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On the Restriction to D
∗×D

∗ of
Representations of p-adic GL2(D)

In memory of my mother Shantha Anantharam

A. Raghuram

Abstract. Let D be a division algebra over a nonarchimedean local field. Given an irreducible repre-

sentation π of GL2(D), we describe its restriction to the diagonal subgroup D∗×D∗. The description

is in terms of the structure of the twisted Jacquet module of the representation π. The proof involves

Kirillov theory that we have developed earlier in joint work with Dipendra Prasad. The main result on

restriction also shows that π is D∗ × D∗-distinguished if and only if π admits a Shalika model. We

further prove that if D is a quaternion division algebra then the twisted Jacquet module is multiplicity-

free by proving an appropriate theorem on invariant distributions; this then proves a multiplicity-one

theorem on the restriction to D∗ × D∗ in the quaternionic case.

1 Introduction and Statements of Theorems

Let F denote a nonarchimedean local field and let D stand for a central division al-

gebra over F. This is the third article in our study [15, 17] of representations of the

group G = GL2(D). Let π be an irreducible admissible infinite dimensional repre-

sentation of G. The main aim of this paper is to describe the restriction of π to the

diagonal subgroup M = D∗ × D∗ of G.

To state the main theorem, which describes the restriction to the subgroup M,

we need to introduce some notations. Let P denote the standard minimal parabolic

subgroup of upper triangular matrices in G. Let N be the unipotent radical of P.

Then N is the subgroup of upper triangular matrices with 1’s on the diagonal and

N ≃ D+. Fix a nontrivial additive character ψF of the base field F. Let ψ be the

character of D, defined as ψ(x) = ψF(TrdD/F(x)) for all x ∈ D, and where TrdD/F is

the reduced trace map from D to F. We let ψ also denote the corresponding character

of N . If (π,V ) is an irreducible admissible infinite dimensional representation of G,

then let VN,ψ denote the maximal quotient of V on which N acts via ψ. This space

VN,ψ is naturally a representation of D∗ ≃ stabM(ψ). This representation is denoted

πN,ψ , and is called the twisted Jacquet module of π relative to ψ. In the literature this

module is also called the space of degenerate Whittaker models [11].

The main theorem of this paper is the following.
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Theorem 1.1 Let G = GL2(D). Let π be an irreducible admissible infinite dimen-

sional representation of G. Let τ1 and τ2 be two smooth irreducible representations of

D
∗. Assume that either

(i) τ = τ1 ⊗ τ2 does not intertwine with the usual Jacquet module πN (this includes

the case when π is supercuspidal); or

(ii) π is irreducibly parabolically induced and πN is semisimple as an M-module.

Then the multiplicity with which τ1 ⊗ τ2 occurs as a quotient of π restricted to the

diagonal subgroup D∗ × D∗ is equal to the dimension of the space of intertwining op-

erators between τ1 ⊗ τ2, now as a representation of D
∗, and the twisted Jacquet module

πN,ψ , i.e.,

dimC(HomD∗×D∗(π, τ1 ⊗ τ2)) = dimC(HomD∗(πN,ψ, τ1 ⊗ τ2)).

Regarding the assumptions on π and τ , we certainly believe the statement to be

true as stated for all π and τ , however, we have only been able to prove it in the cases

(i) and (ii) above.

For the remaining cases, we point out at appropriate places what is lacking in the

theory developed so far for the group GL2(D).

Note that for GL2(F), it has been observed by Waldspurger [21, Lemmas 8, 9] that

a character χ1 ⊗ χ2 of F∗ × F∗ occurs as a quotient of π if and only if χ1χ2 is the

central character of π, and in this case, it occurs with multiplicity one. Observe that

if D = F, then by multiplicity one for Whittaker models of GL2(F) we have that πN,ψ

is one dimensional, and as a module for F∗ it is ωπ , the central character of π. Hence

the theorem specializes to the above-mentioned result of Waldspurger. Indeed, this

may be regarded as a different proof of Waldspurger’s results.

In general, the structure of πN,ψ as a D∗-module is rather mysterious. If D is

quaternion, then there is a conjectural description of this module [13]. This paper

along with the results of [15–17] add to the heuristic that the structure of the twisted

Jacquet module πN,ψ substantially governs the structure of π.

The first ingredient of the proof is Kirillov theory for G = GL2(D), as developed

in an earlier paper [15]. We need only part of the main theorem of that paper which

gives a short exact sequence of P-modules for any irreducible representation π of G.

(See Theorem 2.1 below.) The main idea is to apply the functor HomM(−, τ1 ⊗ τ2)

to this short exact sequence from Kirillov theory to get a certain long exact sequence;

the hard work is to analyze the relevant part of this long exact sequence.

This brings us to the second ingredient in our proof, namely certain Ext com-

putations. We need, in particular, an Ext1 calculation for certain representations of

M = D∗ × D∗. This is done in Section 3.

With these inputs in place we get the proof of Theorem 1.1 when π is supercusp-

idal or more generally, when π is arbitrary and τ1 ⊗ τ2 does not intertwine with the

Jacquet module πN of π. To handle the remaining cases and for applications later

in this paper, we need a third ingredient, which is a theorem due to Tadić [20], on

reducibility for GL2(D) and explicit Jacquet module calculations. This is recalled in

Theorem 2.2. The proof of Theorem 1.1 is taken up in §4.

