approximately one billion years ago, whereas subclass 

Table 2. Comparing results obtained with STEEP or MUSTANG for serine 
proteases

PDB RMSD Residues matched (out of 222)

STEEP

Cα atoms

1PPF 1 170

2ALP 1.1 97

1SGT 1.1 170

2SGA 1.2 97

3EST 0.9 187

3RP2 1.1 179

1TPP 1.2 160

STEEP

reactive atoms

1PPF 1.4 89

2ALP 1.5 39

1SGT 1.4 62

2SGA 1.4 39

3EST 1.5 51

3RP2 1.5 48

1TPP 0.5 206

MUSTANG

1PPF 0.9 176

2ALP 1.3 96

1SGT 0.9 177

2SGA 1.3 100

3EST 0.9 187

3RP2 0.9 182

The RMSD obtained for superimposing one protein (PDBid:1TGS, 222 
amino acids) with all other proteins are shown. Cα atoms that are within 
2 Å of each other are considered to be equivalent. The number of resi-
dues matched is another important metric, since an inferior superim-
position might have an equivalent RMSD, but align fewer residues. It is 
seen that when each amino acid is represented by the Cα atom rather 
than the reactive atom STEEP results in much smaller RMSD and more 
equivalent residues.
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Leu153 is the best candidate for mimicking Glu166 when we 
superimposed the class A SBL and the PBP-5 (PDBid:1NZO).50 
We proposed that the L153E PBP-5 mutant might provide greater 
success in replicating β-lactamase enzymatic efficiency in PBPs 
than achieved through a similar mutation in a PBP-A from  
T. elongatus.51

Figure 4A corroborates the Leu153-Glu166 spatial equiva-
lence, while Figure 4B shows that there is no electrostatic con-
gruence in these two residues. Another observation is that the 
spatially equivalent Trp154 from class D SBLs and signal trans-
duction protein, and Glu166 in class A SBLs (Fig. 4A) also lack 
electrostatic similarity (Fig. 4B), although both of them are criti-
cal for catalysis.37,38

Discussion

We present a three-dimensional structure-based method for gen-
erating a multiple sequence alignment (MSA) of a set of proteins 

STEEP by using electrostatic pruning (Fig. 4D). From the com-
plete set used by STEEP, MUSTANG was unable to process one 
protein each from class A, PBP and signal transduction proteins. 
The MUSTANG inferred phylogeny in MBLs concurred with 
the accepted relationship, and with the one detected by STEEP  
(Fig. 4F; Fig. S2B).

As can be done after any MSA, we extracted a profile from 
the STEEP generated MSA, and extended the initial profile pro-
vided as the input motif. The extended profiles for the SBL and 
MBL superfamilies were created from Figure 4B and Figure 4F, 
respectively, by choosing columns that have less than 75% gaps 
(10 in case of SBLs, 6 in the case of MBLs) (Table 5). These 
extended profiles can be considered as a better representative of 
the superfamilies.

It is possible to identify residues that lack electrostatic congru-
ence by comparing these two alignments, which can be subjected 
to site directed mutagenesis techniques designed to mirror the 
specificity of the desired protein.36 Previously, we have noted that 

Table 3. Potential and spatial congruence of the active site residues in proteins from the Serine β-lactamase superfamily

