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Abstract. A density matrix formalism is developed for anelastic (mechanical) relaxa-
tion in crystalline materials with point defects characterized by elastic dipoles. The
time-dependent approach to equilibrium of the strain response under the action of
a constant applied stress is deduced. The formalism parallels the one used in nuclear
magnetic relaxation. The anelastic relaxation time is determined as a function of
the parameters occurring in the defect hopping term in the Hamiltonian, This term
is responsible for the. dissipation of the anclastic * potential’ energy into the host
lattice. 1Ina lengthy concluding section, the following aspects are discussed point by
point: the advantages of the formalism presented, its scope and special cases; the
physical implications of the expression obtained for the relaxation time; the similari-
ties and differences between magnetic relaxation and anelastic relaxation, etc.
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1. Infroduction

‘Mechanical response experiments on an anelastic crystalline solid yield a great deal
of information on the configuration and kinetics of the defects in the materials.
Such information on the underlying physical processes may be extracted from both
the static response (anelastic relaxation or recoverable creep) and the dynamic res-
ponse (internal friction or ultrasonic attenuation) of the system to an applied stress.
The subject is of considerable importance in materials science, and is characterized
by lively theoretical and experimental interest (Nowick and Berry 1972; Schilling
1977).. B , ;

_ Recently, a formalism has ‘been developed for anelasticity on the basis of linear
response theory (LRT), to exhibit the similarity of the phenomenon with magnetic
response, dielectric response, etc.  (Balakrishnan ef al 1978, referred to as paper I
hereafter). This takes one far beyond the phenomenological network models of
mechanical behaviour as far as anelasticity is concerned. Network models (in
rheology) are similar to lumped parameter electrical circuits. The simplest anelastic
element is the Voigt model, consisting of a spring of modulus £ connected in
parallel to a Newtonian dash-pot of viscosity =. The strain response e to an
applied (uniaxial) stress o is given by the solution of the first-order differential
equation

ne(t) -+ Eet) = o). | (1)
639
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For a constant stress o applied from ¢ = 0 onwards, the strain creeps up from zero
to the saturation value o/E according to

€ (1) = (o/E) [1 — exp (— Et/n)]. @

The dissipative element (the dash-pot of viscosity ) controls the rate of anelastic
relaxation. Going beyond such phenomenology, one recognizes that anelastic be-
haviour is caused by the stress-modulated motion of defects in the host material.
In analogy with magnetism, the concept of an elastic dipole is introduced (Nowick
and Berry 1972): this is the strain field characterizing the distortion of the perfect
lattice by a unit concentration of point defects (which may be interstitials, or split
interstitials, or mixed dumb-bell pairs, etc.). The elastic dipoles couple to the applied
" stress, and their subsequent motion leads to the static and dynamic phenomena
observed in anelastic solids, much as in a system of elementary magnetic dipoles.
Thermodynamic arguments based on the minimisation of the free energy then yield
some information on the relaxation process, the relaxation strength, etc. (Nowick
and Berry 1972).

The essential step forward taken in paper I was the systematic exploitation of the
random nature of the motion of the elastic dipoles. This leads to expressions for
the static and dynamic response functions in terms of the autocorrelation of the
fluctuating strain in the absence of any applied stress, as may be expected in LRT.
Equation (2) for the creep function is replaced, for instance, by

i Vol 1 (@ <),
Cety =252 E e | )

where { , refers to an ensemble average in the absence of applied stress. A
parallel formalism based on a stochastic equation for the fluctuating microscopic
strain (similar to the Langevin equation and its generalization) was also given in I.
Besides relating phenomenological parameters (such as £ and % introduced above)
to more fundamental quantities (such as the mean squared value ¥y, various
theorems were also established: the fluctuation-dissipation theorem, sum rules for
the moments of the power spectral density of the strain, etc.  Some of the results
derived were verified by a calculation of the creep function associated with Snoek
relaxation — the relaxation of elastic dipoles of tetragonal symmetry in a cubic
lattice (e.g., carbon interstitials in bec a-iron). In a recent paper (Balakrishnan
1978a), the entire theory has been generalized to the case of applied stress fields of
arbitrary spatial inhomogeneity. The tensor nature of e and o has been taken into
account, as also the anelastic effects due to both re-orientation and diffusion (long-
range migration) of the elastic dipoles. An application to the Gorsky effect has also
been carried out (Balakrishnan 1978b).

There is a lacuna in the approach to the relaxation problem based on thermo-
dynamic considerations (Nowick and Berry 1972) as well as that presented in I, In
these works, the underlying re-orientation process occasioned by the jump of an
Interstitial atom from a given site to a neighbouring one is simply assumed to pro-
ceed at an average rate or ““reorientation frequency ”” ». The relaxation time then
turns out to be directly proportional to »~%, the constant of proportionality



Density matrix formalism for anelastic relaxation 641

depending on the particular problem (the symmetries of the dipole and host
lattice, the number of equivalent orientations, etc.). In the case of Snoek relaxation
of (100 tetragonal elastic dipoles in a cubic lattice, for instance, the creep function
is found to be given by

(e(t)) = (const.) o [1 — exp (—3 v1)]. : 4

Nothing further (based on more fundamental considerations) is deduced regarding
v. One then assumes an Arrhenius type of temperature dependence for this quantity,
namely, v = v, exp (—Q/k,T), in order to compare the theory with experimental
data (Nowick and Berry 1972). That nothing beyond the results of phenomenolo-
gical rate theory emerges in such applications of the LRT-based formalism is not sur-
prising, because nothing has been put in explicitly regarding the actual mechanisms
(e.g., the dynamics of the defect atoms) that cause the transitions between the different
orientation states of the elastic dipoles. This is one aspect that must be included in
order to make further progress. In addition, it is evident that a complete (quantum
mechanical) description of the system would be obtained only if we use the density
matrix formalism. It is well known (Abragam 1961) that theories phrased in terms
of transition probabilities alone tacitly assume the vanishing of the off-diagonal
matrix elements of the density matrix (this is equivalent to using the random phase
approximation). It is therefore necessary to complete the microscopic theory of
anelastic behaviour by working out a quantum mechanical formalism beginning
with a total Hamiltonian H for the system of interest and solving the master equa-
tion for the density matrix, This will yield the time-dependence of the approach
to equilibrium in terms of the basic parameters occurring in H. Further, one can
go over to the classical limit. Most cases of practical interest fall in this regime.
The classical limit of a quantum mechanical formalism provides a systematic, first-
principles approach to these problems, in addition to being a simpler approach than
setting up and solving the Liouville equation for the classical density matrix.