We now consider some applications of Theorem 1.1. The first application is to-

ward Shalika models for representations of GL2(D), which is taken up in §5. It has
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been shown by Jacquet and Rallis [9] that an irreducible representation π of GL2n(F)

has, up to scalars, at most one GLn(F) × GLn(F)-distinguishing functional, and as

a consequence they show that there is, up to scalars, at most one Shalika functional.

(Indeed, this paper and our earlier papers [15–17] stem from a paper of Dipendra

Prasad [12] which proves a division algebra version of this theorem of Jacquet and

Rallis.) In §5 we prove the following.

Theorem 5.3 Let G = GL2(D) and let M = D∗ × D∗ be the diagonal subgroup of

G. Let π be an irreducible admissible infinite dimensional representation of G. Then π
is M-distinguished if and only if π admits a Shalika model.

To put this theorem into perspective, see [9, 15]. The proof follows from applying

Theorem 1.1 with τ the trivial representation of M. However, since we do not have a

proof of Theorem 1.1 in all cases, we need to finesse this proof in the bad cases, and

Theorem 5.3 is true unconditionally.

The second application is toward a multiplicity-one result, in the special case when

D is the quaternion division algebra over F; this is taken up in §6. For the rest of the

introduction we assume that D is quaternion. A result of Dipendra Prasad [13, 14]

says that πN,ψ is multiplicity-free as a D∗-module. We state this as Theorem 6.4 and

for the reader’s convenience sketch a proof of this theorem. The proof boils down

to proving a certain result on invariant distributions which is stated as Theorem 6.5.

The proof of this result on invariant distributions heavily uses Bernstein’s localization

technique. We would like to emphasize that the proof also heavily uses the fact that D

is indeed a quaternion division algebra. Once one has that πN,ψ is multiplicity-free,

then Theorem 1.1 can be used to prove the following multiplicity-one theorem.

Theorem 6.2 Let G = GL2(D) where D is the quaternion division algebra with center

F. Let M = D
∗ × D

∗ be the diagonal subgroup. Let π be an irreducible admissible

representation of G. Let τ be any irreducible representation of M whose restriction to the

diagonal D∗ is irreducible. Then τ occurs as a quotient of the restriction of π to M with

multiplicity at most one.

Again, since Theorem 1.1 is not available in all cases, we need to finesse this proof,

and Theorem 6.2 is unconditionally true . It would be interesting to see if the above

is true for representations of GL4(F) restricted to GL2(F) × GL2(F).

2 Preliminaries and Notation

We continue with the notation in the introduction. We also use the notation from

[15, §1.2]. The following theorem is one of the main results proved in [15].

Theorem 2.1 (Kirillov Theory) Let π be an irreducible admissible infinite dimen-

sional representation of G. Let πN,ψ be the twisted Jacquet module of π, i.e., the maximal

quotient of π on which N acts via ψ. It is a module for D∗ embedded diagonally in M.

Let πN denote the usual Jacquet module of π, i.e., the maximal quotient of π on which

N acts trivially; it is an M-module. We have an exact sequence of P-modules:

0 → C∞

c (D∗, πN,ψ) → π → πN → 0.
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Some remarks are in order. The fact that πN,ψ is a module for the diagonal D∗

follows from the observation that the stabilizer inside M of the character ψ is this

D
∗. It is known that πN,ψ is finite dimensional (see [11, 16]). The action of P on

C∞
c (D∗, πN,ψ) is given as in [15, p. 21]. We let S stand for the Shalika subgroup of G.

The P-module C∞
c (D∗, πN,ψ) is naturally isomorphic to indP

S (πN,ψ ⊗ψ), where indP
S

denotes compact and un-normalized induction from S to P.

We will need precise information about the Jacquet module of a representation π,

especially when π is a subquotient of a parabolically induced representation. Toward

this, let (π,V ) now be any smooth representation of G. Let V (N) denote the span of

{v − π(n)v | n ∈ N, v ∈ V}. Then V (N) is stable under M. Let VN = V/V (N).

The natural action of M on VN has been denoted πN and is the usual un-normalized

Jacquet module of π. We let rN(π) denote the normalized Jacquet module, defined as

rN (π) = (| · |−1/2 ⊗ | · |1/2)⊗ πN . Let σ1 and σ2 be two irreducible representations of

D∗. Let IndG
P (σ1⊗σ2) denote the normalized parabolically induced representation of

G. It is convenient to introduce the following notation. For a representation π of D∗

or GLd(F) we let π(s) stand for π ⊗ | · |sF , with the understanding that a character of

F∗ (such as | · |F) gives a character of GLd(F) (resp., D
∗) via the determinant (resp.,

the reduced norm). Also from the above normalizations [15, §1.2] we have for all

x ∈ D∗, |x| = |NrdD/F(x)|dF . Hence, if σ is a representation of D∗, then σ⊗ | · |1/2
=

σ(d/2). We have the following sequence of M-modules (see [15]):

0 → σ2(d/2) ⊗ σ1(−d/2) → IndG
P (σ1 ⊗ σ2)N → σ1(d/2) ⊗ σ2(−d/2) → 0.

