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General linear response analysis of anelasticity
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Abstract. Linear response theory is used to express the anelastic response (creep
function and generalized compliance) of a system under an applied stress, in terms of
the equilibrium strain auto-correlation. These results extend an earlier analysis to
cover inhomogeneous stresses and the tensor nature of the variables. For anelasti-
city due to point defects, we express the strain compactly in terms of the elastic dipole
tensor and the probability matrix governing dipole re-orientation and migration. We
verify that re-orientations contribute to the deviatoric strain alone (Snoek, Zener, etc.
effects), while the dilatory part arises solely from the long-range diffusion of the defects
‘under a stress gradient (the Gorsky effect). Our formulas apply for arbitrary orien-
“tational multiplicity, specimen geometry, and stress inhomogeneity. The subse-
quent development of the theory in any given situation then reduces to the modelling
of the probability matrix referred to. In a companion paper, we apply our formalism
to work out in detail the theory of the Gorsky effect (anelasticity due to long-range
diffusion) for low interstitial concentrations, as an illustration of the advantages of
our approach to the problem of anelastic relaxation.

Keywords. Linear response theory; anelastic relaxation; compliance; elastic dipole;
re-orientation; diffusion.

1. Introduction

In an earlier paper (Balakrishnan et al 1978), referred to as BDV hereafter, a forma-
lism was developed for mechanical response (specifically, anelasticity) based on the
application of linear response theory (LRT). The static and dynamic response
functions (creep function and complex compliance) for an isotropic system subjected
to a homogeneous uniaxial stress were expressed in terms of the autocorrelation
function of the strain fluctuations in equilibrium, i.e., under zero applied stress. The
origin of the fluctuations was traced to the randomness inherent in the motion of the
point defects giving rise to anelastic behaviour, and a stochastic theory based on a
dynamical equation of motion for the strain was developed. The formal similarity
of this equation with the generalized Langevin equation for the Brownian motion of a
particle in a medium with a ‘memory’ was brought out, and a number of results were
established; the fluctuation-dissipation theorem for anelasticity, moment theorems
for the power spectrum of the fluctuations, expressions for the parameters of phe-
nomenological network models of anelasticityin terms of average values of the under-
lying microscopic variables, etc. As a test of some of the ideas developed in the
formalism, the creep function and compliance in the case of the Snoek effect (due to
the re-orientation of the elastic dipoles associated with interstitial impurities in bec
metals, e.g., carbon in a-iron) were determined ab initio, via an explicit evaluation of
the strain autocorrelation. This was done by a simple stochastic technique, under
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the assumption that the random jumps of the interstitial atoms from site to site
are described by a stationary Markov process.

The treatment of mechanical response (at least at the level of anelasticity) has thus
been brought in line with similar formalisms for magnetic and dielectric response,
among others. In addition, a number of lines along which the formalism required
generalization was indicated in BDV. In the present paper, we address ourselves
to such a task: we derive the most general expression within the framework of LRT
for the static and dynamic mechanical response functions, under the application of a
stress field of any spatial and temporal variation, taking into account the tensor
character of the stress and strain. Going over to anelasticity caused by point defects
(elastic dipoles), we carry out the evaluation of the equilibrium strain autocorrelation
in terms of appropriate quantities. Subsequently, in Balakrishnan (1978) (following
paper), we work out the theory of the Gorsky effect (anelasticity due to long-range
diffusion), to complement the theory of the Snoek effect (anelasticity due to defect
re-orientation) presented in BDV, in order to illustrate the power of the present
approach to such problems, besides providing an application of current interest.