This is the purpose of the present paper. We again use Snoek relaxation as the
specific case for which the formalism is worked out, in order to facilitate comparison
with I (see the comments made at the end of this section). In § 2, the different
terms contributing to H are identified and suitably modelled, including the defect
hopping energy that causes the dissipation of the anelastic potential energy into
the lattice. In § 3, 4 and 5, the density matrix (operator) method of Abragam
(1961), used so successfully in the context of NMR, is developed for the problem at
hand. The relaxation time = is related to the strength and correlation time of the
defect hopping term in the Hamiltonian, via a formula that expresses 7 in terms of the
power spectral density of this term. In the final section, which is arranged as a
series of remarks for clarity, we discuss the following points: the advantages gained
by the present approach, its scope, special cases (classical versus quantum mechani-
cal treatment of various aspects of the problem); the physical implications of the
result found for -; the similarities between magnetic and anelastic relaxation, and
the differences in the temperature dependence of the relaxation time in the two cases,
etc.

Finally, we may mention here that the formalism can be modified in a straight-
forward manner for application to other examples of anelastic relaxation (see, e.g.,
Nowick and Berry 1972, and the discussion in Venkataraman and Balakrishnan
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1977). In particular, the * Hamiltonian approach’ of the present paper makes it
eminently suitable for application to a very important case of physical interest:
relaxation in materials with sufficiently high concentrations of defects, such that
defect-defect interactions play a significant role. Work in this direction is
in progress on Zener relaxation in concentrated alloys, and will be reported
elsewhere.

2. The Hamiltonian

In order to set up a density matrix formalism for anelastic relaxation, we have to
write down first the complete Hamiltonian H for the system. As stated earlier, we
shall restrict ourselves to a specific case (elastic dipoles of tetragonal symmetry in a
bece lattice) so as to be able to exhibit all formulas explicitly.

There are essentially three distinct terms in H. They are (i) the anelastic potential
energy arising from the couphng of the elastic dipoles to the applied stress; (ii) the
energy of the host lattice, or  phonon bath ’; and (iii) the kinetic energy originating
from the hopping or jump diffusion of the interstitial defect atoms from site to site.
Let us consider these in turn.

2.1, Anelastic potential energy.

We consider a specimen of volume V¥ with N host atoms and N, defects (interstitial
impurity atoms). The concentration C = N,/N is assumed to be much smaller
than unity, so that defect-defect interactions may be neglected, and the defects taken
to move in an uncorrelated fashion in the host lattice. Each defect is described
(Nowick and Berry 1972) by an elastic dipole of tetragonal symmetry: the strain
induced by a single defect is given by (1/N) A, where 2 is called the elastic dipole
tensor. In the present case, the principal axis system of the tensor A coincides with
the cubic system of the host crystal. The principal axis components of A are A,
Ay, and A = A, (tetragonal symmetry), and the direction in which the component is
A; can be used to label the orientation of the elastic dipole (figure 1). Let C, (p=1,
2 or 3) represent the concentration of defects in orientation p, satisfying C1+C2—|—C
=C at all instants of time. C, is a fluctuating quantity, since the defects jump ran-
domly from one orientation to another. Measured physical quantities are actually
certam statistical averages of such random variables. In the absence of any applied -
stress, the three orientations will be equally populated (on the average). ‘This
is expressed by the equation (C,,)O—C/Z’: (p=1,2,3). Ifa constant uniaxial stress
o is applied along [100] from ¢ = 0 onwards, the equilibrium is disturbed. The
dipoles will then relax towards a new population distribution that minimises the free
energy, exactly as in magnetism. It is the approach to this new state of equilibrium
that manifests itself as anelastic creep, and that we desire to study. As we are con-
cerned only with the 11-component of the strain tensor, we omit these tensor indices
in all that follows. The total instantaneous strain in the material is given by

€ = 2;1 A (C” - g) | (5.
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Figure 1. Sites involved in the hopping of an interstitial atom in a bce lattice leading
to Snoek relaxation under the application of an external stress. 1, 2 and 3 refer to
the types of interstitial sites available, and also label the orientations of the elastic
dipole associated with the defect (after Nowick and Berry 1972).

The subtraction is merely to take care of the reference level, () = 0. Using the
fact that ), = Ay, we may re-write (5) in the form '

€= (A — Ay (cl~§):(ﬁ%@N‘,(%~%). (6)

The reason for the final equation above is as follows. To evaluate the statistical

‘averages required; we shall take recourse to.the techniques of statistical mechanics.