The normalized version of this exact sequence is

0 → σ2 ⊗ σ1 → rN(IndG
P (σ1 ⊗ σ2)) → σ1 ⊗ σ2 → 0.

We also record that the twisted Jacquet module is given by IndG
P (σ1⊗σ2)N,ψ = σ1⊗σ2

as D∗-modules. (See [15, Theorem 2.1].)

For Jacquet modules of subquotients of a parabolically induced representation, we

record the following theorem due to Tadić [20]. We need some notations to state this

theorem. Let σ denote an irreducible representation of D∗. Recall that d denotes the

index of D. Let Σ denote the irreducible essentially square integrable representation

of GLd(F) that corresponds to σ. (When F is of characteristic zero, this correspon-

dence is due to Jacquet–Langlands [8] for d = 2; it is due to Deligne–Kazhdan–

Vignèras [7] and also Rogawski [19] for d > 2. When F is of positive characteristic,

it is due to Badulescu [1].) Any essentially square integrable Σ, in the notations of

Kudla’s article [10], is of the form Q(∆) for a segment ∆ = [ρ, ρ(1), . . . , ρ(a − 1)],

where ρ is an irreducible supercuspidal representation of GLb(F) and d = ab. We let

a(σ) denote this integer a, i.e., it is the length of the segment which determines the

Jacquet–Langlands lift of σ. Note that a(σ ⊗ χ) = a(σ) for any character χ.

Theorem 2.2 (Tadić) Let σ1, σ2 and σ be irreducible representations of D∗. For

brevity, let σ1 × σ2 stand for the representation IndG
P (σ1 ⊗ σ2). We have

(i) σ1 × σ2 is reducible if and only if σ2 ≃ σ1(±a(σ1)).
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(ii) The representation σ(−a(σ)/2) × σ(a(σ)/2) has a unique irreducible quo-

tient, which we denote by St(σ), which is also the unique irreducible essentially square

integrable subquotient, whose normalized Jacquet module is given by

rN (St(σ)) ≃ σ(a(σ)/2) ⊗ σ(−a(σ)/2).

(iii) The representation σ(a(σ)/2) × σ(−a(σ)/2) has a unique irreducible quo-

tient, which we denote by Sp(σ), whose normalized Jacquet module is given by

rN(Sp(σ)) ≃ σ(−a(σ)/2) ⊗ σ(a(σ)/2).

(iv) The representation σ×σ(a(σ)) has two and only two irreducible subquotients

both of which occur with multiplicity one.

In the above theorem, (i) is contained in [20, Lemmas 2.5, 4.2]; (ii) and (iii) are

in [20, Proposition 2.7] and (iv) is in [20, Proposition 4.3]. To compare our nota-

tions with the notations of Tadić [20], consider the segments ∆1 = {σ(−a(σ)/2)}
and ∆2 = {σ(a(σ)/2)} and ∆ = ∆1 ∪ ∆2 = {σ(−a(σ)/2), σ(a(σ))}. Our general-

ized Steinberg representation St(σ) is L(∆) of [20] and similarly our generalized Speh

representation Sp(σ) is L(∆1,∆2) of [20]. We end this section by adding two remarks

based on the above theorem of Tadić. The first remark is regarding functoriality of

reducibility points. The second remark is about when an induced representation has

a finite (and hence one) dimensional subquotient.

Remark 2.3 Let σ1 and σ2 be irreducible representations of D
∗ and let Σ1 = JL(σ1)

and Σ2 = JL(σ2) be the corresponding irreducible representations of GLd(F). Then

we obtain the following from Theorem 2.2 and well-known reducibility theorems of

Bernstein and Zelevinskii for GLn (see [10] for instance).

(i) If σ1×σ2 is reducible as a representation of GL2(D), then Σ1×Σ2 is reducible

as a representation of GL2d(F).

(ii) The converse of (i) is not true in general. For example, take σ1 the trivial

character and σ2 = | · |F for a quaternion division algebra. Then Σ1 = StGL2
and

Σ2 = StGL2
(1). Then σ1 × σ2 is irreducible by the above theorem of Tadić, since

a(σ1) = 2. However, Σ1 × Σ2 is reducible [10].

(iii) If Σ1 and Σ2 are both supercuspidal, then it is true that σ1 × σ2 is reducible

if and only if Σ1 × Σ2 is reducible.

Remark 2.4 Let σ1 and σ2 be two irreducible representations of D∗. Then the

induced representation σ1 × σ2 admits a one dimensional subquotient if and only

if σ1 and σ2 are one dimensional and σ2 = σ1(±d). This may be seen as follows.

If σ1 × σ2 has a one dimensional subquotient, then it must be of the form Sp(σ)

(where σ is an appropriate twist of σ1). By (iii) of the theorem above, both σ1 and

σ2 have to be one dimensional and a(σ) = d. Conversely, if σ1 and σ2 are one

dimensional, then, up to twisting and dualizing, we may assume that σ1 = | · |
−d/2
F

and σ2 = | · |
d/2
F . It is easy to see then that the space of constant functions is a one

dimensional invariant subspace of the induced representation σ1 × σ2.
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3 An Ext1-Calculation

For the proof of Theorem 1.1, we will need an Ext1-calculation for the group M =

D∗ × D∗. Our original approach toward this was to prove the much more general

Künneth theorem for extensions between representations for a product of two arbi-

trary p-adic groups from which the required calculation follows as an easy special

case. However, for the proof of Theorem 1.1, the referee has sketched a very sim-

ple argument, and we elaborate on that in this section. (Our Künneth theorem will

appear elsewhere [18].)

