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Evalunation of irradiation-induced creep rate:
application to the vacancy dislocation loop contribution
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Abstract. TIrradiation (as in a nuclear reactor) drastically affects the defect struc-
ture and its time evolution in a material, and induces new creep mechanisms in it.
We present a formalism to evaluate the contribution to creep owing to such mechan-
isms. Beginning with the phenomenological constitutive relation for the strain ap-
propriate to a given mechanism, we put in simple statistical considerations to derive
an expression for the corresponding creep rate. This formal expression is in terms of
the defect production rate and a non-equilibrium probability distribution function
involving the pertinent properties of the defect type concerned. A convenient ap-
proximation scheme for practical calculations is employed, that also makes contact
with standard rate theory and provides a proper interpretation for the variables oc-
curring there. As an illustration, we evaluate the contribution to irradiation-induced
creep from the orientation-dependent shrinkage of vacancy dislocation loops in an
applied stress field. The circumstances inducing transient and non-transient creep
are clarified and a numerical estimate is given for the latter component.

Keywords. Stress; creep; irradiation; vacancy dislocation loops; rate theory; distri-
bution functions.

1. Introduction

An important. mechanical property of a material is its time-dependent deformation
under a constant applied stress, known as creep. This phenomenon must be under-
stood in terms of the stress-assisted kinetics of various species of interacting defects
in the material. . In particular, the continual infusion and subsequent evolution of
defects in the presence of irradiation introduces additional complications in the pro-
cess of deformation. This causes an enhancement of creep under irradiation, with
important implications for fast reactor design. The basic mechanisms responsible
for this enhancement have been a subject of considerable debate. A vast literature
exists on the topic (Piercy 1968, Hesketh 1972, Heald and Speight 1974, Bullough
1975, Gittus 1975, Wolfer and Ashkin 1976, Harries 1977), and many of the models
proposed have been reviewed comprehensively by Gilbert (1971) and more recently in
Cundy et al (1977). Much of the work on the subject has beer phenomenological.
This is of course a consequence of the highly complex physical situation, with a host
of interacting defect types evolving under a variety of physical conditions such as
the irradiation dose, its rate, the temperatuie of the specimen, its structure and metal-
lurgical history, and so.on. It is therefore natural that most of the models developed
in order to go beyond empiricism refer to rather idealized cases, in which a very small
number of physical mechanisms are assumed to be at work.
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Even after a specific creep mechanism has been stipulated, the calculation of the
creep rate requires two additional problems to be surmounted. The first is the calcu-
lation of the evolution rate of the defect structure, i.e., of a single, given defect. A
comprehensive theory derived on the basis of statistical considerations would indeed
bz desirable, but such an approach is extremely difficult, except perhaps in the simplest
idealized cases. A reasonably good compromise is provided by the rate theory
model of Bullough et al (1975). (We shall show that such a model matches a more
formal distribution function approach upto the level of its first moment.) The second
problem is one of statistics, amounting to evaluating the creep rate due to a distribu-
tion of similar defects when the contribution due to a single defect is known. For
stationary distributions, this is little ‘more than a simple enumeration. However,
under irradiation the defect distributions evolve in time, and this must be taken into
account. In general, of course, the two problems listed above are coupled to each
other, putting exact solutions well-nigh out of reach.

In this paper, we attempt to develop the requisite theoretical methodology with a
view to aiding explicit calculations in any given case. For convenience of illustra-
tion, we work in the framework of a particular problem, namely, the evaluation of the
contribution to irradiation-induced creep from vacancy dislocation loops evolving
under an applied stress. We emphasise, however, that the general approach is in-
tended to be applicable in several other instances as well, with appropriate modifica-
tion of detail (see, for instance, Venkataraman and Balakrishnan 1977 for further
remarks in this regard). _

In § 2, we describe a simple statistical approach* to the problem at hand, and
obtaip an expression for the strain rate that stands as the basis underlying the corres-
POndlrfg constitutive relation written down phenomenologically,. An assumption
regarflmg the basic distribution function then leads to a simplified theory amenable to
practlcal. cal?ula.tions, besides making contact with rate theory (Bullough et al 1975)
and elucidating how the latter may be interpreted as a special case of our formalism.
i‘;ig xft’;:ieofgéy Olg thec;lry to an explicit calcu'lation .of the creep rate arising from the
For the purpo};:g ;;t s rml'cagle of. vacefncy‘dlslocatlon loops under an .apphed_stress.
work in the Tows: anumef‘lcaf'estlmatlon in the present ¥nsta.nce, 1t 15 sufficient to
theory), and thie & W};Iirtozlm;. ion to tye general.theory (i.e., the equivalent of ‘ra:te
locatim; 100p problem (K? ho. Certain defects in earhel: work on the vacancy dis-
Weiner (1976) and Lewthz:z: : tan zlugld Ray 1975,)3 also‘ pointed out subsequently by
concluding remark lite (1976), are rectified in the present approach. The

g XS summarise the work and offer a perspective of our approach.
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2. General Theory