For this, we shall introduce a Hamiltonian that is written in terms of an operator
related to the strain per defect, as in magnetism where individual spin operators are
the dynamical variables. Thus (6) is written as

= =2 ‘
€ = ——“]‘\’rm Zf—‘«“l Ay, (7)
where i labels the individual dipoles, and

. Ny - Cl__l ) o
11 A‘—Nd(a“ 5) | (8)
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The coupling of the elastic dipoles with the applied stress contributes to the total
Hamiltonian H a term

Hy=—Voe=—1y0 (A, —Ap) 25\21 4y ®)

where 7, = V/N is the volume per atom of the host crystal. Subsequently we shall
use also the associated frequency

we = g0 (A\y — M)/ (10

where # is Planck’s constant. Let us now turn to explicit representations for the
various quantities (operators) concerned. (The measured strain will be a certain
expectation value in the sense of statistical mechanics). Since each dipole can take
on three orientations in the problem at hand, it is natural to work in a 3-dimensional
vector space for each defect that is spanned by the (single-particle) orientation states
| P with representations

1 0 0
0 0 1

The states of the complete system of N, defects are direct products of these single
particle states. Correspondingly, all operators (such as 4;, Hy, €) have direct pro-
duct representations, since no defect-defect interactions are considered. (Of course
the direct product space continues to be of utility even when such interactions are
included. This is why we elaborate on the representation, etc. at such length here).
The unit operator is

1:11®12®"'®11Vd . | (12)

where 1, denotes the 3 X 3 unit matrix acting in the space spanned by the states
| p): of the ith dipole. Thus Tr I = 3N,. We also have

A,=ll®...®1,_1®(a)i®11+1®...®1Nd (13)

where (a) is the 3 X 3 matrix corresponding to an occupation number of unity for
orientation 1, minus 1/3 the unit matrix, according to (8). That is, S

100y /100 2 0 0 A
a=[000|—2{010}=|0—3 o0} (14)
000/ 3\oo 1 0 0 —1%

Therefore Tr 4, = 0 = Tr Hg. (15)
2.2. Host lattice energy

The corresponding contribution to H, denoted by H,, may be written in terms of
appropriate phonon co-ordinates if necessary. These operators do not affect the
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orientation states, and [Hg, H;] = 0. The lattice is supposed to be a very large
system that acts as a heat bath maintained at a temperature T, that is the tempera-
ture of the material concerned. We use the notation

By, = 1/ky ;. ’
2.3. Defect kinetic (hoppz’ng) energy

This is the term that causes the transfer of anelastic potential energy to the lattice,
leading to relaxation. For simplicity, only nearest-neighbour hops (see figure 1)
will be assumed, although there is no difficulty in extending the theory to other cases
as well. We note that each such hop alters the dipole orientation. The contri-
bution to H describing the hopping of a defect may be written as a direct product
of two operators g and R;, where g acts on the phonon (or host lattice) states and R,
alters the orientation state of the jth elastic dipole. The expectation value {g>
represents the hopping energy of a defect. It is evident that R, has the representa-
tion

V Ri = 11 ® .o 11_1 ® (r)l ® 1i+1 ® 1 Na» . o (16)
where |
01 1
ro= (1 0 O) (17
1 0 0 .
so that :
|1 :lz>+|3>, etc. (18)

The hopping term in H'is thus
N, ‘ .
Hy=g " Ry (19)
It is easily seen that [Hg, H,] # 0, since the matrices (a) and () do not commute.
This, together with the condition [H,, H,] oc [Hr, g] # 0, is the mathematical origin
of the transfer of energy from the anelastic term to the lattice bath, i.e. of the relaxa-
tion process.

After the applied stress is turned on at ¢ = 0, the total Hamiltonian is thus

i ‘H:HG’ILHhJI“HL

=-—to(N—2N) ), 4i+g >, R+ H, (20)

When the relaxation is complete, and the system is once again in equilibrium at
temperature 77, the saturation value of the strain is

(e(t=0o0)) = <€>eq = Tr [e exp (—B, H)]/Tr exp (—B.H). @n
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The anelastic effects of interest occur at low stress levels, expressed more precisely
by the conditions v o 8, <1, (g) B,<1. Equation (7) for e is substituted in (21).
Since Tr A, vanishes, we find (to first order in vy o ;)

()eq = (1/Ng @ B (=Dl D10 [Tx (A42)Tr 1]. 22

Equations (12)—(14) then easily yield
2 2
(el = 5 1 B, (120 (23)

where we have written C for N,/N, as already defined. This is the known expression
for the relaxation strength in the present case (Nowick and Berry 1972; Balakrishnan
et al 1978).

3. Elastic dipole ‘¢ temperature >’

It is clear from the foregoing that our problem is closely analogous to the very fami-
liar one of magnetic relaxation. Since both Hy and H; commute with H in the
absence of .H,, it is possible then to construct simultaneous stationary states for the
two sub-systems corresponding respectively to H, and H;. These may be desig-
nated as the stress bath (the analogue of the Zeeman bath) and the lattice bath.
When H, is ““ switched on ”, neither Hy nor H, commutes with H, so that both
(Hy) and (H;) become time-dependent. In other words, transfer of energy
occurs from the stress bath to the lattice bath, via H,. The strain relaxes from its
initial value (e€),=0 to the saturation value (e)eq given by (23). The process
may be described by introducing a time-dependent *“ elastic dipole temperature >
T4(t) (analogous to the spin temperature in magnetism) that is distinct from the
lattice temperature 7;. We may also make the customary assumption that the
number of degrees of freedom in the lattice bath is so large that 77 is, for all practical
purposes, independent of time. Then, treating H, as the interaction term, the den-
sity matrix of the system in the Schrédinger representation is given by

exp (—Bo(t) Hy) exp (—BLH;) , : 24)

o) o exp (Bl o) T oxp (—BLlTy)

where B4 (t)xl/ké To(t). As t->o0 and the system relaxes to its new state of
equilibrium, this quantity approaches the asymptotic value B, i.e., we have the
boundary condition

lim Bo(t) = By ’ (25)

» =00
The measured value of the strain at any time ¢ > 0 is

e(®)) = Tr [e pg (1)]. (26)
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Again working to first order in uyof, we have, exactly as in the derivation of
(23) above,

<€(t)> ::; %a C(/\i_Az)Z Bo (). S o = -

The time evolution of the strain is determined, therefore, by ﬂa(f). The latter is

‘found by going over to the interaction representation. An approximate master

equation is derived for the density matrix that has the required feature of irreversi-
bility, in order to characterize the process of relaxation.