The following lemma calculates Ext1 for just one division algebra and the general

case of a product of division algebras, stated as a corollary to the proof of the lemma,

follows basically the same argument. If (π,V ) is an irreducible representation of a

group G, then by the adjoint of π, denoted Ad(π), we mean the representation of G

on EndC(V ) given by g · φ = π(g) ◦ φ ◦ π(g)−1 for all g ∈ G and all φ ∈ EndC(V ). It

is easy to see that Ad(π) ≃ π∨ ⊗ π where π∨ is the contragredient of π.

Lemma 3.1 Let π be an irreducible representation of D
∗ for a p-adic division algebra

D. Then Ext1
D∗(π, π) = H1(D∗,Ad(π)) is a one dimensional space. (The right-hand

side is continuous group cohomology.)

Proof We use the usual identification of Ext1
G(π, π) with the set of all short exact

sequences

0 → π → ρ→ π → 0

modulo Yoneda equivalence. We now analyze what representations ρ appear as

above. In terms of block matrices, we can represent ρ(x) for any x ∈ D∗ as

ρ(x) =
[ π(x) f (x)

0 π(x)

]

for some function f : D∗ → EndC(V ). (Here V is the represen-

tation space of π.) Using ρ(xy) = ρ(x)ρ(y), we get f (xy) = π(x) f (y) + f (x)π(y).

Let g(x) = f (x)π(x)−1. Then we have g(xy) = g(x) + π(x)g(y)π(x)−1, this being an

equation in EndC(V ). This also tells us that g ∈ Z1(D∗,Ad(π)), i.e., g is a 1-cocycle

on D∗ with values in Ad(π). It is clear that g is a continuous cocycle.

Now suppose ρ1 and ρ2 are two such extensions of π by π. Let g1 and g2, respec-

tively, be the associated 1-cocyles. It is easy to see that ρ1 is Yoneda equivalent to ρ2

if and only if g1 and g2 differ by a 1-coboundary. It is also standard to check that

the map which associates to an extension ρ the function g, as above, is a vector space

isomorphism.

Let U = O× be the group of units of D∗. Since U is compact, it has vanishing

cohomology in nonzero degree. Using the inflation-restriction sequence we get

H1(G,A) ≃ H1(G/U ,AU )

for any G-module A, where AU is the U -invariants of A. Applying this to the case at

hand, we get

H1(D∗,Ad(π)) ≃ H1(Z, (π∨ ⊗ π)O
×

).

Observe that (π∨ ⊗ π)O
×

is a sum of characters for Z, with the trivial character 1

showing up exactly once. Noting that Z has cohomology only with the trivial coeffi-

cients, and that H1(Z, 1) is one dimensional, finishes the proof.
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Corollary 3.2 Let F be a p-adic field. Let D1, . . . ,Dr be central division algebras

over F. For 1 ≤ i ≤ r, let πi and π ′
i be smooth irreducible representations of D∗

i . Let

π = π1 ⊗ · · · ⊗ πr and π ′
= π ′

1 ⊗ · · · ⊗ π ′
r be the corresponding smooth irreducible

representations of G = D∗
1 × · · · × D∗

r . Then

dimC(Ext1
G(π, π ′)) =

{

0 if π 6= π ′

r if π = π ′.

Proof Same proof as Lemma 3.1. Observe that the trivial character occurs in

π∨ ⊗ π ′ if and only if π = π ′. Observe also that H1(Z
r, 1) has dimension r.

Corollary 3.3 Let D be a division algebra over F. Let (π1,W1) and (π2,W2) be two

irreducible representations of D∗. Then Ext1
D∗×D∗(π1 ⊗ π2, π1 ⊗ π2) is a two dimen-

sional vector space and may be realized as

0 → π1 ⊗ π2
i
→

[

π1⊗π2 f
0 π1⊗π2

]

j
→ π1 ⊗ π2 → 0,

where f : D
∗×D

∗ → End(W1⊗W2) is given by f (x1, x2) = (a1v(x1)+a2v(x2))1W1⊗W2

for two arbitrary complex numbers a1 and a2.

Proof Thinking of Ext in terms of Yoneda extensions, it is easy to see that each pair

(a1, a2) ∈ C
2 gives a short exact sequence, and distinct pairs give distinct Yoneda

extensions, i.e., are Yoneda inequivalent.

For notational convenience in the above corollary, we will denote the module in

the middle by E(a1,a2), suppressing the dependence on π1 and π2, since in the applica-

tions they will be clear from the context.

4 Proof of Theorem 1.1

In this section we give a proof of Theorem 1.1. Consider the short exact sequence of

P modules given by Kirillov theory (Theorem 2.1):

0 → C∞

c (D∗, πN,ψ) → π → πN → 0.