A summary of the paper is as follows. In § 2, we apply LRT to the problem
at hand, the results being embodied in eqs (3) and (6). In § 3, we evaluate
the strain autocorrelation required in terms of the elastic dipole tensor corresponding
to point defects and the effective time-development operator (or probability matrix)
that controls the re-orientation of the elastic dipoles and their long-range diffusion.
(The details of the calculation are given in the Appendix.) The result is the expres-
sion in (13). The saturation value of the anelastic strain under a constant load is
deduced from this, to provide a general formula for the ‘relaxation strength’ (eq,
(17) from which various special cases can be read off. In § 4, the strain response
is separated into its dilatory and deviatoric parts (eq. 21), and we establish the
following (known) results rigorously and in general. The deviatoric strain arises
solely from the re-orientation of the elastic dipoles (i.e., the Snoek effect, Zener relaxa-
tion, etc.); the corresponding relaxation strength is a measure of the ° anisotropy’
(or departure from cubic symmetry) of the elastic dipole (Nowick and Berry 1972).
On the other hand, the dilatory part of the strain, i.e., the Gorsky effect, depends only
on the * size effect* introduced by the defects (i.e., on the trace of the corresponding
dipole tensor), and is non-vanishing only if the applied stress is spatially inhomoge-
neous. The subsequent development of the theory in any given situation then re-
duces to the modelling or determination of the probability matrix referred to in the
following. Typical approaches to this aspect of the problem have been presented
elsewhere: for the case of re-orientation, in BDV and in Balakrishnan and Bala-
krishnan (1978); for the case of diffusion, in the paper following.

2. Application of linear response theory

We begin with a system in equilibrium at t = — oo, that is described by a Hamiltonian
Ft,. The equilibrium is disturbed by the apphcatlon of a space- and time-
dependent stress that alters the Hamiltonian to

Gt =, — [, dR' e (R) o (R, 1), | )
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where V is the volume of the sample, and the subscripts are Cartesian indices. We
regard e, o, etc. as classical variables. LRT (Kubo 1966; see also BDV) gives for
the strain response at time ¢ the expression

Ceay R, 1) = ey (R) Deq + B ft_oodt' fV dR’ o, R/, ") X
(e R, 1) e (R, 1) Degs @

where B=1/k T and the dot denotes a time derivative. In the cases of interest to us,

the equilibrium average of the strain may be taken to be zero. Further, if the equili-
brium distribution of the defects causing the strain is uniform throughout the sample,
the strain e is independent of the co-ordinate R, and this remains so in the presence of
a uniform applied stress. ‘

In a creep experiment, a time-independent stress is applied from #=0 onwards.
The stationarity property of the equilibrium autocorrelation in (2) then gives

(e&; R, 1)) =B [ dR 0y (R)) [{e1; (R, 0) ez (R', 0))eq '

— (e (R, 1) ey (R, 0) )eq] )

The determination of the creep function reduces now to the actual evaluation of the

required autocorrelation functions in each given instance. In a dynamic experiment

(e.g., internal friction measurement, ultrasonic attenuation, etc.), on the other hand,
we require the response to an applied stress field ‘

ou (R, 1) = Re [0y (R) exp (— iw?)], : @

that perturbs the initial state of equilibrium. Integrating by parts over ¢’ in (2)

with the help of the stationarity property once again, we obtain the strain response*
in terms of a generalized compliance J as follows:

<€i.i (Rs t)> = RC [J’dR’ O (R,) JiJkl (R, R’a w) eXP (—iw t)]’ | (5)
wheré | ‘

Jim R, R, @) = B [{ei; (R, 0) &1 (R', 0)Deq

+iew J‘(o)o dt' exp (—iwt") {e; R, ") € (R, 0)>GQ] : (©)

The complete solution to the problem in any giveri situation is then repfesented by
the evaluation of the integral

) = [ dR oy (R) e R R, o) - o

*Equation (5) is very clearly the non-transient response, because an infinite interval of tlme has
elapsed since the stress was switched on at t = —o0. Otherwise the strain will have other frequency
components as well—or, equivalently, ‘ J(w) * must itself have time-dependence.
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3. Anelasticity due to point defect motion

