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ABSTRACT

This paper deals with an investigation and evaluation of the performance of a state observer based Permanent Magnet

Synchronous Motor (PMSM) drive controlled by PI (Proportional Integral), PID (Proportional Integral and Derivative),
SMC (sliding mode control), ANN (Artificial neural network) and FLC (Fuzzy logic) speed controllers. A detailed study
of the steady state and dynamic performance of estimated speed and angle is given to demonstrate the capability of the

controllers.
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1. Introduction

PMSMs (Permanent magnet synchronous motors) are
extensively used in servo drives. These are also used in the
field of electricity generation, solar water pumping, wind
energy applications, etc. A PMSM has high air gap flux
density, high power to weight ratio, large torque to inertia
ratio, controlled torque at zero speed, high torque
capability and high power factor. In addition, it operates
smoothly even at very low speeds, is highly efficient, and
is compact in size. ", It has to be operated in a closed loop
control. A suitable method must be chosen so that these
requirements can be met and desired performance is
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achieved. The idea behind using vector control in ac motor
drives is to transform the ac machine, performance-wise,
into an equivalent separately excited dc motor. This gives
the performance of an ac machine similar to a separately
excited dc machine while retaining the general advantages
of an ac machine over a dc machine. The PI (Proportional
Integral) and PID (Proportional Integral and Derivative)
speed controllers are conventional speed controllers. They
are easy to model and they can also easily be implemented
in a closed loop control of the drive system ). The SMC
(sliding mode controller) speed controller is another
conventional speed controller which is easy to implement.
It is capable of providing robust performance and this is
considered a useful feature for the motor drive. To impart
intelligence into the system, fuzzy logic controllers are
used. In electric motor drives and motion control, the
fuzzy logic controller is considered a promising alternative
to conventional control techniques.

The fuzzy logic controller generates the reference
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current vector of the PMSM speed control based on the
speed error and its change . Fuzzy logic controllers are
used for processes that have no simple mathematical
model, for highly nonlinear systems, or where linguistically
formulated knowledge needs to be processed.

The use of artificial neural networks (ANNs) is the most
powerful approach in Al (artificial intelligence) """\, One
of the most outstanding features of ANNs is their
capability to simulate the learning process. They are
supplied with pairs of input and output signals from which
general rules are automatically derived so that an ANN is
capable of generating the correct output for a signal that
has not been previously used. The torque control of a
PMSM requires knowledge of the rotor position to
perform an effective stator current control. Furthermore,
an ac motor drive requires two current sensors and an
absolute rotor position sensor for the implementation of
the control strategy. Hence, control and operation without
a rotor position sensor as shown in Fig.1 would enhance a
PMSM'’s applicability to many cost sensitive applications
and would also increase the mechanical robustness and
reliability of the drive.
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Fig. 1 Block diagram of sensorless control of PMSM

Sensorless control reduces maintenance requirements
and ensures that the inertia of the system is not increased
in sensor based drives during sensor failures. Among the
few observer based position and speed estimation methods
of a PMSM, the Extended Kalman Filter (EKF) method
immunity and provides a

noise powerful

12

offers
computation intensive back up control alternative
the present work an observer based on Extended Kalman
Filter (EKF) for a PMSM is studied with various speed

controllers such as PI, PID, SMC, fuzzy logic and ANN
'l The steady state and dynamic performance is compared
in order to identify the best controller so that the observer
based drive may be used where precise control is needed.

2. Modeling of PMSM

In a PMSM the permanent magnet can be considered as
a fictitious equivalent constant current field excitation
source. Thus, in the rotor reference frame, the rotor
current space phasor is given as:

i — clrf — constant (1)

The flux linkage with the stator windings due to the
permanent magnet in a surface mounted PMSM where the
direct axis inductance is equal to the direct axis inductance

(L,=L,=L,)is givenas:

A =L, @

The equations of electromagnetic torque, direct axis

current, quadrature axis currents and speed are given as

3P ..
Te = 5—2_(1511(1 = ﬂ'r/ld) (3)
L i
pi, =i 12 Sine, +v, @
Ld Ld Ld

r

: L,. -R. 4
plq =—Q L—ld +L—lq +L—a)rCO.§'0rm

q q q (5)
1
¥,
L(l
pw-=(Te—Ti— Bw:)/J (6)

Substituting the value of T, from (3) in (6):
pao, = 3p(ldiq — iqid) 4J)—(Bw, +T))/J
@)

The model of the motor is utilized to compute the stator

currents.
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3. Modeling of State Observer

A Kalman filter provides a solution that directly takes
care of the effects of the disturbance noises including
system and measurement noises. This assumes that
measurement noise and disturbance noise are uncorrelated.