PDB Active site atoms (a,b,c,d) ab ac ad bc bd cd

1E25 Ser70OG, Lys73NZ, Ser130OG, Lys234NZ, D 2.8 3.2 4.7 3.6 5.6 2.9

Class A Serine β-lactamase PD −125.6 22.4 −189.1 148.1 −63.5 −211.5

1I2S Ser70OG, Lys73NZ, Ser130OG, Lys234NZ, D 2.7 3.2 4.5 3.1 5 2.8

Class A Serine β-lactamase PD −166.4 −35.5 −219.5 130.9 −53.1 −184

1BSG Ser70OG, Lys73NZ, Ser130OG, Lys234NZ, D 2.8 3.4 4.7 3.3 5.3 2.9

Class A Serine β-lactamase PD −178.3 −31.4 −188.6 146.8 −10.3 −157.1

2WZX Ser90OG, Lys93NZ, Tyr177OH, Lys342NZ, D 3.5 3 4.5 2.6 5 2.8

Class C Serine β-lactamase PD −161.5 −56.9 −153.1 104.6 8.4 −96.2

1KE4 Ser64OG, Lys67NZ, Tyr150OH, Lys315NZ, D 2.9 3 4.6 3.4 5.6 2.8

Class C Serine β-lactamase PD −228 −10.4 −187.1 217.6 40.9 −176.7

1FR6 Ser64OG, Lys67NZ, Tyr150OH, Lys315NZ, D 2.9 3.3 4.6 2.4 5 3.1

Class C Serine β-lactamase PD −132.1 −18.4 −164.2 113.7 −32.1 −145.8

1K57 Ser67OG, Lys70NZ, Ser115OG, Lys205NZ, D 2.8 2.6 4.7 3.1 5.6 3.8

Class D Serine β-lactamase PD −162.9 51.7 −184.7 214.6 −21.8 −236.4

3ISG Ser67OG, Lys70NZ, Ser115OG, Lys212NZ, D 3.3 3.9 4.3 4.8 5.3 2.2

Class D Serine β-lactamase PD −246.3 −13.9 −231.5 232.4 14.8 −217.7

1K38 Ser67OG, Lys70NZ, Ser115OG, Lys205NZ, D 3.1 3.7 4.9 4.7 5.6 2.7

Class D Serine β-lactamase PD −292.5 −50.7 −309.8 241.8 −17.3 −259.1

1QME Ser337OG, Lys340NZ, Ser395OG, Lys547NZ, D 2.9 3.2 4.5 2.7 5 3

Penicillin binding protein PD −211.5 −38.2 −242 173.3 −30.5 −203.8

1NZO Ser44OG, Lys47NZ, Ser110OG, Lys213NZ, D 3.1 4.2 6.3 5.1 6.8 2.7

Penicillin binding protein PD −241.6 −68.8 −277.9 172.8 −36.2 −209.1

2EX2 Ser62OG, Lys65NZ, Ser306OG, Lys417NZ, D 2.9 3 4.3 3.3 5 2.9

Penicillin binding protein PD −213.6 −84 −264.8 129.6 −51.2 −180.8

1XA1 Ser59OG, Lys62NZ, Ser107OG, Lys196NZ, D 2.6 3.5 4.7 3.8 5.8 2.9

Signal transducer BlaR1 PD −126.2 73.7 −175.8 199.9 −49.6 −249.5

1NRF SER402OG, LYS405NZ, SER450OG, LYS539NZ, D 2.7 3.6 4.7 4.9 6.1 2.8

Signal transducer BlaR1 PD −249.6 2.1 −217.7 251.7 31.9 −219.8

D = Pairwise distance in Å. PD = Pairwise potential difference. The electrostatic potential is in dimensionless units of kT/e where k is Boltzmann’s con-
stant, T is the temperature in K and e is the charge of an electron.
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and MUSTANG to superimpose multiple structures. This will 
extend the database to display functional relationships in the 
homologous protein sets.

Proteases have evolved to use different mechanisms for pro-
teolysis.39,54-58 Serine proteases, the most abundant class, cut 
peptide bonds in proteins using a well-known catalytic triad 
(His57, Asp102, Ser195).39 Though His57, Asp102 and Ser195 
are far apart in their primary sequence, they converge in the 3D 
structure to form the active site. We have compared the results 
obtained from STEEP to those obtained from a sequence based 
MSA program (ClustalW) and a structure based alignment pro-
gram (MUSTANG) for a set of proteins from the chymotryp-
sin superfamily. While the MUSTANG superimpositions of the 
complete proteins was superior to the one generated by STEEP 
(Fig. 1), it should be noted that the dispersion in the active site 
residues in the STEEP superimposition is less. Since, STEEP 
generates the MSA based on the residues in the vicinity of the 
active site, the alignments are based on a better spatial overlap. 
The results obtained from all three programs generated almost 
equivalent phylogenies (Fig. 2).