We are interested in applying the above formalism to problems in which point defects
(interstitials, dumb-bell pairs, etc.) cause local internal strains described by elastic
dipoles, whose stress-assisted random motion leads to anelastic relaxation and asso-

ciated effects. Each elastic dipole is represented by the strain tensor A(g.), where

n=1, 2, ..., r stands for one of the r possible orientations of the dipole (Nowick and
Berry 1972). In the absence of an external stress, these are equivalent orientations,
equally populated by the dipoles at any given temperature. Under the action of an
applied stress field, the originally degenerate energy levels corresponding to the diffe-
rent orientations are split up, and the system relaxes towards a population distri-
bution determined by the split spectrum. If, in addition, there is a spatial variation
of the stress across the sample, an initially uniform dispersion of elastic dipoles will
diffuse to form a concentration gradient that compensates for the stress gradient to
produce a minimum free energy configuration. Both these effects (preferential re-
orientation and diffusion) lead to anelasticity, and our treatment will encompass
them in a unified manner, being a generalization of the approach developed in BDV.

Let C,(R) be the instantaneous concentration of elastic dipoles in orientation »
in an infinitesimal volume element at the point R. If C is the average equilibrium
concentration (molefraction) of dipoles of all orientations, the relative concentration
X,=C,/C satisfies the normalization condition

V~1de S G ® =1, ®)

at all times, if the total number of dipoles is conserved. The strain is related to the
dipole concentration by the constitutive relation

w®=C) | nm—1] ®)

the subtraction ensuring that { €)eq vanishes. As in BDV, we regard X, (R) as a
stochastic variable, leading to fluctuations in the strain both in the presence and in
the absence of an applied stress, as the dipoles randomly change their orientations
and positions. In order to study this random motion quantitatively (specifically,
to compute the strain autocorrelation), we introduce the set of stochastic states
{|n R) }wheren=1,2, ..., r and R € V. The a priori probability of occupation
(by an elastic dipole) of the state |n, R), in the absence of an applied stress, is
given by (see the Appendix) ‘

p(LR)dR = dR/Vr. | (10)

In the absence of the applied stress, the time dependence of the stochastic variable
X, (R) is controlled by a time evolution operator that we denote by P¢4 (¢): thus

€y (R, 1) = Pea(t) «; (R, 0). (11)

The mat-rix elefment (ny, Ry | Pe4 (1) | my, R,) represents the conditional probability
that a dipole in the state|n,, Ry) at # = 0 evolves into the state | n,, Ry) in time ?.
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The strain autocorrelation required to write down the mechanical response of
the system is then defined in terms of the stochastic states in a manner analogous to
that of BDV. We have

ey R 1) 6 R, Opeq =, >, fdRy [dRy p (1, Ry)

(n, Ry l e (R, 0) | ny, Ry)
. 1y, Ry | P4 (2) | 12, R,
(ny, Ry |, Ry) m, 1| () | 2 R)

O Reley R, 0) |1y, Ry) (12)
(n2, Ry | 72, Ry)

This is a product of expectation values of the strain respectively in the initial and
final states, together with the probability of evolution from one state to the other,
summed over the final state and averaged over the initial state with the appropriate
weight factor p (n, R;). To simplify this expression, we must use a number of
properties of the states { | n, R)}. These are listed, and the simplification carried
out, in the Appendix. The final result is, denoting by v, the volume per atom of the
host crystal,

(e (R, 1) € (R, 0))eq = (Coglr) > > Al AT %
[(m, R | Ped (1) [ n, R) — (1/¥7)]. - (13)
The equal-time correlation is obtained trivially from (13). We need to use the
orthogonality of the states and the fact that P€d (0) is identically equal to the unit
operator 1. :
We are ready, now, to deduce the formulas for the mechanical response of the
system in both creep and internal friction experiments. Substituting (13) in (3),

we arrive at the general answer for the time-dependent strain under a constant
stress oy; (R) applied from =0 onwards:

<€iJ' (R: t)>

1

=-fCy zn Em Ay f dR’ oy (R') (m, R'| 1—P%9. (1) [ n, R) (14)
]‘ n ﬂr m

= - B Cu, zn Agj) [)‘l(cl) o (R) — Em )‘21)

f dR' oy (R)) (m, R’ | P2 (¥) | m, R)]. (15)