4. Master equation for. the density matrix

The equation ifidp,/dt = [H, p,] is transformed in the interaction representation to

ihdp, (D))t = LH(1), p, (O] - (28)

Here, as usual,
H, (£) = exp [% (H, + HL)t:I H, exp [ — % (H, + HL)t], (29)

is the hopping Hamiltonian in the interaction representation. (To keep the nota-
tion simple, the subscript 7 is dropped. Retention of the time arguments will indicate
operators in the interaction picture). Equation (29) is solved approximately in the
standard manner (e.g., see Abragam 1961). We obtain

dp(O/dt = (i[#) [p,0), H(O)] — (/%) [ dt’ TH(8), [H(t—1"), p, O)]],
(30)

correct to second order in the hopping term. Next, two further approximations
are made, again a standard procedure. First, the term p, (0) in the integral is re-
placed by p,(t). This makes little difference as long as we work to second order in
H,, i.e., at the level of the correlation function (H), (#) H,(t —t')). Second, if we
are interested in time intervals ¢ that are much larger than the correlation time 7.
characterising (H,()H,(t — t')), it is clearly admissible to extend the upper limit
of integration to co without significantly altering the value of the integral. Thus
(30) may be replaced by

dp O/t = GI8) [0 HO) — (1% [ de' - L0, H—t), p,O]].
@1

Equations (24) and (31) will be used to determine the time derivative of 84(¢). Equa-
tion (27) will then tell us how the strain approaches its saturation value { e)eq.

P9
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5. Anelastic relaxations

To find the time derivative of B,(¢), let us consider the rate of change of the quantity
(A4,(t)), where j labels any one of the dipoles. We have in the Schrodinger picture,

% {4y (1)) = %Tr (ps () 4))

2. a4,
"“-9~ﬁwa'['l—tﬁtr (), : (32)

correct to leading order in 4o f,; the frequency w, has already been defined in (10).

In the interaction picture, on the other hand, the approximate master equation
(31) yields

d i 1 %,
G CAO) =2 Te (s 1, O B, 0 — o [

Tr (4, [H,(0), [H, (— ), ps (D]]) (33)

after some re-grouping of the final term on the right using the cyclic invariance of
the trace. The same property shows that the first term on the right in (33) vanishes,
because [4;, p,(0)] = 0. We must now use (24) for py(¢) and simplify the result.
Finally, (32) and (33) lead to

)
5} Bo(t) = [B, — /?a )/, (34)

which expresses the relaxation of B,(f) to the value 8,. The relaxation time = is
given by (see (A.6))

I = Of28%) [ de' 3% | (Av [y, Hy O, Hy (=] (39)

Here { )eq stands for the equilibrium expectation value, evaluated using the
factored density matrix

exp ( — B Ho) exp (— B, H,)

= ,
Trd eXp (— BLHG) TI‘L CXp (’“‘ BLHL)

(36)

corresponding to the temperature 7,. The subscripts in the traces refer to sums
over the states of the dipoles and the lattice respectively. Equatlon (35) is further
reduced in the appendix, and the result is (see (A.19)).

lr =4 (3 — tanh 4 B, # we) Sy (wo)

o o {( Ay —A ' i
=} (3 — tanh Mz_(ic";n_‘z“)) Sy (wo). . (37
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Here we have written the elastic dipole—lattice coupling term in H in terms of a
quantity with the dimensions of a frequency, according to

g }:i Ry=Hf) Ry - (38)

The important object in (37) is the power spectrum of the operator £, defined as the
Fourier transform of its symmetrized correlation function:

S (@) = [2, dt exp (r) {LOLD +OSOg. (39)

Although we have quoted a complicated-looking result in (37), in order to make
a certain point in the next section, a further approximation must be made in the
above so as to be consistent. Only the leading term in an expansion in powers of
v,0 B, ought to be retained. (It turns out then that this is also equivalent to neglect-
ing the difference between the Fourier transforms of {f(0) f(¢)eq and -{ f(¢) f(0) Deq
for frequencies w < w, — see § 6). We obtain, finally, the relaxation behaviour

ey =20, Co(u =P By —exp (— 1], o)
where  1/r = (3/2) S, (ws). | (1)
Here S (w) = 4 j o dt cos wt (£ (0) £ (1) Deg: (42)

The temperature dependence of the relaxation time arises upon computing (in
principle!) the expectation value of £(0) f(¢) using the density matrix exp (—B.H;)/
Trexp(— B. H;). For ready reference, let us observe also that insertion of the
typical values v, = 1072 cm3, A, — A3 ® 1 yields the order. of magnitude
estimates

vy o(Ay — A)B, & 1077 o (in dyn cm~2)/T, (in °K) (43)
and we (in Hz) =& 10% o (in dyn cm™2), (44)

If the elastic strain in an experimental situation is of the order of 1075 (e.g., see

Robrock et al 1977), then o =~ 10° dyn cm™2 (using a typical value for the elastic

modulus).
Even if T} is as low as 10* K, we have

950 (M—Ap) B, ~ 1073, (45)
and o
wy & 101 Hz, : (46)

These values may be regarded as rough upper limits for these quantities under normal
experimental conditions.
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6. Discussion

The interesting physics is contained in the expression for the relaxation time =. It
is convenient to arrange the discussion in the form of a series of comments.

(i) At the very outset, let us make it clear that we have obtained answers in the
classical limit for a problem that is in the classical regime under normal experimental
circumstances, albeit by using a quantum mechanical formalism. We first list the
reasons for using such a formalism, and then explain precisely where the ° classical’
approximations have gone in, simultaneously pointing out the modifications neces-
sary to handle a:quantum mechanical situation (there does exist such a case).