The evolution of β-lactamases and the prevalence of antibiotic 
resistance is the subject of intense research and speculation.59,60 
We have applied STEEP to generate the phylogenetic trees for 
the serine (SBL) and metallo-β-lactamase (MBL) superfamilies. 
These relationships have been studied previously.10-14 Class C 
SBLs were hypothesized to have evolved separately from class A 
or class D proteins.11 Also, structural comparison has revealed 
a common fold between signal transduction proteins and class 
D enzymes.48 For MBLs, the B3 subclass has been shown to 
have an independent origin as compared with that B1 and B2 

which additionally incorporates electrostatic properties of the 
residues in the matching algorithm (STEEP). STEEP requires 
that the proteins have known structures, and at least one of the 
proteins has known active site residues. This active site motif 
extracts a structural profile that is then used for the comparison 
of proteins (e.g., in data banks). The congruence in cognate pairs, 
seen across various structures within the same protein superfam-
ily (Tables 1, 3, and 4), is non-trivial and is an innate property 
of the enzymatic function. Subsequently, we applied geometrical 
transformations to generate a multiple superimposition of the 
proteins and emit a MSA based on a parameterized distance from 
the catalytic site. The matching algorithm can either include or 
exclude electrostatic considerations, resulting in two distinct 
alignments.

Such a technique, applied to distantly related proteins, gives 
better results when confined to the active site and its close neigh-
borhood rather than including all the residues. We have shown 
that the chosen distance of 9 Å, which typically includes 30–50 
residues, gives an equivalent phylogeny as determined by a larger 
number of residues.12 This is because the active site and its vicin-
ity have the highest ‘inertia’ when it comes to mutations, and 
thus preserves the largest information of its lineage. A compari-
son of the alignments that either include or exclude electrostatic 
congruence provides key residues that are possible candidates for 
mutations intending to transfer the functionality of one protein 
into another by directed evolution strategies.36

STEEP can easily be incorporated in the PALI database 
which provides structure-based sequence alignments for homol-
ogous proteins with known structures.52 Currently, the PALI 
database uses DALI53 to implement pairwise superimpositions 

Table 4. Potential and spatial congruence of the active site residues in proteins from the metallo- β-lactamase superfamily