Similarly, we find for the response to an applied time-dependent stress field of fre-
quency o (see (4)—(7)).
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1 n n >
By ®e) =28 Co 3 3P [Wou @+ 2P x

f dR’ o, (R') f :’ dt’ exp (iwt") (m, R’ | P (¢} | m, R)]. (16)

Equations (15) and (16) represent the most general form of solution to the problem
at hand, containing the effects of both re-orientation and long-range diffusion of the
defects (elastic dipoles). It is worth recalling the conditions under which the above
results are valid. These are: (i) linear response to the applied stress; (ii) conservation
of the total number of defects, i.e., no defect reactions or diffusion of defects into or
out of the specimen; (iii) no defect-defect interactions; (iv) a single energy level for
all the r orientations of a dipole in the absence of an applied stress. It is possible to
relax the latter three assumptions to varying degrees and to work out a more involved
formalism. The extension to nonlinear response is a much deeper question, and
different methods have to be appealed to, depending on the particular problem (see,
for instance, Venkataraman and Balakrishnan 1977). ’ '

To proceed further in any given situation, the probability matrix P®d(z) must be
specified or modelled. However, the asymptotic (¢ > c0) limit of this quantity is
obtained readily on physical grounds: we expect that the matrix element connecting
the initial state |m, R') to the final state | n, R) becomes independent of the initial state
as the elapsed time ¢t o0, and in fact becomes equal to the a priori occupation pro-
bability in equilibrium of the latter state. Using (10) for this probability, we find that
the saturation value of the strain under a constant applied stress is

1 n Hn
o 09))=28C 3 2[4 o )

— _;_r Zm A f dR’ oy, (R’)]. an

This is a generalized expression for the © relaxation strength °, which is related to the
change in the elastic modulus owing to the presence of the defects (dipoles). Under
certain experimental conditions (such as the bending of a beam of rectangular cross
section, to be considered in the next paper), the applied stress field is such that the
integral on the second term on the right vanishes, leading to a particularly simple
formula for the relaxation strength (see, e.g., Nowick and Berry 1972).

4. Separation of re-orientational and diffusive effects

With the help of the formalism developed above, it is easy to establish the following
two important conclusions: (i) anelasticity due to long-range diffusion occurs only
if the applied stress is spatially inhomogeneous across the sample, and (ii) the effect
of re-orientation is probed only by the deviatoric or traceless part of the applied
stress.  Although it is possible to work out the case of any general crystal and defect
(dipole) symmetry, it is convenient to concentrate on elastic dipoles of cubic, tetra-
gonal, hexagonal, trigonal or orthorhombic symmetry. In all these cases the number
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of independent components of the A tensor doeé not exceed three, and certain pro-
perties of A¢m can be verified quite simply—namely, that Tr A® is independent

of the orientation n, and that the sum over all orientations of each component of
the deviatoric part of the A tensor vanishes. (For a complete group-theoretical
treatment of the A tensor in the case of arbitrary crystal and defect symmetry, we
refer to Nowick and Heller 1965.)

Let us first write the dipole tensor as the sum of its dilatory (trace) and deviatoric
(traceless) parts, i.e.,

A = }-Sij Tr Am (/\(") —'“131,- Tr A(”))
3 o3

When a tensor split up thus is contracted with another that is similarly separated
the cross terms vanish. This fact is used, together with the properties of the dipole
tensor stated above, to re-cast (15) for the strain response under a constant applied
stress in a form that is convenient for the discussion of the underlying physical pro-
cesses. During the simplification, one encounters a partial sum over the orientation
states of the matrix elements of P*(z). Even without explicitly assuming that this

operator is a direct product P? ® P§ of operators that act only on the orientation
and position states respectively, we may use the conservation of probability to write

DR PE(D) |, R) = (R'| PS ()| R), 19)
and similarly
j dR (m, R'| P% ()| n, R) = (m | P33 (2) | n). (20)

These equations serve as definitions of the matrix elements of effective time develop-
ment operators P§ and P{? controlling respectively the long-range diffusion and

the re-orientation of the dipoles.* Employing (18) and (19) to simplify (15), we obtain
finally