Now we apply the functor HomM(−, τ ) to this short exact sequence to get the

following long exact sequence:

0 → HomM(πN , τ ) → HomM(π, τ ) → HomM(C∞

c (D∗, πN,ψ), τ )

→ Ext1
M(πN , τ ) → Ext1

M(π, τ ) · · · .

The heart of the matter is to analyze this sequence thoroughly.
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Recall that as a P module we have C∞
c (D∗, πN,ψ) ≃ indP

S (πN,ψ⊗ψ) where S is the

Shalika subgroup of G (see §2). For any irreducible representation τ of M we have,

using Frobenius reciprocity, the following isomorphisms:

HomM(C∞

c (D∗, πN,ψ), τ ) ≃ HomM(indP
S (πN,ψ ⊗ ψ), τ )

≃ HomM(indM
D∗(πN,ψ), τ )

≃ HomD∗(πN,ψ, τ ).

The middle isomorphism may be justfied by the fact that the restriction to M of

indP
S (πN,ψ ⊗ ψ) is indM

D∗(πN,ψ). The fact that τ is finite dimensional is needed for

Frobenius reciprocity [4, 2.29] in the last isomorphism.

Using this isomorphism, the long exact sequence may be written as

0 → HomM(πN , τ ) → HomM(π, τ ) → HomD∗(πN,ψ, τ )

→ Ext1
M(πN , τ ) → Ext1

M(π, τ ) · · · .

It is convenient to consider the following exhaustive list of cases.

(1) τ does not intertwine with the Jacquet module πN . This includes the case when

π is supercuspidal.

(2) π is an irreducibly (parabolically) induced representation with πN semisimple

as an M-module and τ intertwines with πN .

(3) π is an irreducibly (parabolically) induced representation with πN not semisim-

ple as an M-module and τ intertwines with πN .

(4) π is a generalized Steinberg representation and τ = πN .

(5) π is a generalized Speh representation and τ = πN .

Case 1: In this case, we have HomM(πN , τ ) = (0). Using Corollary 3.2 we get that

Ext1
M(πN , τ ) = (0). Hence from the long exact sequence, we get the isomorphism

HomM(π, τ ) ≃ HomD∗(πN,ψ, τ ). In particular, their dimensions are equal.

Case 2: Let π = IndG
P (σ1 ⊗ σ2) be an irreducible representation of G parabolically

induced from σ1 ⊗σ2 and assume also that πN is semisimple. Recall from §2 that the

(unnormalized) Jacquet module of π is given by

0 → σ2(d/2) ⊗ σ1(−d/2) → πN → σ1(d/2) ⊗ σ2(−d/2) → 0.

From semisimplicity of πN , the above sequence splits, which is equivalent to σ1 6≃ σ2.

(This equivalence follows from Corollary 3.2, Frobenius reciprocity, and a paraboli-

cally induced representation of G being always multiplicity-free.)

Let τ be an irreducible representation of M which intertwines with πN . Since

IndG
P (σ1 ⊗σ2) ≃ IndG

P (σ2 ⊗σ1), it suffices to consider τ = σ2(d/2)⊗σ1(−d/2). We

have dim(HomM(πN , τ )) = 1. Also, since πN is semisimple, we have Ext1
M(πN , τ ) =
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Ext1
M(τ , τ ) and the latter is two dimensional. The theorem now follows from the long

exact sequence if we show that

dim
(

Ker
(

Ext1
M(πN , τ ) → Ext1

M(π, τ )
))

= 1.

This will follow from Lemmas 4.1 and 4.3.

Lemma 4.1 dim(Ker(Ext1
M(πN , τ ) → Ext1

M(π, τ ))) ≥ 1.

Proof From the long exact sequence, the lemma is equivalent to showing that the

map HomM(π, τ ) → HomM(C∞
c (D∗, πN,ψ), τ ) is not surjective. To see this, we

explicitly construct an element ℓ ∈ HomM(C∞
c (D∗, πN,ψ), τ ) which does not extend

to π.

Let Wi be the representation space of σi , i = 1, 2. The representation space of τ is

W2 ⊗W1. By [16], the twisted Jacquet module πN,ψ is σ1 ⊗ σ2 as a D∗-module. Let

ι : W1 ⊗W2 → W2 ⊗W1 be the map ι(w1 ⊗ w2) = w2 ⊗ w1 extended linearly. Now

consider the map ℓ given by

ℓ(φ) = ι
(

∫

D∗

|x|−1/2(1 ⊗ σ2(x−1))φ(x) d∗x
)

for all φ ∈ C∞
c (D∗, πN,ψ). Here d∗x is a Haar measure on D∗. From the action of M

on C∞
c (D∗, πN,ψ),

ℓ

([

x 0

0 y

]

φ

)

= σ2(d/2)(x) ⊗ σ1(−d/2)(y)ℓ(φ),

i.e., ℓ ∈ HomM(C∞
c (D∗, πN,ψ), τ ).