The Kalman filter
computationally efficient candidate for online estimation

approach is a viable and
of the speed and rotor position. This is possible because a
mathematical model describing PMSM dynamics is
sufficiently well known.

Fig.2 shows the observer based speed estimation block.
contain the states

The motor model

,, and @

rm?

equations

i d,iq, where the latter two variables are
estimated. The torque control of a PMSM requires
knowledge of the rotor position to perform an effective
stator current control. The rotor position can be
determined based on sensed voltages and currents,
considering that the motor is running at a speed ®, whereas

the model starts with an assumed rotor speed @y,
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Fig. 2 Structure of EKF

The assumed rotor position @ lags behind the rotor

rm
position 6, by 86 radians. As shown in Fig.3. The relations
between actual and assumed rotor positions and rotor

speeds are as follows (*:

0, = [o,dt ®)

6,, = [0,.d ©
50=6 -6, = J'(a),_ —w, )dl (10)
g-axis
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ir=i'gs !
: 4 d-axis
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Fig. 3 Phasor diagram corresponding to an error between the
actual and assumed rotor position

The dynamic model of the motor in state variable form
can be expressed as:

X _ 4(x)+ BU (1)
dt
Y =CX (12)

where X =[i, i, @

q rm

6,,.] is the state vector,

U=[v, vq]T is the input vector, Y= [i, i, Tis

the output vector, and the matrices 4(X)and B are
parameter matrices and C is a constant matrix. The stator
phase voltages in a dq rotor frame can be expressed in
terms of their abc-reference frame values. The sensed
motor phase currents i,, iy, and i, are transformed to the
rotor reference d-q frame in a way similar to the voltages.
The state equations of the motor are given in (11) and (12).

These state equations can be used for the design of a state
observer. Now, if one only wants to estimate some of the

state variables say[i, iq]T then the standard form of

the state observer equation is given by:

i(CJ/tY—)=A(X,V)+G(i—I) (13)

V is the sensed input vector and is equal to[v, v,

It is obtained by transforming the phase voltage (v,, Vb, Vc)
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into the rotor reference frame using the estimated rotor
position, not the actual rotor position. The phase voltages
are sensed from the terminals of the motor. The current

state vector/ =[i, i, ], obtained by transforming the

sensed value of phase currents (i,,i,,7 ) into the rotor

reference frame using the estimated rotor position,

I =[ia i4] is the estimated value obtained by the

solution of (13). In (13), G is the observer gain matrix,
which is the result of tuning the system in such a way, that
(13) becomes stable.

G matrix can be given as:

g 8n»
G=|8, 8&xn
831 &xn

(14)

Using this matrix, the equations (4), (5) and (7) can be
expressed in detail as:

i, = Ri +w"L"i + ; v
d — 5 “d g V7 Vd
L, L, * L, (15)

+g||(;d_id)+gl2(ill_iq)
L - -4
Bl WERY T
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pi, =

1 2 -
+L—vq +8y(ia—i,)+gynlig—i,)

p@, =3P(Ai, —A,i,)[(4])~

. ) (17)
(Ba)’ +T})/J+g3l(ld_ld)+g32(lq _i(])

In such a motor the electrical time constant is much
smaller than the mechanical time constant, that is,
electrical sub dynamics are much faster than mechanical
dynamics. Therefore, the error in electrical quantities can
be used as feedback to rectify the estimated values of both
electrical and mechanical quantities. This is the basic
concept used in the observer model defined by (15), (16)
and (17)"*1),