PDB Active site atoms (a,b,c,d) ab ac ad bc bd cd

1ZNB HIS101NE2, ASP103OD1, HIS162NE2, HIS223NE2, D 6.3 4.9 9.1 5.8 4.7 6

Class B1 PD 124.5 152.2 168.3 27.7 43.8 16.1

1DD6 HIS79NE2, ASP81OD1, HIS139NE2, HIS197NE2, D 6.8 5 9.4 6.1 5.2 6

Class B1 PD 97 98.6 47.3 1.6 −49.7 −51.3

1M2X HIS118NE2, ASP120OD1, HIS196NE2, HIS263NE2, D 6.9 5 9.3 6.1 4.9 6.1

Class B1 PD 59.9 100.8 6.1 40.9 −53.8 −94.8

3F9O HIS118NE2, ASP120OD1, HIS196NE2, HIS263NE2, D 6.8 4.8 10 5.6 5 6.2

Class B2 PD −109.3 −180.8 −74.4 −71.6 34.8 106.4

1JT1 HIS118NE2, ASP120OD1, HIS196NE2, HIS263NE2, D 8 4.5 9.4 6.6 3.1 6.5

Class B3 PD 245.3 65 152.3 −180.2 −93 87.3

1SML HIS86NE2, ASP88OD1, HIS160NE2, HIS225NE2, D 6.3 4.7 9.3 6 4.9 6.1

Class B3 PD 140.3 93.7 147.2 −46.6 6.9 53.5

3LVZ HIS103NE2, ASP105OD1, HIS177NE2, HIS242NE2, D 6.5 4.4 9.4 6.1 4.9 6.3

Class B3 PD 131 110.6 104.5 −20.4 −26.5 −6.1

1QH5 HIS56NE2, ASP58OD1, HIS110NE2, HIS173NE2, D 6.5 4.5 9.4 6.6 5 6.6

glyoxalase II PD 246.3 249.1 254.4 2.9 8.1 5.2

1P9E HIS149NE2, ASP151OD1, HIS234NE2, HIS302NE2, D 6.3 4.4 9.1 6.8 5.1 6.7

methyl parathion hydrolase PD 14.3 −72.8 27.4 −87 13.1 100.2

D = Pairwise distance in Å. PD = Pairwise potential difference. The electrostatic potential is in dimensionless units of kT/e where k is Boltzmann’s con-
stant, T is the temperature in K and e is the charge of an electron.
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sequence divergence”.63 Such conservation in protein superfami-
lies has been established by other groups as well.64 The electro-
static similarity index has also been applied to identify residues 
that are responsible for differing selectivity in the dihydrofolate 
reductase protein taken from different species (PIPSA).65 This 
feature is similar to the one we have described in the current 
work. Both STEEP and PIPSA however are dependent on being 
able to obtain a relevant superimposition of the target protein. 
A superimposition independent method has been proposed to 
functionally classify protein structures based on properties that 
are invariant of affine transformations.66,67 Such a method is par-
ticularly applicable to cases where there is little global similarity.

The inability of CLASP to distinguish between mirror images 
is typical of methods that use RMSD. The symmetry in the 
potential difference in the active site of the β-lactamase super-
family is highlighted in Table S7. Here, the mirror images of the 
correct scaffold had marginally better CLASP scores. We filtered 
out such images by ensuring the proper sequence order between 
the querying motif and the matched residues. A caveat in infer-
ring phylogenetic relationship through structural similarity is 
the phenomenon of convergent evolution that achieves the same 
fold through a different evolutionary pathway.39,41 The presence 
of a convergently evolved protein in the set might result in the 
detection of a homologous scaffold, but subsequently produce 
irrelevant results. This limitation is shared by almost all programs 
generating MSA of proteins, and thus requires manual inspection 
in pruning out unrelated proteins. Another limitation of STEEP 

subclasses, based on both sequence and structural phylogeny. 
Other proteins from the MBL superfamily like human glyoxa-
lase II and methyl parathion hydrolase are more related to the 
class B3 enzymes.12,13 We demonstrate here a confirmation of the 
expected structural homologies in these proteins (Fig. 3), and 
our results have concurred with the hypothesized relationships 
in these sets of proteins (Fig. 4). However, the cladogram did 
not indicate the expected similarity in class A enzymes and cer-
tain penicillin binding proteins (PDBid:1NZ0) possibly due to 
the deletion of a segment from the sequence close to the active 
site.49 Since MSA techniques are not applicable to the serine and 
metallo-β-lactamase superfamilies due to significant sequence 
divergence, we compared STEEP results for these two super-
families to those generated by MUSTANG. While both methods 
agree on the MBL phylogenies, the cladogram generated for SBLs 
by MUSTANG differed from STEEP generated cladogram (the 
latter showing the accepted relationship).

Previous work by various groups have elucidated the discrimi-
nating powers of electrostatic properties and proposed methods 
for identifying residues that determine specificity of homolo-
gous proteins from different species. For example, the molecular 
dipole of the binding site of a ligand free structure has been used 
to discriminate between adenine and guanine binding sites in 
proteins.61 Another work has applied electrostatic similarity indi-
ces62 to 100 members of the Pleckstrin homology (PH) domain 
family, and demonstrated that the “electrostatic properties of 
the PH domains are generally conserved despite the extreme 

Figure 3. Superimposing multiple proteins based on the homologous active site scaffolds for serine and metallo-β-lactamases (SBL, MBL). SBL 
motif = (Ser70, Lys73, Ser130, Lys234), MBL motif = (His118, His196, Asp120 and His263). Ser70 and His118 are colored black and are at the center of the 
coordinate axes (X = 0, Y = 0, Z = 0) for SBLs and MBLs, respectively. The proteins are colored red, yellow and blue respectively in order of appearance. 
(A) Three class A SBLs - PDBids:1E25, 1I2S and 1BSG. (B) A class A (PDBid:1E25), a class C (PDBid:1KE4) and a class D (PDBid:3ISG) SBL. (C) A class A SBL 
(PDBid:1E25), a penicillin binding protein (PDBid:1NZO) and a signal transducer BlaR1 protein (PDBid:1XA1). (D) Three class B1 MBLs—PDBids:1ZNB, 
1DD6 and 1M2X. (E) A class B1 (PDBid:1ZNB), a class B2 (PDBid:3F9O) and a class B3 (PDBid:1JT1) MBL. (F) A class B3 MBL (PDBid:3LVZ), a human glyoxa-
lase II (PDBid:1QH5) and a methyl parathion hydrolase (PDBid:1P9E).
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Materials and Methods