To show that ℓ does not extend to π, we use our study [17] of the asymptotics

in the Kirillov model for π. Theorem 2.1 of [17] can be rephrased to state that the

representation space of π can be described as

π = C∞

c (D∗, πN,ψ) ⊕
⊕

α

C fα ⊕
⊕

β

Cgβ ,

where fα and gβ are functions on D
∗ defined by

fα(x) = A(x)|x|1/2(σ1(x) ⊗ 1)χO∗(x)α, gβ(x) = |x|1/2(1 ⊗ σ2(x))χO∗ (x)β,

with α and β running over any basis for W1 ⊗ W2. Here the A(x) is the enigmatic

function of x which showed up in [17], and χO∗ is the characteristic function of

O
∗ ⊂ D

∗.

Consider the function gβ . It is easy to see that

([

t 0

0 1

]

gβ

)

(x) = |t|1/2(1 ⊗ σ2(t))gβ(x) + Λt (x),
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where Λt (x) = |tx|1/2(1 ⊗ σ2(tx))(χt−1O∗(x) − χO∗(x))β. Observe that for each t ,

Λt (x) as a function of x is in C∞
c (D∗, πN,ψ). If ℓ extends to all of π as an element of

HomM(π, τ ), then applying ℓ to the above equation, we get

ℓ

([

t 0

0 1

]

gβ

)

= ℓ(|t|1/2(1 ⊗ σ2(t))gβ) + ℓ(Λt ).

Putting t = ̟F and cancelling the left-hand side with the first term on the right-hand

side, we get

ι
(

∫

D∗

(χ̟−1
F O∗(x) − χO∗(x))β d∗x

)

= 0

for any β, which is absurd. Hence ℓ does not extend.

Remark 4.2 Observe that Lemma 4.1, which says the map

HomM(IndG
P (σ1 ⊗ σ2), τ ) → HomD∗(IndG

P (σ1 ⊗ σ2)N,ψ , τ ),

is not surjective, remains valid even if σ1 = σ2. (This will be relevant in §6.)

Lemma 4.3 dim(Ker(Ext1
M(πN , τ ) → Ext1

M(π, τ ))) ≤ 1.

Proof Since πN is semisimple and τ occurs in πN with multiplicity one, we have

Ext1
M(πN , τ ) ≃ Ext1

M(τ , τ ). We identify the latter with C
2 as in Corollary 3.3. For

each (a, b) ∈ C
2 we have an extension 0 → τ → E(a,b) → τ → 0. The image of

the class [E(a,b)] under the map Ext1
M(πN , τ ) → Ext1

M(π, τ ) is given by the following

pullback diagram.

0 // τ //

Idτ

��

E(a,b) ×τ π //

��

π //

��

0

0 // τ
i

// E(a,b)
j

// τ // 0,

where the map from π to τ factors via πN . To understand the kernel of the map

Ext1
M(πN , τ ) → Ext1

M(π, τ ), we need to analyze as to when we have a Yoneda equiva-

lence.

0 // τ //

Idτ

��

τ ⊕ π //

f

��

π //

Idπ

��

0

0 // τ // E(a,b) ×τ π // π // 0.

We will leave it to the reader to check that one has a map f in the above diagram, and

what is important is that it is a diagram of M-modules, only if a + b = 0.
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Since Cases 1 and 2 correspond to the hypotheses (i) and (ii) of Theorem 1.1, this

completes the proof in those cases.

Case 3: π is irreducibly and parabolically induced, πN not semisimple and τ inter-

twines with πN . This necessarily implies that π = IndG
P (σ ⊗ σ) and τ = σ(d/2) ⊗

σ(−d/2). We have not been able to prove the theorem in this case. (What we believe

is true, but do not have a proof if D 6= F, is that dim(Ext1
M(πN , τ )) = 2.)

Cases 4, 5: π = St(σ) or Sp(σ) and τ = πN . In both these cases, we have not

been able to prove the theorem. The missing ingredient is that for these representa-

tions, we do not have precise information on the asymptotics in the Kirillov model.

Our previous paper [17] falls short, especially because of the enigmatic function A(x)

which shows up in that paper and about which we have no control right now. An-

other stumbling block is that as of now, we do not know the twisted Jacquet module

of these representations. This has been a hindrance in our earlier paper [15] and also

in other papers of Dipendra Prasad; see for instance [13]. In the special case of σ be-

ing one dimensional, from Remark 2.4 we know that Sp(σ) is one dimensional and

we believe that some of the arguments elsewhere in the paper can be used to finesse

the proof for St(σ). We have not carried this out, because it is a very special case, and

we believe there should be reasonably uniform proofs. Besides, for later applications,

we have been able to finesse it anyway.

5 Shalika Models

Definition 5.1 (Shalika Models) Let (π,V ) be an irreducible admissible infinite di-

mensional representation of G = GL2(D). A linear functional ℓ : V → C is said to

be a Shalika functional if

ℓ

([

a 0

0 a

] [

1 x

0 1

]

v

)

= ψ(x)ℓ(v)

for all x ∈ D, a ∈ D∗ and all v ∈ V . We say that π admits a Shalika model if there is

a nonzero Shalika functional.

Definition 5.2 (M-distinguished) Let (π,V ) be an irreducible admissible represen-

tation of G = GL2(D). We say that π is M-distinguished if there is a nonzero linear

functional ℓ : V → C such that ℓ(π(m)v) = ℓ(v) for all m ∈ M and all v ∈ V .