4. Field Weakening

In small rating drives there is no need for flux
weakening. However, it is not possible to achieve direct
field weakening for large rating drives owing to the
permanent magnet construction. For these drives, the
effect of field weakening can be obtained by controlling
the stator currents in such a way that the stator current
space phasor in the rotor reference frame should contain a

direct axis component I, along the negative direct axis of

the rotor reference frame. In addition to the quadrature

axis stator current component i.\'q , the demagnetizing
current —1i, is injected on the stator side. As shown in

Fig.4 in flux weakening mode, i is controlled so that its

q

maximum value is limited by

. 2 2
i =all

q s

i (18)
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Fig. 4 Space phasors of PMSM in the field weakening range

5. Modeling of Speed Controller

5.1 Pl Speed Controller

The PI speed controller is a conventional speed
controller which is very widely used. It is very easy to
model and it can also be easily implemented in the closed
loop operation of the drive system. It consists of two
control parameters, namely, the proportional and the
integral gains. By properly tuning these parameters the
desired level of performance can be achieved. The block
diagram of the PI speed controller is developed in
SIMULINK. In the PI speed controller, the motor speed is
compared with the reference speed and the speed error is

obtained at the nth sampling interval as ['>):
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w O*, . —0 (19)

e(n) ~ r(n)
The output of the speed controller gives the reference
torque. Hence the output of the speed controller at the nth

sampling interval is [* *:

*:T

T (

(n) n-1) +Kp (we

o — e (n_])) +K,m, o 20

For constant air gap flux operation, the reference
quadrature axis current is given as:

[ % =
qu

a1 By @1

where, w(n) is the speed error at nth instant, a)*r(n) is

the reference speed at the nth instant, @

e is the motor

speed at the nth instant, [ is the speed error at the

th .
(n=1)" instant, T, and T, are the reference

torque at the nth and (n-1)th instants, K, and K are the
proportional and integral gains of the speed controller,
ok . . .

1 4 is the reference quadrature axis current, and K, is the

torque constant. The limiter is used to limit the maximum
value of the output of the speed controller. The motor
current and device current of the converter dictate the limit
of the current.

5.2 PID Speed Controller
The output of the conventional PID speed controller is

the reference torque at the nth sampling interval and is

given as:

z

(n

s KD {a)e(n) - 2a)e(n—l)

y =Ty K, {0

e

+ we(n—Z) }

(n) — we(n—l)} + Kla)e(n)

(22)

where Kp, K; and K are the controller gains of the PID

speed controller and n is the sampling index.

5.3 Fuzzy Logic Controller
In a fuzzy logic controller (FLC), the system control
parameters are adjusted by a fuzzy rule based system,

which is a logical model of the human behavior for

process control. A typical topology withe,,as the error

and ¢, as the change in error in the speed command of

the fuzzy speed controller is shown in Fig.5 as:

where, €,y = W* ;) —@) (23)

(k)

and C, =¢ey, —e,, (24)
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—
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Fig. 5 Fuzzy Logic speed controller

The FLC is constituted of three stages: fuzzification,
rule base and defuzzification. An FLC does not require the
exact mathematical model; instead its structure is
knowledge based or rule based. These rules are imprecise

and are expressed in terms of linguistic variables, etc. 7).

5.4 Sliding Mode Controller

The SMC is shown in Fig.6 > * "], To overcome the
problems of overshoot and oscillations associated with the
use of a PID speed controller, the SMC controller
becomes important. The sliding mode control makes
system motion robust with respect to system parameter
variations, unmodeled dynamics and external disturbances.
In addition, this technique provides efficient control laws
for linear and nonlinear plants. Another distinguishing
feature is its order reduction capability, which enables
simplification of design and system decoupling. With
these advantages, the sliding mode control is a promising
area for motor drive system. In this case, the speed locus is
a straight line lying in the second and fourth quadrants of
the phase plane of the speed error and acceleration of the
drive system. Switching along the locus is achieved
depending on the values of speed error and acceleration,
and, therefore, it can be called the speed locus. The output
of the sliding mode controller is limited through a limiter
and the signal obtained is used to determine the reference

torque T: .The block diagram in Fig. 6 represents the
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switching of the structure of the system. Here S; and S,
are the switching functions whose values are decided as:

S1=+1, if Zx,>0

-1, if Zx, <0 (25)
S2 =+1, if Zx, >0
-1, if Zx, <0 (26)

Fig. 6 SMC speed controller

where x is the speed error and x, is the derivative of the
speed error.
The output of the SMC is given by V= C;x,S; + C:x,S,,
where C; and C; are controller gains on the speed locus.
The switching hyper plane function is expressed as Z =
Kix; +Ksx,, Here, K, and K, are adjustable parameters.
The limiter limits the output of the SMC and the output of

the limiter is considered the reference torque.