Our objective in formulating the problem as we have done is three-fold. First,
as explained in the Introduction, we are interested in deducing = as a function of the
microscopic parameters involved. Second, the route we have followed, using an
approximate master equation for the density matrix that describes relaxation, is a
first-principles approach that is in fact easier, and more direct, than a purely classi-
cal approach involving the Liouville equation. Third, it is a straightforward matier
to go over to the purely classical limit of the formalism. Such a procedure helps
us identify precisely the small parameter which measures the accuracy of the limit,
and also keep track of the aspects that may need modification when going beyond
the classical regime in certain instances. :

(i) Let us now identify the junctures at which a classical limit has been implicitly
taken. Considering the defects first, each interstitial atom has been replaced, for
the purpose of calculating the anelastic strain, by an elastic dipole which can
take on any of a discrete set of orientations. We have found it convenient (for
reasons already listed) to associate ‘states’ with these orientations, and to do
quantum mechanics in terms of these states, in writing down the quantum mechanical
equation of motion for the density matrix. It should be noted that no inherently
quantum mechanical features of the dynamics of the original interstitial atoms have
been brought in. (Even in a purely classical treatment, it would again be-quite
natural to work in a vector space spanned by the orientation states of the dipoles).
In the case of hydrogen interstitials, when quantum tunnelling from one site to
another also contributes to the hopping of the defects, such features would of
course have to be considered too.

Further, to point out what is perhaps obvious, we have used classical or Maxwell-
Boltzmann statistics for the collection of elastic dipoles. This is evident from the

“direct product states we have used for the system of dipoles, without any symmetriza-
tion or anti-symmetrization. The use of classical statistics is of course appropriate
i1 view of the low interstitial concentrations involved (and has nothing to do with the
absence of defect-defect interactions!). At high defect concentrations, when the
underlying defect atoms form a degenerate gas in the host lattice, it may be necessary
to use the appropriate quantum statistics as well, for light interstitials.

Finally, let us turn to the treatment of the * larger * system (the lattice) that absorbs
the energy released by the system of dipoles during the relaxation. It is quite evident
from (A.14), (A.15) and (37) that the result given in (41) and (42) is simply a high
temperature approximation. The small parameter in our problem is B liwg =

090 (A —Apk T, The numerator is just the energy released by a dipole in a single
reorientation from a transverse direction to the direction of the tensile stress. When
T, is suficiently large, this ratio is much smaller than unity, and our simplifications
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hold good. Now the tanh (8, fiw/2) term in (37) actually arises from the commutator
of £(0) and f(¢) (see (A.15)). One might therefore jump to the conclusion that the
high temperature limit is equivalent to treating the lattice classically, with f(7) a
c-number. This is not so. The point is illustrated most simply by writing the
spectral theorem of (A.15) in the form

exp (Bytw) [, diexp (iwt) (f (O (1) Yeq

= [ dt exp (iwt) (S (O ©)Deq, @7)

valid for all real values of w. We are merely saying that when w=w such that
B liws<1, the two Fourier transforms become approximately equal to each other and
the contribution (to 1/7) from their difference becomes negligible. Obviously, the
same statement is true for all w in the range 0<<w<Cwy. This clearly does not
imply the equality of the two Fourier transforms at all values of w, so that our
approximation does not amount to neglecting <[ ' (0), f ()] Deq, much less IFIONZQ)
itself. This is as it should be, for there certainly occur cases when it is necessary
to treat f(¢) as a quantum mechanical operator in the space of lattice states.
For example, if the modelling is done via phonon operators, the correct quantum
statistics for the phonons must be used in evaluating the contributions from the
direct (one-phonon) process, the Raman process, and so on, each with its char-
acteristic temperature dependence. For hydrogen interstitials, such a treatment is
necessary (Stoneham 1972). It can be shown, for instance, that the hopping rate of
the interstitials tends to a 7,7 dependence at very low temperatures 111 contrast to
the standard Arrhenius type of dependence.

(iii) The case of a very light interstitial such as H, which we have referred to above,
is a very interesting one in view of the possible contribution to the relaxation from
quantum mechanical tunnelling that should become observable at very low temper-
atures (Heller 1961; Gibala 1967; Lord 1967; however, also see Moser et al 1977).
In addition to the modifications noted above, another fact must be taken into account.
What actually occurs in this instance is a complicated interplay of classical and quan-
tum effects. In addition to thermally activated jumps from one site to another, the
interstitials can tunnel through neighbouring potential barriers that are themselves
lowered randomly by thermal fluctuations, leading to an unusual sort of diffusion
process (Flynn and Stoneham. 1970; Stoneham 1972; Kehr 1976). Recently, a time-
dependent description of quantum tunnelling has been given by Yasue (1978) based
o the concept of stochastic quantization (Nelson 1966).  An attempt is being made
to apply this description to the calculation of the relevant power spectrum- that
features in the relaxation time for the case of very light interstitial dtoms when tun-
nelling contributes significantly. :