The above two notions are intimately linked. To put the following theorem into

perspective, we refer the reader to [15, Theorems 6.1, 6.2]. What is proved there is

that every nonzero Shalika functional can be averaged over M to give a nonzero M-

distinguishing functional. The following theorem gives a converse. See also the paper

of Jacquet and Rallis [9] which is the source of some of these ideas.

Theorem 5.3 Let G = GL2(D) and let M = D∗ × D∗ be the diagonal subgroup of

G. Let π be an irreducible admissible infinite dimensional representation of G. Then π
is M-distinguished if and only if π admits a Shalika model.
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Proof Observe that the space of Shalika functionals may be identified with the space

HomD∗(πN,ψ, 1). (Here and elsewhere, 1 will denote the trivial one dimensional rep-

resentation of the group in context.) The essence of the proof is to apply Theorem 1.1

for τ1 = τ2 = 1. Since that result does not apply in all cases, we need to finesse this

proof. It is convenient to break up the proof into the following five exhaustive cases.

Case 1: π is supercuspidal. Then Theorem 1.1 applies, and we have

dimC(HomD∗×D∗(π, 1)) = dimC(HomD∗(πN,ψ, 1)),

from which the result follows.

Case 2: π is irreducibly, parabolically induced and πN is semisimple. The proof is

exactly as in Case 1, since Theorem 1.1 applies.

Case 3: π = IndG
P (σ ⊗ σ). Then π is necessarily irreducibly parabolically induced

and its Jacquet module is not semisimple. Recall from §2 we have

0 → σ(d/2) ⊗ σ(−d/2) → πN → σ(d/2) ⊗ σ(−d/2) → 0.

The trivial representation 1 of M intertwines with the Jacquet module if and only if

σ(d/2) ⊗ σ(−d/2) = 1, and the latter is impossible. Hence, Theorem 1.1 applies

with τ = 1, and the proof follows as in the previous cases.

Case 4: π = St(σ), the generalized Steinberg representation for an irreducible rep-

resentation σ of D∗. Recall from Theorem 2.2 that we have

rN (St(σ)) = σ(a(σ)/2) ⊗ σ(−a(σ)/2),

or, what is more relevant to us,

St(σ)N = σ
( a(σ) + d

2

)

⊗ σ
( −a(σ) − d

2

)

.

Hence the trivial representation 1 intertwines with St(σ)N if and only if σ = | · |−1.

Therefore if σ 6= | · |−1, then Theorem 1.1 applies, and as above, we are done.

Suppose now that σ = | · |−1. We argue that St(σ) is neither M-distinguished

nor does it have a Shalika functional, because a necessary condition for both is that

the representation should have trivial central character. The central character of

St(| · |−1) is | · |−2d
F , which is not trivial.

Case 5: π = Sp(σ), the generalized Speh representation for an irreducible represen-

tation σ of D∗. From Theorem 2.2 we have

rN(Sp(σ)) = σ(−a(σ)/2) ⊗ σ(a(σ)/2),

or, as above, what is more relevant to us,

Sp(σ)N = σ
( −a(σ) + d

2

)

⊗ σ
( a(σ) − d

2

)

.



1062 A. Raghuram

Hence the trivial representation 1 intertwines with St(σ)N if and only if σ = 1.

Therefore if σ 6= 1, then Theorem 1.1 is applicable, and as above, we are done. And

if σ is trivial, then by Remark 2.4, Sp(σ) is one dimensional, and we are concerned

only with infinite dimensional representations of G in this theorem. (The theorem

obviously need not be true for one dimensional representations, since they do not

admit Shalika models, however, they can be M-distinguished. Indeed, Sp(1) is the

trivial representation of G, which is M-distinguished!)

6 A Multiplicity-One Theorem in the Quaternionic Case

From this point onwards we assume that D is the quaternion division algebra over

F. For any x ∈ D, we let x = TrdD/F(x) − x be the canonical (anti-)involution

on D. For any g ∈ GLn(D), define g∗ = w(t g)w−1, where w(i, j) = δi,n− j+1 and

(t g)(i, j) = g j,i .

Theorem 6.1 Let G = GL2(D) where D is the quaternion division algebra with

center F. Let M = D∗×D∗ be the diagonal subgroup. Let π be an irreducible admissible

representation of G. Then any one dimensional representation of M occurs as a quotient

of the restriction of π to M with multiplicity at most one.

Proof of Theorem 6.1 assuming Theorem 6.4. (We would like to emphasize that

the proofs of Theorems 6.4 and 6.5 are independent of the rest of the paper.) It is

convenient to break up the proof into the following five exhuastive cases.

Case 1: π is supercuspidal.

Case 2: π is irreducibly parabolically induced with πN semisimple.

In both of these cases, Theorem 1.1 applies. Consider the case when τ is one

dimensional. From Theorem 6.4, τ occurs in πN,ψ at most once, and hence, τ occurs

as a quotient of π at most once.

Case 3: π = IndG
P (σ ⊗ σ). Then π is irreducibly parabolically induced with πN not

semisimple. We have from Theorem 1.1 (and Section 2) that

dimC(HomM(IndG
P (σ ⊗ σ), τ )) = dimC(HomD∗(IndG

P (σ ⊗ σ)N,ψ, τ ))

as long as τ does not intertwine with πN , i.e., τ 6= σ(d/2) ⊗ σ(−d/2). In this case,

using Theorem 6.4, we are done. Now consider the following rather special case.