2.1. Introduction

The tep is the association of th

first s :
. ) ¢ strain at tj i - Te -
of a suitable physical variable, depen Ime ¢ with the corresponding value

ding on the problem. For instance, the relevant

e
*Statistical considerati ) .

references i Gxg;icr%%x;‘s hﬁ;‘esgginclés:gdear]igr in isolated problems in the field (see, e.g. the

ntroduction of ad hoc, static distributions foeratlons o5 otharvise toomas: auch more than the
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variable may be the total area of vacancy dislocation loops of a given orientation (as
in the rest of this paper), or the volume of neutron or fission-fragment spikes, etc.
(see Gilbert 1971 for various examples). Inthe model chosen for illustration (Krishan
and Ray 1975, Lewthwaite 1976), creep occurs because of the change in the area of
vacancy dislocation loops (referred to simply as ‘ loops’ hereafter). The loops are
formed in the core regions of displacement cascades produced by irradiation. The
nucleation of the loops occurs with uniform probability in all orientations indepen-
dent of the applied stress. Once formed, the loops shrink by absorbing interstitials
and by thermal emission of vacancies. The emission probability is influenced by the
applied stress, leading to an orientation dependence in the loop population. To evalu-
ate the strain rate and the creep (by this we shall mean the deviatoric part of the strain
tensor) due to such a distribution of loops, we must write first an appropriate © con-
stitutive ’ relation between the strain e(z) and A(¢), the area at time ¢ of a single loop,
or rather, the change in area as compared to the initial area 4(0) at some fiducial
instant of time, taken to be t=0. Thus

() = K[A(t)—AO)], o | )

where k is a quantity that is, in general, the product of a number of time-independent
parameters involving some geometrical factors, orientation dependence, etc. Such
a constitutive relation is also applicable to many of the models proposed for irradia-
tion creep, e.g., creep due to the stress-induced preferential absorption of interstitials
(Heald and Speight 1974), exhaustion creep (Welch and Smoluchowski 1972), etc.
This fact underlies the generality we claim for the formalism.* In what follows, we
evaluate the total strain «(¢) due to all the loops. This will depend on both the cons-
titutive 1elation (1) as well as the manner in which the loop distribution evolves in
time.

2.2. Formula for the strain rate

We assume that irradiation, and the attendant loop formation, commences at t=0.
Let p(A,, t,)dAqdt, be the number of loops with areas in the range (Ao, Ao-dAy)
that are nucleated* in unit volume of the material in the time interval (f, t,-+ dZ,).
The subsequent evolution of the loops is specified by a probability distribution func-
tion W: given that a loop nucleates with area 4, at time #,, the probability that it has
an area in the range (4, A-+dA) at time ¢ is W(4, t|4,,t,) d4. (For shrinking loops,
the range of physical interest is 0<<A<4,). The distribution function may have a
further implicit dependence on other variables such as the orientation (8, ¢) of the
loops (e.g., when a uniaxial stress is applied). For simplicity we shall not indicate
this dependence explicitly until it is needed in § 3. -

We are interested in deriving a formal expression for the strain rate in terms of the
general distribution W. The initial condition pertinent to our model is

WA, to | dor 1) = 5(4 — Ag); Y

*However, in certain cases, the basic constitutive relation (obtained on physical grounds) is
necessarily a differential one, involving é(f). In such cases, e(z) will involve an integral over
the previous history of the appropriate variable. «

**Note that p is the rate of production of the actual defect species of interest.. Its relation to
the irradiation 'dose rate must be worked out separately and fed into the calculations. See, €.g8.,
Bullough et al (1975).
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for t>1,, W describes the distribution in area of loops that shrink continuously to
zero area starting from the given initial area 4,. We shall ignore the effect of the small
fraction of loops that may undergo discontinuous jumps in area, e.g., by coalescing
with other loops. In the presence of continual irradiation, we should not expect W
to be a stationary distribution, i.e., a function of the difference (t—t,) alone, as far
as its time-dependence is concerned. This non-stationarity introduces certain
complications into the problem.