(iv) With these general remarks out of the way, we may turn to the results expressed
in (40)-(42). The relaxation occurs because of the time dependence -of the defect
hopping term, f(¢). (Without this dependence, we should simply find 7~ co). This
inherently irreversible behaviour is a consequence of the coupling of a very large
pumber of degrees of freedom with those of the defect system’. The difficult
problem, of course, is the evaluation of the correlation function { f(0) f/ (t))eq,
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where f is an operator acting on the states of the lattice. We may refer to Redfield
(1965), Berne and Harp (1970), and Forster (1975) for pertinent remarks in this
- connection. It is clear that the very large number of degrees of freedom involved in
the lattice bath makes it expedient to use some sort of stochastic technique for the
determination of the correlation function. It is convenient, from a practical point of
view, to regard the hopping term in the Hamiltonian as a random perturbation of the
(elastic dipole) system. In the so-called ‘semiclassical approximation’ (Abragam
1961, Ch. 8), one simply assumes that 8;~0 in the calculation of the relaxation
time. The lattice density matrix reduces to 1/L, where L is the (very large) number of
degrees of freedom of the lattice. We then have { f(0) f(2) ) eq f(0) f(t), the bar
standing for the statistical average of the corresponding random function of time.
However, the temperature dependence of the relaxation time is lost in this approxima-
tion. In order to retain this physically significant temperature dependence, one may
regard the lattice as a classical heat bath at a finite temperature Ty, and f(¢) as a
stationary random variable, and appropriately model the temperature dependence
of the ensemble to be averaged over. The relaxation time is given by (42), where
Se(w o) corresponds precisely to the customary definition of the power spectrum of the
random variable f, evaluated at the frequency w, . We have already seen that this
frequency (in Hertz) is typically of the order of 10%, where o is the applied stress
expressed in dyne cm™2.

(v) The simplest model for f(¢) corresponds to assuming that it is purely random,
i.e., a white noise. Its power spectrum is then a constant. It is more plausible,
physically, to assume that the random process f(¢) which drives the fluctuations in
the elastic dipole orientations is a stationary process that is Markovian. For conveni-
ence, one assumes also that it is a Gaussian process. Therefore its autocorrelation is
of the form (Doob 1942). ‘ ‘

FOF@) =12 exp (—tfr) = w2 exp (—t/7c) (48)

where 7, is the correlation time, and ), is the effective hopping parameter defined as
the rms value of the hopping energy expressed in frequency units. Equations (41)
and (42) then yield

1z = 602 7f(14-o D). | (49)

In phenomenological rate theory (Nowick and Berry 1972), one simply assumes that
1/= is directly proportional to the ‘ dipole re-orientation frequency ’, and this in turn
is assumed to have an Arrhenius form of temperature dependence.  We find that 1/7
actually depends on two microscopic parameters, w, and 7, that relate to the coupling
term f(t) inducing the re-orientations. '

(vi) Before we discuss the temperature dependence of 7, let us point out the similar-
ities and differences between the present situation and magnetic relaxation. In the
latter case, a common coupling mechanism that leads to the relaxation is the dipole-
dipole interaction between the magnetic moments of the system, which causes the
transfer of Zeeman enmergy to the lattice. A form similar to that of (49) is
obtained for the relaxation time, namely,

. 1/7 ~ h¢12 7‘,:/(1 + wB2'rc2)' : (50)



Density matrix formalism for anelastic relaxation 653

Here h, stands for the spatial part of the dipole-dipole interaction suitably averaged
over the lattice, and =, is the corresponding correlation time. The frequency wpis

proportional to the external magnetic field B. It is customary to assume an
Arrhenius form of temperature dependence for 7, and to regard h, as approxi-
mately T-independent. Then, as is well known (Slichter 1963), a plot of In =
versus 1/T shows an initial decrease to a minimum given by wpr,=1, then a

rise (in the region w 57c>1). Such a variation is borne out by experiment, as
is the dependence on the applied field B via w p- In the case of anelastic relaxation,

on the other hand, the data from a variety of experiments (elastic after-effect
measurements, internal friction, direct measurements of the interstitial diffusion co-
efficient, etc.) show that In = increases linearly with 1 /T over a wide range of temper-
ature (Nowick and Berry 1972). Nor is there any evidence of a dependence on the
applied stress o (as is obvious from the preceeding statement itself). We explain
these facts as follows. While (49) and (50) are formally similar in structure, the
physical origins of w, and &, are quite different. The dipole-dipole coupling persists
even at very low temperatures, and it is perhaps reasonable to ignore its possible T-
dependence. In contrast, the hopping energy fiw, in our problem may be expected to
be strongly temperature-dependent, since the hopping occurs when the interstitial
atom overcomes a potential barrier. It is therefore plausible to model w;, according to

wy = w  exp (— Qh/kBT)s S (51)
and also retain the standard assumption
Te = 7,0 €Xp (Qu/k5T), ™

where Q, and Q, are the corresponding activation energies, (It is very likely, further;
that @, ~ Q,, since they refer to the same mechanism). Using these functions of 7,
we find from (49)

Inrw In(1/602 7..) 4+ OfkpT (wy 7, < 1), ’ (53)
where Q=(2Q,— Q) is the effective activation energy; while

Inrxn (w?r, (602 )+ Q' fkpT(wyr, > 1), . (54)

where Q'=(20Q,+Q.). Thusln 7is always an increasing function of 1/7. An increase
in slope is expected around wyr. & 1, beyond which points corresponding to different
values of the applied stress should lie on different curves because of the dependence
on w, in (54). , _

However, as we have already mentioned, the data over a wide range of T (roughly
50°K to 700°K) for anelastic relaxation times agree well with a single component
Arrhenius fit that is, moreover, independent of o (e.g., see Powers and Doyle 1959
Lord and Beshers 1966, Farraro and McLellan 1978, Robrock et al 1977). The
reason for this becomes evident on estimating the magnitude of w,7, in practical
situations. The correlation or  memory ’ time 7, cannot be very much larger than
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the inverse of the highest phonon frequencies in the host material, i.e., about 10713 sec.
Even if +, 210712 sec, wer,~ 1072 (see (46)), and (wqr,)? is negligible compared to
unity. Thus one is generally restricted to the region where (53) is appropriate. (We
note parenthetlcally that this is also the result one would obtain if (48) is replaced by
the white noise "tssumptlon for f(¢): in this case w,?-+ oo and =~ 0 such that w,? 7,

is a finite number ', and /' (0) (@) =18(t). Inprinciple, this restriction precludes a
determination of the two parameters w, and =, separately from a measurement of =,
unlike the case of magnetic relaxation. Experiments yield a characteristic value of
5% 1015 sec for the pre-factor in =, so that we have w2 = =107 sec. It is also found
that Q=1 eV. One may be able to detect the onset of the second region (54) by
working at lower temperatures and higher values of o, retaining however the condition
vo0Br, <€ 1. However, there is a further complication in doing so, that is not present
in the study of magnetic relaxation. At stress levels of the order of 108 dyn cm™,
departures from anelastic behaviour itself are likely, as the yield stress is
approached.