1 Dm Ym
(u®D) ==L Cop > XX
f dR’' Gy (R) (m, R'| 1 — P9(t) | n, R)

+é’3 Coy (Tr )° 3y, f dR Tr o (R) (R [1—PE®|R), 2D

*It might appear at first sight that eqs (19) and (20) are valid only if the operator P*? is a direct
product of operators, Perq ® Pe;,l, and therefore incorrect for (R — R’| of the order of a single

atomic jump distance, because orientations and sites are generally interlinked: from a given orienta-
tion, the dipole may be able to go only to a subset of possible orientations in a single jump, so that
certain matrix elements of P°? (¢) must vanish identically for such values of |R —R’[. However, the
summation over n in eq. (19) takes care of this problem, and the reduction is correct in all cases.
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which represents also a splitting of the strain into its dilatory and deviatoric parts.
The response in a dynamic experiment, (16), can be handled in a similar fashion.

We may substantiate, now, the two statements made in the beginning of this sec-
tion. If the applied stress has no spatial variation across the sample, this quantity
can be placed outside the integrals in (21). The first integral may be performed with
the help of (20) (the matrix elements of the equilibrium probability matrix being
symmetric), while the second integral vanishes on account of the orthonormality of
the states and the conservation of probability. The strainresponse is thus spatially
homogeneous, as expected, and is given by

1 S A A A
Caft)) = p Bo,C z z A;j) A ::rm O (m | 1—P,2a(z) | n)

1 N Adn A A
=SB0 AN R =2 AW on|Pea)|n)] 3 22)

This result involves only the re-orientation of the dipoles, and the corresponding
strain is purely deviatoric.* This establishes the first of the two assertions made
earlier. The second is also manifest in (21), for the dilatory term in that equation
involves no reference to re-orientations at all, being dependent on P£d(t). The
known fact that the long-range diffusion of the defects yields information only on the
overall “size” of the defect as quantified in Tr)\, while the re-orientation leads to
information on the anisotropy of the dipole tensor (i.e., on differences between the
principal components), is also evident from (21).

We conclude with a few words on the modelling of the probability matrix Pea(t), or
the effective time development operator, in specific situations. In cases involving dipole
re-orientation alone, there is a simple semi-phenomenological approach possible,
based on stochastic considerations (see BDYV). This is based on the assumption that
the jumps of the point defects (that lead to the re-orientations of the dipoles) are
governed by a stationary Markov process, so that P2(2) can be written in the form
exp (Wedt) (Anderson 1954), Wed being a (time-independent) (rx r) matrix called the
transition matrix. Tts off-diagonal elements are just the various re-orientation fre-
quencies. On the other hand, a more fundamental approach to the relaxation prob-
lem is afforded by a density matrix formalism (Balakrishnan and Balakrishnan 1978)
that is similar to the one used in the study of magnetic relaxation. This method
enables us to relate the anelastic relaxation time (and hence the  re-orientation fre-
quency’) directly to the strength and correlation time of the defect hopping term in
the total Hamiltonian of the system concerned. Turning to the case of relaxation
owing to the long-range diffusion of point defects (the Gorsky effect), somewhat
different techniques are required. This problem is studied in the paper that follows.

Appendix
The strain autocorrelation Sunction

We shall indicate here how

the formal expression of (12) for the auto-correlation
reduces to that of (13). It is

necessary, first, to list some properties of the set of states

. *Anelasticity due to dipole re-orientation persists, of course, when the applied stress is spatially
inhomogeneous. The first term on the right in (21) covers this situation too.
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{|n, R)}. These states are labelled by the (discrete) orientation index # and the (con-
tinuous) position co-ordinate R. The latter circumstance necessitates some care in
normalization factors (e.g., dimensions, etc.). The orthogonality relation is

(n,R|m, R) =§,,8R—R"), (A.1)
together with the normalization
(n, R|n, R)=V"1, (A.2)

(obtained by going to continuous values of R from a discrete set). It is useful to re-
member also that