The number of loops per unit volume with areas in the range (4, A+-dA) at time ¢
is given by*

Amax ¢

n(A, f)dA . dA f dAof dtg P(Am to) W(A’ tl Ao,to) / I(t; AO: to)’ . (3)
0 0

where the distribution is normalised on dividing by

A, .
15 Ao, 19) = [ dAW(4, 1] Ao, 1,). ] | (4)
() .

A o Stands for the upper limit on the area of a freshly nucleated loop. The total area
of all the loops at time ¢ is

A max

ﬂ@:f dA An (4, t)
0

Amax Amax ¢t

= J a4 [ ddof dty p(ds, 10AWA, 1] Agy 1155 Ao, 1,). (5
0 0

(Ig the case f’f orientation-dependent evolution of the loops, an integration over all
orientations is also necessary, of course.) The strain rate, given by

o dd
) = - | 6)

from (1), is therefore

Amax Amax  Amax t

{0 =k [ dddp 4, )+ % [ 4 ' 4 .
Of dp (1) + Of 4 Of Z Of doAp(an, 19 2 (I (T

The first term on Fhe'right merely represents the contribution of freshly nucleated
loops at time ¢, while the second t

at earlior _ erm arises from the cumulative effect.of loops born
t r {;r msta{lts 'of tl_me. Equation (7) is the general formula sought for the strain -
rate. The derivation is emulated easily in any other case of interest.

*We should act indj i i ' »
shall do so Subseélgég'lmdlcate the orientation dependence of W, n, etc. As stated earlier, we

tly w i i 3 . .
unaltered throughout itg i flelggj ef.eqtnred. It is assumed that the "orientation of a loop remains

__—




Irradiation creep due to vacancy loops _ 279
2:3. Peaked distributions and connection with rate theory
A first-principles theory would require the derivation and solution of appropriate

coupled master equations for the functions p and W corresponding to each of the
interacting defect species involved in the problem. Except in very idealised situations,

this is a virtually impossible task, although it may be possible in many situations to-

“derive’ a generalised Fokker-Planck-like equation for it, and to proceed from that
point. However, since the formulas derived above entail only the zeroth and first
moments of W with respect to A, it is possible, and sufficient, to use a satisfactory
approximation to W that involves the same input parameters as the exact answer
would. This approximation amounts to saying that the distribution is peaked
extremely sharply around a certain most probable value o at all times, where a is itself
a function of ¢ as well as the initial parameters 4, and #,. Thus we simply approxi-
mate W according to

W(A, t‘ Ay, ty) = 8(4 — a(t; A, tu)); (8)

with a(ty; Ay, ) = A, .

It is at once evident that this is equivalent to the simplest possible ‘decoupling ’ of
higher moments. The problem is now reduced to the specification of p(4,, t,) and
a(t; Agty). Indeed, the rate equation approach may be interpreted as the derivation
(from phenomenological considerations) and solution of an ‘equation of motion’
for the quantity . On substituting (10) in (7), we find that the integration over 4, 4,
and ¢, is restricted to the surface A=a(t; Ay, t,), s0 that some care must be exercised
in simplifying the integials. Tt is now necessary to introduce the mean lifetime = of
the loops. While the precise expression for = would follow from the actual equation
of motion for a, we may 1ecord heie a few general properties of r. Since Wis a

non-stationary distribution, = will depend on the time of nucleation 7, although the -

dependence may be a weak one. There may be a weak dependence on 4, as well.
In practice, the shrinkage is rapid enough to cause a to reach the value zero for a
finite value of t. The lifetime is defined then by

a(tyt7; Ay ty) = 0. k ’ ®

Inserting (8) in (5) for 4(¢) and integrating over 4, we get after some simplification

Amax Amax 1 - ‘
‘0 =k f ddyAop (Ag 1)+ K f dd, f dtop (Ao,,t,,)g_t ot; Ay, to), (10)
0 0 tmin

where the lower limit of integration over f, is

ton = max [0, 2, (4o, )]. " o an

Here 1,(4,, t) is the (mean) time of birth of a loop that nucleates with area 4, and
shrinks to zero area at time ¢, i.e., it is the solution of

a(t; Ao, to = tb) = 0, . . (12)

regarded as an equation for .