STEEP takes a set of related proteins with known structures, 
such that the catalytic site is known for at least one protein (the 
template protein) and that the chemically active side chain con-
sists of three or more residues. These residues are used to create 
a query motif for analysis using CLASP. The underlying theo-
retical foundation for CLASP is the non-triviality of the spatial 
and electrostatic congruence in cognate pairs seen across various 
structures of the same catalytic function. CLASP extracts match-
ing scaffolds in these related proteins, which are then superim-
posed. Thus, we obtain a consolidated spatial reference frame 
for the set of proteins. We proceed to align the residues from 
the template protein that are within a certain (parameterized) 
radius from the residues in the active site motif other spatially 
close residues in other proteins, providing the user an option to 
use electrostatic congruence as a discriminator. These steps are 
now described in details.

Extracting the partial scaffolds. STEEP takes as an input a 
set of M related proteins (Eq. 1) with known structures and a 
motif consisting of N (> = 3) residues (Eq. 2) from the catalytic 
site of one of the proteins (P1). Every amino acid is represented 
by a user defined atom. This is the atom whose electrostatic 
potential will be representative of that particular residue in the 
protein, just as the Cα atom represents the spatial coordinates 
while doing a RMSD analysis. Also, each position of the motif 
has a set of amino acids (Eq. 3) specified to allow for stereo-
chemically equivalent matches at that particular position, such 
that matching amino acids of type R

i
 should belong to Group

i
. 

(and other structure-only based methods) when compared with 
sequence based MSA methods is the requirement that the struc-
ture of the protein is to be previously known. One can use a struc-
ture prediction method to generate a likely structure to circumvent 
this limitation.68 However, the accuracy of the tool used to predict 
the structure needs to be kept in mind when assessing the results 
of such a work-flow. A quantitative comparison with such struc-
tural methods is made difficult by the lack of good metrics for 
benchmarking structural alignments, although a recent method 
proposes a mathematical framework for protein structure compar-
ison.69 It is also to be noted that the STEEP methodology involves 
the residues in the active site, a demanding constraint that leads to 
non-optimal results as the distance from the active site increases. 
Thus, it does not fare as well as other methods (MUSTANG, 
as compared using RMSD values) that apply global and flexible 
constraints while superimposing, although the results improve 
considerably when amino acids are represented by Cα instead 
of the reactive atom. The approach adopted by STEEP is neces-
sary in order to ensure the optimal superimposition of the active 
site, even at the cost of non-optimal results in other domains. By 
doing so, the identification of residues that are to be mutated is 
proper. Comparisons with sequence alignment methods suffer for 
the same reason, as well as the fact that the benchmarking suites 
have been shown to have been inadequately represented by struc-
tural information.70-72 Finally, it is to be noted that STEEP is less 
automated than the other methods compared in the current work 
(ClustalW and MUSTANG), and requires a priori knowledge of 
the active site residues. Any comparison metric that favors STEEP 
should take this into consideration.

Figure 4. Multiple sequence alignments obtained using STEEP, and phylogenetic trees generated using PhyML for serine and metallo-β-lactamases 
(SBL, MBL). The active site motif is marked as ‘*’. The residues are within a radius of 9 Å from the specified active site residues. AS = alignment using 
spatial proximity. ASE = alignment using spatial proximity and electrostatic congruence. (A) AS for SBLs. (B) ASE for SBLs. (C) Cladogram generated 
from (A). (D) Cladogram generated from (B). (E) AS for MBLs. (F) ASE for MBLs. (G) Cladogram generated from (E). (H) Cladogram generated from (F).
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Matches below a user defined threshold score (Sthresh) are 
discarded. In cases where the best match has a score of more 
than Sthresh, the protein is discarded under the assumption that 
it is not related to other proteins. The scaffolds for a protein P

i
 

is defined as the motif with the least CScore − MatchPi
1
. The 

pseudocode for this function is shown in Figure S3A.
Superimposing the scaffolds. The scaffolds from all the 