5.5 Neural Network Controller

The main objective of the ANN speed controller is to
provide an accurate and fast response making the whole
system immune to the effect of load variations, parameters

changes, noise, temperature, etc *'!

. Fig. 7 shows a
multilayer neural network controller, which has been
trained to replace the conventional controller. In this
multilayer feed-forward artificial neural network
there is an input layer, an output layer, and between

the input and output layers there are so called hidden

Input layer

input 1_(:)1?

Output layer

Hidderi layer

Fig. 7 Multilayer feed-forward artificial neural network with
one hidden layer

layers. The input and output of the ANN controller are
determined from the knowledge of the conventional PI
controller. Here, in the input of the controller, the error in
the speed is given as the difference between the reference
speed and the sensed speed of the motor that is obtained
through the speed estimation block of Fig.1. The PI
controller for the plant as a vector controlled PMSM drive
has been replaced by a neural network controller which is
static, thus simplifying the control implementation. The
tuning effort of an Al based system can be less than that of
a conventional system. Such a system leads to reduced

development time.
The output of the ANN controller is I q* the quardrature

axis reference current for the PMSM. Therefore, the
number of the neuron in the output layer is one. In
multilayer networks the tan-sigmoid transfer function
‘tansig’ is used in the back propagation algorithm. One
iteration of the back propagation algorithm can be written

as X,,=X,—-a,g, where X, is a vector of

current weights and biases, g, is the current gradient,

and ¢, is the learning rate. The following code creates a

training set of inputs p and targets t. For batch training, all
of the input vectors are placed in one matrix. p = [-1 -1 2
2;0505];t=[-1-111];

Here the function minmax is used to determine the
range of the inputs to be used in creating a feedforward
network as:
net=newff(minmax(p),[3,1],{'tansig','purelin'},'traingd"));

The training parameter to train the neural controller as
shown in Fig. 8 with the goal of minimizing the error up to
le-5 is as follows:

net.trainParam.goal = le-5;

controller Plant
X ) Y

®
+
0 e
eural
ontroller

Fig. 8 Training of neural controller to emulate actual controller

A mechanism of online weight changing has been
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provided so that the motor controller becomes an adaptive
one. The ANN controller is provided with an initial set of
inputs and biases which also ensures the stability of the
system. Furthermore, this set of weights and biases is
changed in real time at every sampling instant using the back
propagation algorithm. These two requirements are critical
for the online design of a successful adaptive speed
controller.

6. MATLAB Model

An observer block for sensorless control of a PMSM
motor is developed in MATLAB. Three phase voltages and
currents are taken as input to the observer. Using (13) to
(17) the observer block is simulated. The flux weakening
block is also added in the model to run the PMSM motor
above the base speed. In order to get desired output voltage
and current the pulses are generated using PWM
techniques at 16 kHz!"" and are applied at the gate
terminals of the IGBT (Insulated Gate Bipolar junction
Transistor) based inverter as shown in the MATLAB
model of the observer based PMSM of Fig.9.

e g

;I}"d w:astr e
N ImALE: %

Masurement

Demux

Fig. 9 MATLAB model of the observer based PMSMdrive

Estimated angle and estimated speed are calculated
using the gain matrix of (14) and are the output of the
observer block which in turn are fed back to the speed
controller of the model in order to minimize the speed
error and run the motor at the desired reference speed. The
value of iu is zero on or below the base speed. The flux

weakening block is developed to get different values of is

in order to achieve a speed higher than the rated speed.
There are speed estimation and position estimation blocks

inside the observer block of the model.