oS iy,

e

Ll
|
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Another useful 1epresentation for the strain rate can be obtained by changing vari-
ables from ¢, to o itself, by formally inverting the relation

o = a(t; Ay, 1), ’ (13)

to write # as a function of o, ¢ and A, We then obtain

Amax - Amax A4, ' , v
)=k f ddoAwp (4o, )+ k f dA, f da p (4g, ty()) (a,/a,o),‘ (14)
0 0. Amin 7
where % = (9a/0t),, oy, = (9e/oty),, o (15)
and Apin = max [0, oft; Ay, 0)]. (16):

The partial derivatives in (14) must of course be regarded as functions of a, ¢ and 4,,
on elminating ¢, (after differentiation) with the help of (13). Equations (10) and (14)
represent two related ways of looking at the same problem. In the former case we
focus attention on specific loops and then trace theijr time evolution. In the latter
picture, we fix our attention on a given instant of time and scan through loops with
different areas. It is now appropriate to discuss briefly certain special cases of (10)
that obtain under firther assumptions about the nucleation and evolution of the loops,
as there appears to be some confusion in this regard in the literature.

2.4. Special cases

First, if all loops are assumed to nu

cleate with the same area (again denoted by A,)
at a rate p(?), (10) reduces to ,

t ' ' :
€(f) = k4, p(t) + & j dty p(ty) «, (t; 8), S (17)
Irnin
t
and therefore (t) =k f dtop(ty)a (1; 1,). _ a8

-

Next, suppose the lifetime of each loop is independent of its time of nucleation, i.e.,

a(t; to)=a(t—1ty; O)=a(t—1,), with o(0)=4; and a(+)=0. Since toin=max (0, f—)
in this case, we obtain

t o
| e @a)+k [dtpita(i—t), 0t <, | |
(=4 5 Y
k[ dtyp (t)a (t—t0), t > . o |

t—r




Irradiation creep due.to vacancy loops ' 281
Finally, if we make a third assumption that p(#)=constant=p, we have simply

. - (kpa(?), 0t <,
€ (t) = ZO ’ t> = (20)
Thus only a transient occurs in this case, the strain saturating to a constant value once
t exceeds the lifetime of a loop. What happens physically is that a steady state is
reached in which the loss of loops in a given area interval by shrinkage is balanced
exactly by the entry of other loops from the area interval immediately above the
former range. It should be emphasised strongly that this result is valid only in the very
special case defined by the three simplifying assumptions made above. In particular,
we may no longer expect such a result if the lifetime =~ depends on the time of nuclea-
tion, #,. We shall find, below, that the rate theory model (Krishan and Ray 1975)
does incorporate such a dependence. 1t is therefore incorrect to conclude (Lewth-
waite 1976) that this model leads to strictly transient creep.*

3. Creep due to shrinkage of vacancy dislocation loops
3,1 Expression for the deviatoric strain rate

The physics underlying the model has already been adequately described in Krishan
and Ray (1975). In accordance with the justification given there, we assume that all
the loops nucleate with the same area 4, at a constant rate of production p=Ke,/bA;
here X is the doserate, e, is the fraction of vacancies (produced in cascades) that con-
dense into loops, and b is the magnitude of the Burgers vector of these loops. Under
these conditions, (14) reduces to

A
é@=@%+@f@@MJ » 21

Amin

We assume that a homogeneous, uniaxial stress o is applied along the x; axis. The
orientation (8, ) of a loop is specified by the direction of its Burgers vector b, which
is either parallel or antiparallel to the unit normal 7 of the plane of the loop (see figure
1 of Krishan and Ray 1975). The rate of formation of loops with orientations in the
range (Q, Q + dQ) is given by pdQ/2=. Introducing tensor indices and identi-
fying k with —b (see below), the contribution to the strain rate from loops in the
orientation range (Q, Q -+ dQ) is

. Ay v ,
déy (1, Q) = — (bp nnydQ[2m) [4y + | da a, (&) [, (O, (22)

Aniin .