M proteins are now superimposed extending the technique 
described previously for a pair of proteins50 to include multiple 
proteins. In order to superimpose two scaffolds, MatchP1

1
 and 

MatchPi
1
, we apply both linear and rotational transformations for 

all atoms in P1 and Pi such that the first three atoms {a1, a2, 
a3} in MatchP1

1
 and MatchPi

1
 lie on the same plane (Z = 0), a1 

atoms are at the center, and a2 atoms lie on the Y axis. We iterate 
the pairwise superimposition for the template protein with all 
other proteins to obtain a multiple superimposition. This super-
imposition is now outputted as a Pymol formatted file, and can 
be viewed using Pymol. The set of proteins now have a consoli-
dated spatial reference frame. The pseudocode for this function 
is shown in Figure S3B.

All sets of N residues with the above mentioned constraints are 
obtained in each protein P

i
 using an exhaustive search proce-

dure similar to the one used in SPASM73 (Eq. 4). The pairwise 
distances and potential differences are computed in each match 
MatchPi

j
 for each protein P

i
 (i ≠ 1), and are furthermore com-

pared with the active site motif ΦP1
ASM

 using a scoring function 
(Cscore),32 resulting in a score which defines an ordering of the 
matches.

Φ
proteins

 = {P
1
…P

M
}	 (1)

ΦP1
ASM

 = {R
1
…R

N
}, N >= 3	 (2)

Φ
groups

 = {Group
1
…Group

N
}	 (3)

ΦPi
matches

 = {Match
1

Pi…Match
K

Pi},
∀(j = 1…K)[Match

j
Pi = {r

1
,r

2
…r

N
}, ∀(p = 1…N)

[AminoAcidType(r
p
) ϵ Group

p
]],

[CScore(Match
1

Pi) < CScore(Match
1

Pi) < CScore(Match
1

Pi)…],
CScore(Match

1
Pi) < Sthresh 	 (4)

Table 5. Extending the profile

SBL MBL

Index Count Amino acid types Index Count Amino acid types

1 10  (F/M/P/I/L) 2 6  (A/Y/E/V)

3 14  (S) 3 7  (S/W/D/P/V)

4 13  (F/T/L/V) 5 7  (H/N/I/Y/L/V)

6 14  (K) 8 7  (S/A/T/D/G)

7 14  (A/M/T/I/L/V) 12 6  (S/T/N)

8 13  (A/F/S/T/N/P/Y/I/L) 13 8  (H)

20 14  (S/Y) 14 8  (H/S/F/A/M/W)

22 10  (N) 15 9  (H)

23 13  (S/W/T/P/Y/V/M/C) 16 8  (A/F/S/W/D/P/G/L)

24 12  (F/S/A/I/G/Y/V) 17 9  (D)

30 11  (S/Q/M/D/K/P/Y/E) 19 6  (T/I/G)

37 14  (K) 20 9  (A/R/P/G)

38 13  (S/T) 22 8  (W/I/L/V)

39 14  (G) 29 6  (F/M/Y/L)

40 10  (F/S/A/T/R) 31 9  (H)

41 12  (A/S/T/E/H/Q/R/I) 32 8  (S/T/D)

42 12  (A/S/W/N/G/L/Y) 36 8  (H/T/D/N/C)

37 8  (S/D/C)

38 6  (T/M/I/G/L)

39 6  (S/T/K/G/L)

41 8  (A/T/N/P/Y)

43 8  (D/N/L/Y/E)

47 8  (A/D/L/Y)

49 8  (H)

Consensus residues in the SBL and MBL superfamily with respect to spatial location and electrostatic properties. Indexing is with reference to the 
sequence alignment shown in Figure 4A and Figure 4E for SBL and MBL, respectively. Count is the number of proteins which have a certain amino acid 
in that index in the alignment. The profile is extended if there are less than 75% gaps. For SBLs, the complete set has 14 proteins, so the required count 
is 10. For MBLs, the complete set has 9 proteins, so the required count is 6.
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many years) also speaks highly of the reliability of the APBS/
PDB2PQR implementation.