[dR; 3(R;—R)3(R,—R’) =8(R—R), (A.3)
and [dR, 8(R;—R) 8(R,—R)=V-1, (A.4)

The completeness relation is
JaRS! \n®) @ R|=1 (4.5)

We require the a priori probability density p(n, R) and the matrix elements of the
operator X, (R). The former is, by definition,

p(n, R)=(n, R |exp (—BFH) |n, R)/Tr exp (—pFH,), (A.6)

where the trace stands for a summation over 7 and R of the diagonal matrix elements
of the operator concerned. Since we have assumed that all the orientations are
equivalent and that the dipole concentration is uniform in equilibrium, we have

p(n, R)y=(n, R|n, R)/Tr 1=(Vr)~, (A7)

the expression quoted in (10). Turning to the operator X,(R), we require a diagonal
representation that explicitly indicates a dipole in orientation n at the point R, i.e.,
we must have

(m, R'| X,(R) | m, R') = §,,6(R—R). (A.8)
It is deduced easily from this that the general matrix element of X,(R) is
(¢, R"| X,(R) | m, R) = V3, 8,,8(R—R’) S(R'—R""). (A.9)

Returning to (12) for the correlation function, we substitute for the strain the
constitutive relation (9) and use the properties listed above. The result is* (with
vy = V|N = atomic volume of the host crystal).

*The ubiquitous overall factor Cv, arises as follows. Our states | n, R) refer to individual dipoles,
and should be appropriately normalized (we have not indicated this explicitly). A more straight-
forward procedure is to work in a direct product space of all the N, defects. (In the case of pure

re-orientation alone, this is an easily visualized »™d-dimensional vector space). The expression
for the strain autocorrelation then turns out to have an overall factor VC*N,. Since C=Ny/N
where N is the total number of atoms of the host crystal, we may write this factor as Cv, where
o=V|N is the volume per atom of the host crystal. It is appropriate to comment here on similar
factors in the results of BDV.  All expressions involving the factor ¥C? in that paper should be
replaced by VC?[N,;. However, since V'C has further been incorrectly set equal to v, instead of
voNg, this error cancels out and the final expressions of BDV in terms of u,C happen to be correct.
The author is grateful to R Balakrishnan for clarifying these points.



388 V Balakrishnan

I my () )
(e, Deul®, e = (Coyn) Y, > [AV 200

O, R Po3(1) g, R — (1/V) > " A0 [aR,
(s Ry | Po9() | 7 R) — (/7)Y A2 (4R,

(ny, R'| PeA(t) | ny,Ry) + (1/Vr)? Zn zm Ag_z) Ag;z) y
[dR, [dRq (1, Ry | PA(1) | my, Ry). @

However, since p(n, R) is actually independent of . and R, (see (A.7)), detailed balance
implies that ’

(n. R| Pe4(r) | m, R') = (m, R | Pea(r) | n, R). (A.11)

Further, conservation of probability yields

z deR(m,R’IPeQ(r)In,R)=1(m=1,...r;R'e ¥). (A.l2)

With the help of these, we obtain finally

CeaiR 1) e (R, 0) veq = (Cvo/r) Zn Em A((i’]% ,\((Zg X

[, R' | Ped (1) | n, R) — (1/¥7)], (A.13)

the expression quoted in (13).

References

Anderson P W 1954 J, Phys. Soc. Jpn, 9 316
Balakrishnan V 1978 Pramana 11 389
Balakrishnan Radha and Balakrishnan V 1978 Pramana (to be published)

Balakrishnan V, Dattagupta S and Venkataraman G 1978 Philos. Mag. A37 65 (referred to as BDY
in the text) , .

Kubo R 1966 Rep. Progr. Phys. 29 255
Nowick A S and Heller W R 1965 Ady. Phys. 14 101

Nowick A S and Berry B S 1972 dnelastic Relaxation in Crystalline Solids (New York: Academic
Press)

Yenkataraman G and Balakrishnan V 1977 in Proc. Indo-German Seminar on Radiation Dbmage,
Kalpakkam (in press)

MmOy

g