where ¢ = & cos?, & = (ob¥ky T). o ' '<m

 *There is an error in the formalism of Krishan and Rhy_(’l975) arising from an incorrect
interpretation of the constitutive relation. This has been pointed out by Weiner (1976). The
present formalism fully corrects the error and supersedes the earlier work.
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The explicit dependence of o on the parameter £ indicated in (22) is meant to empha-
sise its orientation dependence. (We have anticipated the precise form of this depend-
ence in defining £.) Note also that the factors »,, ny, etc., take care of the tensorial
nature of the strain, so that the constant k is a scalar. In the present case k must be
equal to —b, the minus sign arising because the formation of vacancy loops causes a
negative stiain (although, as we shall see, the creep rate will be positive). The creep
rate is the deviatoric part of the strain rate tensor, and is defined as

). (24
1

™

.d — .
€= €y — %Su(

When the expression in (22) is integrated over dQ to include loops of all orientations,
the first term on the right in that equation does not contribute to ¢f,» Let us define

J = afé)fe. () - @)

J being understood to be a function of e, ¢ and £ (or £). We then find

4 | | o
& ()= — (bp/2m) f dQ (nn; — 3) j J da (26)

Amin

for the creep rate. It should be remembered that 4
through the implicit £ dependence of a. _

In practice, it turns out that we need retain terms only upto first order in £ in the
above formula, because ob3/k, T <1 (b=~2 A for the loops concerned; for tempera-
tures above 350°C and stress levels upto ~ 10MNm~2, this linear approximation
introduces a relative error of ~19 in the creep rate.) Expanding the integral over a
in (26) in powers of £, and noting that the O(£°) term vanishes on integration over
d(), we obtain to O(¢) the result

(see (16)) depends on Q,

min

4
¢l = — (bp &/27) [ dQ (myn; — B) cos* 0 | [ da(arjo®

Amin

— (0 Aiaf08) T (0 = Apia) |, - @7

The second term in the square brackets vanishes identically when 4, ;,=0, that is,
when 7 is equal to or greater than the lifetime of a loop that nucleates at #,=0. We
define this to be the non-transient region (see below). We shall henceforth restrict our
attention to the non-transient regime and therefore drop the transient term in (27).
Changing variables to the loop radius r (a==r?) we obtain

G = @rbp /45 | (0J08),_, rr, ™
: 0
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with 77} = 4. It is easily verified that €, = &, =—(}) € as required, and that

the off-diagonal terms of €, vanish identically. The quantity J is given by (25); it

is evident that « (£) can be replaced by r(¢) in that equation. Note that the dose
rate dependence of the creep rate is contained in both p and J.

3.2. Creep in a rate theory model

The task now is to evaluate the derivatives (with respect to ¢ and #;) of r(£)
required to obtain J. For this we need an explicit form for the most probable
radius r(¢; 4y, t;). The rate theory model (Bullough et al 1975; see also Krishan
and Nandedkar 1979) provides a framework for calculating this quantity. We
emphasise the following: '

Equation (28) is a general result for the model under consideration, essentially
following from (1) and (2) alone. Once we adopt rate theory, however, we inherit
all the assumptions contained therein, direct or implied. Since rate theory has been
well discussed in the literature cited, we refrain from listing these here. In the usual
notation, rate theory gives

1 1
-27" (t; 1) = —‘b'(ZI Dy G — Dy Cy) — ZDV Cy P (r) €. (29)

Here D and C with appropriate suffixes (V for vacancies and I for interstitials) are
the diffusion constants and the time-dependent concentrations, and Z; is the disloca-
tion bias factor for preferential interstitial migration to dislocations. The equili-

brium vacancy concentration is Cy = exp (— Eslky T), E; being the vacancy
formation energy. Further,

P(r) =exp [b* (Yss + Fa (M)/kp T], - (30

where Ysp is the stacking fault energy and
F, () = nb? ln-(l »{—%)/4#(1 — W) (r+b) (31)

is the elastic energy of a loop of radius r; w is the shear modulus and » the Poisson
ratio. The function P (r) has a complicated dependence on r, but, as has been shown
numerically by Krishan and Ray (1975), it can be replaced without much loss of
accuracy by a suitable linzar function of r over the range of interest. (This introduces
a maximum relative error of ~ 5% in the effective range of variation of r, i.e.,
between 4 A and 20 A. The choice r, =20 A is based on experimental obser-
vation, while the cut-off at the lower end is very reasonably taken to be 4 A, the
Burgers vector itself having a magnitude of 2 A.) We therefore write P(r) =~ pr
4-¢q; from the numerical values given in the reference cited, p &~ — 35 X 108 cm™
and ¢ varies between 2 and 3, depending on the temperature. The vacancy
shrinkage rate can now be writtenas = . . ‘ o

orjot = — Lf() +arl, @
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where  f(£) = B(t) +4q Dy Cy (1 + )b, | (33)
with  B() =(Z D G— Dy Cy)jb e
and  a=DyCop(L+ OB, | 3

with only terms linear in ¢ being retained.