All protein structures were rendered by PyMol (http://www.
pymol.org/). The alignment and cladograms images were gener-
ated using Seaview.76 We have used PHYML to generate phy-
logenetic trees from these alignments, which uses the method 
of maximum likelihood.8 The method searches for a tree with 
the highest probability or likelihood that would give rise to the 
observed data set, given a proposed model of evolution and the 
hypothesized history. The LG model is the chosen evolutionary 
model providing the amino acid replacement matrices, and is the 
default setting in PHYML.77 Although, such methods are com-
putationally intensive, they are robust to the choice of the evolu-
tionary model and outperform alternative techniques methods 
(parsimony or distance methods).78

Availability of supporting data. The source code and manual 
are made available at www.sanchak.com/steep.html.

Conclusions

To summarize, we propose a MSA methodology that generates 
both evolutionary and functional relation-ships, eliminates unre-
lated proteins from the computation, emits a multiple superim-
position of the related proteins and demonstrate that the active 
site vicinity contains enough information to infer correct kinship 
in a set of related proteins. A unique feature of STEEP is the abil-
ity to identify residues that can be targeted by directed evolution 
experiments in order to endow enzymatic functionality of one 
member of a superfamily to another.
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Generating the alignment, and proposing mutations. Finally, 
we proceed to align the residues from the template protein which 
are within a certain (parameterized) radius Rdist from the active 
side residues. The set of these residues is ΦP1

align
 (Eqn. 5). The 

choice of the radial distance that encompasses interacting residues 
has to be evaluated based on the enzymes being investigated. A 
small radius will not include enough residues, while a large one will 
include irrelevant ones. We have seen that a distance greater than 
4 Å gives comparable cladograms (Fig. S4). The residues in the 
template protein within a distance of 9 Å constitute the sequence 
that are used for alignment in all the examples in the current work.

ΦP1
align

 = {ra
1
P1…ra

X
P1}, ∀(i = 1…X, ∃j = 1…N)[dist(ra

i
P1, R

j
) 

<=Rdist]			  (5)
Next, for each protein P

i
 (i ≠1), we identify residues that are 

in the vicinity of each of the residues in ΦP1
align

, choosing the clos-
est residue as the alignment (Eqn. 6). This is possible since we 
have a consolidated spatial reference frame for the set of proteins 
(NRes

Pi
 = number of residues in protein P

i
). At this stage, we 

provide the option to use electrostatic congruence as a discrimi-
nator (Eqn. 7). The subroutine potcon evaluates whether the two 
atoms have potential congruence.

AlignPi
Distance

 = {raD
1

Pi…raD
X

Pi], [∀( j = 1…X ), raD
j
Pi = ∀(q = 

1…N Res
Pi

)mindist (ra
q
Pi, ra

j
P1)]		  (6)

AlignPi
Potential

 = {raP
1

Pi…raP
X

Pi], [∀( j = 1…X ), raP
p
Pi = raD

p
Pi ˄ 

potcon(ra
q
Pi, ra

p
P1)]				    (7)

Two kinds of alignments are obtained by either ignoring poten-
tial congruence or filtering out residues that do not have electro-
static congruenc. The pseudocode for this function is shown in 
Figure S3C. A comparison of these alignments identifies residues 
which lack electrostatic congruence, even though they occupy a 
spatially equivalent position in the structure. These can be the 
basis of mutations in directed evolution experiments designed to 
mirror the desired protein and its functionality/specificity.

Implementation details and third party software. The 
STEEP package is written in Perl on Ubuntu. Hardware require-
ments are modest - all results here are from a simple worksta-
tion (2GB RAM) and runtimes were a few minutes at the most. 
The source code and manual are made available at www.sanchak.
com/steep.html.

Adaptive Poisson-Boltzmann Solver (APBS) and PDB2PQR 
packages were used to calculate the potential difference between 
the reactive atoms of the corresponding proteins.74,75 The APBS 
parameters and electrostatic potential units were set as described 
previously in.32 The invariance in the electrostatic features (mea-
sured in structures that have been solved independently over 
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