(vii) There is a parenthetical remark that we should like fo make regarding the
appearance of the applied stress o in the expression for = given in (41) or in (49).
Now, from experimental considerations, it has been pointed out (Robrock 1974)
that anelastic relaxation is very conveniently studied by using the elastic after-
effect technique (Nowick and Berry 1972; for recent experiments, see for instance
Spiric et al 1977; Robrock et al 1977). If the stress-strain relationship is rigorously
a linear one, the elastic after-effect function is of course determined by the creep
function itself. It might appear that we have lost this possibility in introducing
a non-linearity into the problem by means of the stress dependence of the
relaxation time (although, as we have argued, this is not directly accessible to
detection). However, we should like to emphasize that the crucial and central
property that characterizes anelastic behaviour is full recoverability, i.e., a unique
equilibrium relationship between stress and strain. (This of course implies that
the equilibrium is attained for any constant stress, after a sufficiently long interval,
in marked contrast to viscoelastic —behaviour or more complicated modes of
plastic deformation.) Linearity is merely put in as a convenience. Our theory
is easily extended to show that the strain in an elastic after-effect experiment will
relax to zero from its initial equilibrium value under a constant stress o, once o
is switched off at ¢ = 0, according to :

<€(t)> = <E>eq exp (—t/'r)‘ ' ‘ (55)

Here (e >eq is precisely the saturation value given by (23) and 7 is again the same

relaxation time as in the creép function, namely, the expression given in (41).

(viii) In paper I, the results of the application of linear response theory were
verified by developing an alternate formalism to study the microscopic strain and
stress fluctuations. This was based on a Langevin-like stochastic equation for the
fluctuating strain driven by a random internal stress caused by defect motion.
Theorems relating the relaxation time to the power spectra of the fluctuating
stress and strain were developed. It is possible to make a connection between
those relations and the results of this paper. In addition, of course, our present
formalism has side-stepped- the question of- obtaining a quantum mechanical
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generalization of the Langevin equation in the present context, and has also enabled
us to deduce an expression for = in terms of somewhat more basic parameters.
In this sense, we now have a more generally applicable theory of anelastic
relaxation.

(ix) Finally, a remark on the strain response to a time-dependent applied stress:
the entire theory can be modified to evaluate the complex compliance J(w) of
the system, even if we do not wish to restrict ourselves to linear response theory
and directly use the relaxation-response relationship between J (w) and the creep
function. An explicit demonstration of this statement is unnecessary, since the
time-dependence of the relaxation (i.e., the creep function) actually contains
complete information on the anelastic behaviour of the material under study.

Acknowledgement

We should like to thank Dr B Purniah for acquainting us with some of the experi-
mental references.

Appendix

We outline here the steps which lead to (40) and (41) for the relaxation of (&(7)) to
its saturation value, starting with (32) and (33) together with (24) for the density
matrix py(?).

Equation (33) yields

%(Aj(tb = — (1/#?) j o dt' T {A,[H,0), [H(—1"), pu 11}

= — () [ dt’ T {pOl[ A, HOL B~} (A1)
on using the cyclic invariance of the trace. Now (24) for p,(7) can be written as

ps(t) = P — (Bo(t) — Br)Hol, (A2)

where

= exp (—BHo) exp (— :BLHLj (A.3)
Try exp (—BH o) Try, exp (—BLHL)’

and Tr,, Tr;, refer respectively to traces over the orientation states of the dipoles
and the lattice states. In (A.2), we have retained only terms upto first order in the
small quantity (Bu(#)—PBz) veo (A—As). The term involving I in (A.2) merely gives a
constant when substituted-in (A.1), and may be dropped as the boundary condition

on B4(f) is Bo(00)=hy,
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We find then

1 -
(—?;<Aj(t>> — (IO —By) & dr

Tr {FHo (1, HO), H(—1}- (Ad)

Comparing this with (32), we immediately obtain

2 B o(t) = By—Bolt)is | (A.5)
dt

where »
e = O [ d Y (A, HOT, H(—1) e (A.6)

This is the formal expression for the relaxation time, quoted in (35) in the text. The
symbol { Deq stands for the equilibrium expectation value, evaluated using the
Jactored density matrix p corresponding to the temperature 17,

We may now begin the explicit evaluation of (I/7) for the problem at hand. We
find

[4), H(0)] = g(0) My, ’ (A7)
and ‘

Hy(—1) =g(—1') >N (iMysin wgt' + My cos wgt’ + My),  (A8)

where the opérators M,; (g=1, 2, 3) have the usual direct product representations.
The respective matrices that act in the space of the ith dipole are

/0 11y 011 {0 0 0
= (———1 0 0) My= (1 0 0> My= (0 0 1) (A.9)
—1 0 0/, - \1 0 0/, 0 1 0/. v
The double commutator required in (A.6) may now be calculated. However, we
need only the trace of the product of this operator with a diagonal operator, namely,
exp (—BLHy) 4, If (m) is a (3% 3) matrix with zeros on the diagonal and (n) is a
diagonal (3 x 3) matrix, (mm) and (nm) again have zeros on the diagonal, and do not

contribute to the final trace. This fact simplifies the algebra considerably. We finally
obtain L ' :

(1) = ORI 3, Adsdeq fo dt (BLEO), 81D} )eq 05 wo 1
— i [2(0), &(—1)]Deq Sin wat) = (920 D, Aideq X

J'(C;O dt (<{g(0): g(—t)}>eq cos wUl’”}—[:< [g(O), g(”“t)] >c£1 sin wat)'
(A.10)
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Here {g(0), g(—1)} stands for the anti-commutator, and

Li=4® .14 ® 0 ® Ly ... ® I, (A1)
1 0 0

] s (o 0 o] (A.12)
0 0 0

The equilibrium expectation values indicated have the obvious meaning, i.e., for
Ay, Ly, ete., the density matrix is exp (—BpH)/Tr exp (—f;Hy); while for the opera-
tors g(0) and g(¢) it is exp (—BLH)[Tr exp (—B Hy).