The time dependence of B(t) is crucial in determining the creep rate. This is found
in rate theory by solving a complicated set of coupled equations. It will be very
convenient to relate B(t) to a physical parameter, the loop life-time (see below),
This also makes it convenient to deduce the dependence of the creep rate on external
variables such as the dose rate and temperature. (As in Krishan and Ray 1975, we
shall work with reference to neutron irradiation of M316 stainless steel at a dose rate
of 1076 dpa/sec). The numerical values obtained for B(f) permit one to approximate
B(1) by a piecewise linear function of ¢ over the lifetime of the loops, under the quasi-
steady state conditions of interest to us. We shall now proceed taking f(¢) to be a
known function of time (i.e, input information).

Integration of (32) over a time span (%, ¢) gives r explicitly as a function of 7, and .
Since f'(t) is independent of ¢, we have

or (8 1)/0ts = /(i) - are) exp [—a (t—1)]. 36)

In order to carry out the integration in (26), we must write ¢, as a function of r. For
this, we formally introduce the variable = (r, t)=(t—t,), which has the significance
that it represents the ‘age’ of a loop having a radius r at time . The quantity + (0, ¢)
is the loop lifetime, and will be denoted simply by =. An exact expression for = (r, t)
can be found in principle. However, in the present case, the piecewise linearity of
B () with a small slope leads to the satisfactory approximation

7 (r 1) = — (1/a) In [(A(2) + an) [(f (1) + aro)]. (37)
This can be further approximated (on expanding the logarithm) by
r(nt) m 7O, t),(l —”_). @38)
3 ro . ‘

Note that the loop lifetime is then given by
r = nfLf(t) + ary). - ()
~ We turn now to the numerical estimation of the creep rate proper.

3.3. Non-transient creep rate

The creep rate can be obtained by using (28). For this we need to evaluate the quan-
tity

J = — [(f(2) + an)/(f(t) + ary)] exp [a(t—1,)] : (40)
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where we have used (32) and (36) for the two derivatives of ». Elimination of ¢, gives

J=g[f(t)+ar+g™" —1=_(gh)—1, (41)
where g = (1/a) (2B/o1) [exp (—a = (r, 1))—1], (42)
and h=f(t)+ar+g. (43)

We now have all the quantities we need and the creep rate can be calculated by
substituting the first derivative of J with respect to ¢ in (28) and performing the
integral. For the numerical estimate we are interested in, the quantity (8J/0¢)
appearing within the integral can be brought out and replaced by its average value
(8J]0 &)ay corresponding to an intermediate value of r, say, r=1r" = (})r,: this
presumes a nearly linear dependence of (9J/9¢) on r which will be justified later
and is consistent with the other approximations to be made. The creep rate is then

eh = — (dmpbr? £/45) (870 €)ay. : (44)

The problem of calculating &5, reduces to evaluating (8J/0£)ay. Now the numerical

values of the parameters involved in a (see (35)) are as follows: DyCy=
exp [—(E,~+E)/k, T] with E,+E;=29 eV and b=2 A. The vacancy dislocation
loop lifetimes have been reported earlier; they are ~ 107 sec, 108 sec and 10* sec
at 300°C, 400°C and 500°C respectively for a dose of 10 dpa. It follows then that
|a] + € 1. Utilising this and evaluating an average value for g at r', we find from
(42) and (38) that

g & — (2B/ot) = (', 1) = — (v[2) (2B/d1). (435)
In a similar manner we evaluate an average (9r/dt)ay from (32). Using (38) and
(39) we then obtain (the subscript ‘av’ is to be understood wherever appropriate
in the rest of this section)

or|ot o — [f(1) + ar) & — ¥z (¥, t) rgl7. (46)
It follows from (33) and (46) that

oB/ot = (9for) (1) + ar'] = — (ry/7™ (87/01), (47)
and 8]0 If(t) + ar'] = Dy C& (g + pr)fb a2 — (ry/7®) (27/88). (48)

Taking the derivative of J with respect to £ in (41), setting r=+' and making use of
the above relations, we get