7. Results and Discussion

The motor is started at a reference speed of 700 rpm with
INm mechanical load and the performance is studied
during starting, steady state and transient conditions. The
speed response, torque response, current response and
angle response for sensed and estimated conditions are
studied in Fig.10, Fig.11, Fig.12 and Fig.13 for PI, PID,
SMC, fuzzy logic and artificial neural network (ANN)
speed controllers on the state space observer based speed
and angle estimation of a PMSM. The observer with SMC,
PI and PID controller attains 700rpm in 0.030 sec, with
neural network controller it attains the same in 0.023sec,
and with the fuzzy logic controller it attains the speed in
0.028sec. The PID and PI speed controllers take 0.03sec
and 0.034sec, respectively.
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Fig. 10 Starting response of the observer with different controllers
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Fig. 11 Torque response during starting with different controllers
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Fig.11 shows the torque response of the state observer
with different controllers. With sliding mode controller the

torque settles down after transients with oscillations of

more than 4 Nm whereas with neural network controller
the torque settles down smoothly and faster response is
seen compared to fuzzy logic, Pl and PID speed
controllers. Fig.12 shows the current response with
different controllers and the ripples are seen in the SMC
controller under transient conditions. Fuzzy, PID, Pl and
neural network speed controllers give an improved and
smooth response but the response of the neural network
controller is faster than the fuzzy, PID, and Pl controllers
and is smooth under transient conditions. Fig. 13 shows
the estimated and actual angle during the starting of the

motor.
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Fig. 12 Current response during starting with different controllers
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Fig. 13 Estimated angle during starting with different controllers

Steady state performance is given in Fig.14. There is
steady state error of more than 15 rpm in the fuzzy logic
controller. With the SMC the error is 0.05 rpm, but the
motor experiences oscillations before settling to its
reference speed. With the neural network controller there
is a steady state error of 3rpm, but the controller speed of

700rpm is achieved smoothly.
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Fig. 14 Closed view of speed response during starting with

SMC, NN and fuzzy controllers

The PMSM drive is started and operated in flux
weakening mode with the state observer. The step from
700 rpm to a speed of 1400 rpm, higher than its rated
speed of 1200 rpm, is given as reference and is achieved
with all the controllers. Fig.15 shows the speed response

of all the controllers in flux weakening mode.
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Fig. 15 Speed in flux weakening and load perturbation



288

Journal of Power Electronics, Vol. 8, No. 3, July 2008

The neural network controller gives improved

performance as it starts and settles faster without

oscillations and also takes less time in achieving the target.
The performance is studied for load perturbation. The load

is increased from INm to 3Nm in flux weakening mode.

Fig.15 shows that speed remains unchanged during load
perturbation with all the controllers. Fig.16 and Fig.17

show the torque and current response of all the speed
controllers in flux weakening mode.
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Fig.16 and Fig.17 show the satisfactory performance in

torque and current curves, respectively, with load

perturbation at 0.15 sec in flux weakening mode. The

observer based system is also studied for speed reversal

from 700 rps to -700 rps and the load is increased from 1
Nm to 3 Nm at 0.15 sec. Fig. 18, Fig. 19 and Fig.20 show

the response of the system at speed reversal, current and

torque response, respectively, during speed reversal.
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The results indicated in Fig.17, Fig.18 and Fig.19 show
that the observer based system responds faster with the
neural network controller during speed reversal, while at
load perturbation there is no change in speed.

8.Conclision

The obtained results have clearly demonstrated that for
a state space observer based PMSM drive, the neural
network controller is the fastest among SMC, PI, PID,
fuzzy and neural network speed controllers. The speed,
torque and current response verify that with neural
network control the state space observer based PMSM
drive is robust and smooth control is obtained for various
disturbances such as starting, steady state, field weakening
speed reversal and load perturbation. Hence, it may be
used where precise control is needed such as in satellites
and aircraft operation, etc.

Table I Parameters of PMSM
Power Rating of the motor 1.1 kW
Number of pole pairs p 4
Armature resistance Rs 2.875Q
Magnet flux linkage /1/. 0.175Wb
d-axis inductance Ld 8.5mH
g-axis inductance Lq 8.5mH
Phase voltage V 220V
Moment of inertia J 0.0008kg.m’
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