The possible quantum mechanical nature of the operator g has been retained in
deriving (A.10), although the lattice may have a large number of degrees of freedom.

Since only equilibrium expectation values occur in the result, further simplification
is possible on using the stationarity property

(8Og(—1))eq = {8(1) 80D, (A.13)

The expectation values of the anti-commutator and commutator are therefore even
and odd functions of ¢ respectively. Equation (A.10) may thus be written in terms
of the Fourier transforms of these combinations. The power spectrum of g is de-
fined as the Fourier transform of the * symmetrized cotrelation ’, i.e.,

Sy(w) = [2, dt exp (iwr) <{&(0), 81} Deq (A.14)
As is well known, the Fourier transform of the anti-symmetrized correlation can be

related to S,(w) by a spectral theorem (which subsequently leads to the fluctuation-
dissipation relationship in linear response theory!):

[ dt exp Giwt) {[g0), g(Yeq = — Sy() tanh (BB hw).  (A.L5)
Our result for the relaxation time takes the form
17 = (9/472) S(wo) [(3 — tanh $B,fiws) (ZidiL;Yeq
— (1 + tanh §,000) (Bidideg | (A.16)
Now we have worked throughout to first order in the quantity zg08,. Consistency
therefore demands that {4,Yeq and {A4,L;>cq be determined using only the leading

term in a corresponding expansion of the density matrix 7, as is clear from an inspec-
tion of (A.2) and (A.5). In other words, we must write

exp (— B H,)/Tr exp (—B.Hy) =~ ITr 1, (A7)

as far as (A.16) is concerned. (We do not imply by this a similar approximation for
the lattice part of the density matrix 5!). Since 4, is traceless, the second term in
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square brackets in (A.16) vanishes. We have also Tr(4,L)=2/9. It is convenient
(see, e.g., Abragam 1961, Ch. 9) to write the elastic dipole-lattice coupling term
in the Hamiltonian in terms of a quantity with the dimensions of a frequency,
according to

gZR; = hfZR, (A.18)
The relaxation time is therefore given by

1/ = 4 (3~ tanh 4B, fiws) Sy (wo), (A.19)
where  Sy(w) = j © _ dtexp (iwt) LSO, f(O)}Dea (A.20)

This is the answer written down in (37). Recalling that we must work to leading
order in vgof;, this further simplifies to

1/r = (3/2) S;(wo), (A.21)
where (as explained in the text)
Syw) =47 dt cos wi {f(O) (e (A.22)

is the power spectrum of the c-number function f(7).

References

Abragam A 1961 The Principles of Nuclear Magnetism (Oxford: Clarendon Press)

Balakrishnan V, Dattagupta S and Venkataraman G 1978 Philos. Mag. A37 65 (referred to as I
in the text)

Balakrishnan V 1978a Pramana 11 379

Balakrishnan V 1978b Pramana 11 389

Berne B J and Harp G D 1970 in Advances in Chemical Physics eds 1 Prigogine and S A Rice
(New York: Interscience) Vol. 17

Doob JL 1942 Ann. Math. 43 351

Farraro R J and McLellan R B 1978 Mat. Sci. Engg. 33 113

Flynn C P and Stoneham A M 1970 Phys. Rev. B1 3966

Forster D 1975 Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (Reading,
Mass: Benjamin)

Gibala R 1967 Trans. M S AIME 239 1574

Heller W R 1961 Acta Mer. 9 600

Kehr K 1976 in IFF Bull. 9(1) (Julich, KFA)

Lord A E 1967 Acta Met. 15 1241
Lord A E and Beshers D N 1966 Acta Met. 14 1659

Moser P, Dufresne J F and Ritchie I G 1977 in Proc. 6th Int. Conf. Iniernal Friction and Ultrasonic
Attenuation, Tokyo, ed. by R R Hasiguti (to be published)

Nelson E 1966 Phys, Rev. 150 1079

Nowick A S and Berry B S 1972 Anelastic Relaxation in Crystalline Solids (New York: Academic
Press) '

Powers R W and Doyle M V 1959 J. Appl. Phys. 30 514



Density matrix formalisin for anelastic relaxation 659

Redfield A G 1965 in Advances in Magnetic Resonance ed. IS Waugh (New York: Academic Press)
Vol. 1

Robrock K- H 1974 KFA Report No. Julich-1088-FF (unpublished)

Robrock K H, Rehn L E, Spiric V and Schilling W 1977 Phys. Rev. B15 680

Schilling W 1977 in Proc. Indo-German Seminar on Radiation Damage Kalpakkam (to be published)

Slichter C P 1963 Principles of magnetic resonance (New York: Harper and Row)

Spiric V, Rehn L E, Robrock K H and Schilling W 1977 Phys. Rev. B15 672

Stoneham A M 1972 Ber. Bunsenges. Phys. Chem. 76 816

Venkataraman G and Balakrishnan V 1977 in Proc. Indo-German Seninar on Radiation Damage,
Kalpakkam (to be published)

Yasue K 1978 Phys. Rev. Lett. 40 665