(Q.{) e, _1__’9) (Q.Bz) (?_.) @)
O /av 2 h B OR T ot] \oé .
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Since all the parameters (h, g and OB/pt) can now be expressed in terms of ¥o or T and
its derivatives with respect to £ or £, we can estimate the creep rate. However, a
further simplification can be made in the above results. From figure 3 of Krishan and
Ray (1975) we obtain the estimate that at 400°C the vacancy loop lifetime r changes
from approximately 105 sec to 1-6 x 106 sec in 20 dpa, the transient part being neg-
lected. Assuming a linear variation of = with ¢ we obtain the estimate

or/ot ~ 8 x 10-2. o (50)

It follows from (45) and (46) that g (—ry/27) (07/01), while f(t)+ar =ryr.
Using (50) we may write » ~ J@)+ar' ~ry/r. In a similar manner it can be shown
that g/h?~ —(1/2 h) (07/ot), and hence may be neglected in comparison to (1/).
Making use of these facts in (49) we obtain finally the simple expression -

(8J]88), = (1) (o7/01) (27/98). ' (51)

Therefore the creep rate is given by

by = —(mpbrato/4S)[(1n) (v/t) (97/02)]. (52)

Letusnow establish our earlier statement regarding the linear dependence of (8J/d¢)
on r. It will be sufficient to show this dependence for Jin (41). It has already been
argued that g can be neglected in the denominator of the first term on the right. In
the numerator, it is directly proportiona] to 7(r, t) to the same degree of accuracy
as (45). But it has already been shown in (38) that +(r, ¢) is virtually linear in r, and
this happens to be the dominant r-dependent term in J. . o

We return to the task of numerical estimation. The value of (9+/9¢£) is obtained
from (48). At400°C, DyC? = 1.1 1022 secl; r'=10 A and g-+pr'=~2-5,

L (07/08) ~ —88x108 §6C, - L (53)

so that (8J/0£),, ~ — 88x10-%, . | | D)
‘The value of p, the loop production rate for the typical reactor-dose rate of

1078 dpa/sec, is about 3-3 % 1013 loops/cm? (see Bullough et al 1975). The numerical
factor outside the square brackets in (52) is 6 X 101 sec~2 for a load of 10-2 MNm-2

(or 1 kg/mm?; this is the order.of magnitude of the typical load that develops in a
fuel pin in a reactor.) At-about 10 dpa where + ~ 8§ % 10° sec, ‘we -get a value of
€ :3 =2 5X 1071 sec1 at 400°C, Detailed calculations using (28) directly have also been

done at other temperatures and show that in the temperature range 400°C to 450°C,
creep rates in the range 10-8 to 10-12 ggc-1

3.4. Temperature, dose rate and dose dependence of the crecp rate - - -

Let us first consider the temiperature dependence ‘of the creep. rategiven by (52).
The dominant dependence oceurs in the terms contained in the square brackets. With
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the help of (48) for (97/9€), we see that this reduces to analysing the T-dependence of
DyCy = (27/01). At low temperatures, the Arrhenius-type variation of DyCy with
T'results in a rapid decrease of the creep rate. On the other band, at high temperatures
(&7/ot) tends to zero: thermal emissionis the dominant mechanism for loop shrinkage,
and irradiation has little effect on =; the lifetime therefore tends to a constant value.
This is also evident from the results of computer calculations plotted in figure 3 of
Krishan and Ray (1975) and figure 7 of Bullough et al (1975). Thus the creep rate
is small at both temperature extremes, and has a maximum at some intermediate
temperature. This turns out to be in the range 400°C-450°C for the case we have
been concerned with in the preceding section.

As was mentioned earlier (at the end of § 3.1), the dose rate dependence arises
from two factors p and J (equivalently, 7). The first (p) is directly proportional to X
in our model. Regarding the second, Brailsford (1978) has examined the dependence
of = on various external parameters under different limiting conditions. The result
relevant to our discussion reads, with some changes in notation,

™ = 7y [14+-(K97o/Sp] ™, (55)

where 7, is the (7-dependent) ¢ thermal lifetime * of the loops in the absence of irradia-
tion. Syisthe time-dependent total sink strength for interstitials due to all the defects.
n may be regarded as a constant for present purposes. Equations (52) and (55
yield, together with p==Ke,/nbr?,

é:,,=(4fonef/45bro)Dva“P(ro/2)(Kro)’-[1+(Kmo/s,)],-ssfz[asl/a(Kz)]. (56)

The K-dependence of the creep rate is explicit in this result if we make the plausible
assumption * that the derivative of .S} with respect to the dose Kt is itself independent
of K. At high temperatures, (Kur,/S;)<€l because =, decreases rapidly as T
increases. Hence the creep rate varies as K3, although its magnitude will be very
small. On the other hand, at low temperatures (Knr,/S)>1 (see Brailsford 1978),
and the creep rate clearly tends to a value independent of K. At intermediate tempera-
tures (the range in which the creep rate is significant), the dose rate dependence lies
between these two extremes. '

The variation of the creep rate with dose (or time) can be derived from the dose-
dependence of 7(97/o¢). From figure 3 of Krishan and Ray ( 1975) and figure 7 of
Bullough et al (1975), we see that at low temperatures (<500°C), the vacancy loop
life-time increases linearly with dose, showing no saturation effects. It follows from
the dependence of the creep rate on the loop lifetime (and its time derivative) that the
non-transient creep rate will also linearly increase with time. This may be further
seen from (55) if we consider the low temperature region where (Kn7o/S)>1,
so that +=.~_—(SI/K17),' and the creep rate is proportional to $;(9S /o(Kt)). As before*,
taking 0.5;/8(Kt) to be a constant, the time or dose dependence of the creep rate will
be the same as that of S; which increases nearly linearly with dose, at least in the re-
gion of interest to us (till about 20 dpa). The steady state in the vacanoy loop life-

time does not appear at any value of dose at low temperatures. This féature, which is

- *Note that this is in keepi a
time, although, strictly speaking, 2S1/2(K?) may have a weak dependence on'K.

ng with the spirit in which dose is introduced as a variable réplacing,
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evident from (55), is discussed in greater detail by Krishan and Nandedkar (1979). In
contrast, Lewthwaite (1976), Heald and Speight (1977), Weiner and Boltax (1977), and
Boltax et al (1977) have all used a steady state condition which assumes = to be inde-
pendent of time in the temperature range below 500°C. We have argued that this is
incorrect, so that their conclusion that vacancy loops will not contribute to non-
transient creep is not valid.

4. Concluding remarks

We have developed a simple methodology for the calculation of the creep rate in a
material arising from the kinetics of the defects in it. The result is expressed in terms
of two quantities: the rate of production of the defect type concerned, and a proba-
bility distribution function characterising the time evolution of the pertinent physical
property of the defect. In many instances, the assumption of a sharply-peaked dis-
tribution suffices to yield a satisfactory calculational scheme, besides providing a
proper interpretation for the variables occurring in standard rate theory for the process
under study.

We have applied the formalism to the evaluation of the contribution to irradiation-
induced creep from a specific mechanism, namely, the shrinkage of vacancy disloca-
tion loops at rates that depend on their orientation with respect to the direction of
the applied stress. Besides obtaining numerical estimates to establish that the mecha-
nism does lead to observable effects, we have pointed out also the precise circum-
stances under which the shrinkage of loops leads to non-transient creep, and derived
a convenient expression for this component. Two other aspects of the evolution of
the loops (also pointed out by Lewthwaite 1976) may be mentioned here, as we have
not taken them into account in the present work. The first is the possibility of the
nucleation of loops in preferred orientations in the external stress field. As already
s.tated in Krishan and Ray (1975), this is rather unlikely for vacancy dislocation loops
(in contrast to the case of interstitial dislocation loops): these loops nucleate suddenly
and athermally in the vacancy-rich core regions of cascade damage. Further, the
large loc?.l stresses produced by the interstitials occupying the periphery of the cas-
cz_ide region should effectively mask the applied stress and preclude any preferred
direction of nucleation. Hence the effect of preferential nucleation may be neglected.
The secon.d aspect is the operation of the Heald-Speight-Wolfer mechanism: this is
the stres§-1nduced attraction exercised by dislocations on interstitial atoms, and leads
to an orientation (¢) dependence in the function B(f) occurring in the rate equation
_for or/ot. We remark that there is no difficulty at all in modifying our derivation to
fnclude such an additional dependence. It is similarly possible, too, to formally
incorporate preferential nucleation of loops, although we have argued that this effect
would be unimportant, -

Cr;Fhe ?pphcatlon of our %nethgdolqu to other mechanisms of irradiation-induced
ep (for example, those listed in Gilbert 1971) will be taken up elsewhere.
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