Subcase 3.5: π = IndG
P (σ ⊗ σ), σ one dimensional and τ = σ(d/2) ⊗ σ(−d/2).

Going back to the basic long exact sequence of Section 4, we have

0 → HomM(πN , τ ) → HomM(π, τ ) → HomD∗(πN,ψ, τ )

→ Ext1
M(πN , τ ) → Ext1

M(π, τ ) · · · .
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We have from Section 2 for πN and πN,ψ that

dim(HomM(πN , τ )) = dim(HomD∗(πN,ψ, τ )) = 1.

Hence dim(HomM(π, τ )) ≤ 2. If dim(HomM(π, τ )) = 2, then the map

HomM(π, τ ) → HomD∗(πN,ψ, τ )

is surjective, which contradicts Lemma 4.1. (See Remark 4.2.) Hence the required

dimension is at most one.

Case 4: π = St(σ). Theorem 1.1 is applicable as long as τ 6= πN . As above, we

are done in this case. The specific case when τ is one dimensional and equal to πN is

taken up as the following subcase.

Subcase 4.5: σ one dimensional, π = St(σ), τ = σ(d) ⊗ σ(−d) = πN . Recall from

Section 2 that we have

0 → Sp(σ) → IndG
P (σ(−d/2) ⊗ σ(d/2)) → St(σ) → 0.

It suffices to show that dim(Hom(IndG
P (σ(−d/2) ⊗ σ(d/2)), τ )) ≤ 1.

For this we use the results of [17, Theorem 2.1; Remark 2.2]. The point is that for a

parabolically induced representation, irrespective of whether it is irreducible or not,

one has a Kirillov theory, and in particular we have an exact sequence of P-modules

for any two irreducible representations σ1 and σ2 of D
∗, given by

0 → C∞

c (D∗, σ1 ⊗ σ2) → IndG
P (σ1 ⊗ σ2) → IndG

P (σ1 ⊗ σ2)N → 0.

Apply HomM(−, τ ) to this short exact sequence to get

0 → HomM(IndG
P (σ1 ⊗ σ2)N , τ ) → HomM(IndG

P (σ1 ⊗ σ2), τ )

→ HomD∗(σ1 ⊗ σ2, τ ) → Ext1
M(IndG

P (σ1 ⊗ σ2)N , τ )

→ Ext1
M(IndG

P (σ1 ⊗ σ2), τ ) · · · .

Specializing to the case at hand, i.e., σ1 = σ(−d/2) and σ2 = σ(d/2) (d = 2 in

this section), we can finish the argument exactly as in Subcase (3.5). (We remark

that Lemma 4.1 which is used as in Subcase 3.5 does not need IndG
P (σ1 ⊗ σ2) to be

irreducible, by virtue of [17].)

Case 5: π = Sp(σ). Theorem 1.1 applies as long as τ does not intertwine with πN .

In this case, we are done, as in Case 3, for instance. Now consider the following.

Subcase 5.5: σ is one dimensional, π = Sp(σ) and τ = σ ⊗ σ. But, if σ is one

dimensional, then by Remark 2.4, so is Sp(σ), and the theorem is trivially true in this

case.
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Theorem 6.2 Let G = GL2(D) where D is the quaternion division algebra with

center F. Let M = D∗×D∗ be the diagonal subgroup. Let π be an irreducible admissible

representation of G. Let τ be any irreducible representation of M whose restriction to the

diagonal D∗ is irreducible. Then τ occurs as a quotient of the restriction of π to M, with

multiplicity at most one.

Proof The proof of Theorem 6.1 goes through mutatis mutandis. For the half-

integral subcases, use the fact that for an irreducible representation σ of D∗ of di-

mension at least 2, the D∗-representation σ ⊗ σ is never irreducible. Observe also

that if τ = τ1 ⊗ τ2 and, say dim(τ1) = 1 and dim(τ2) > 1, then the half-integral

subcases are vacuously true.

Proposition 6.3 Let τ1 and τ2 be two irreducible representations of D
∗. The D

∗-re-

presentation τ1 ⊗τ2 is irreducible if and only if at least one of the τi ’s is one dimensional.

Proof (Suggested by Dipendra Prasad) We may assume that both τi are minimal,

i.e., their conductor is not greater than that of any twist. The proof follows by noting

that for a minimal irreducible representation of D∗, the dimension depends only on

the conductor. (See [6, Proposition 6.5] for instance.)

We now state and prove the theorem that the twisted Jacquet module is multi-

plicity-free as a D
∗-module. This result is due to Dipendra Prasad, although in [13]

he attributes it to Rallis. He sketched out a proof [14], but, as has been pointed out

to us, there is a minor snag in that proof. The theorem itself is by no means obvious.

As is usual in proving such a theorem, it really depends on a theorem on invariant

distributions, which we have stated as Theorem 6.5. For the reader’s convenience we

sketch a proof below, which is essentially the same as the proof in [14].

Theorem 6.4 (Dipendra Prasad) Let G = GL2(D) where D is the quaternion divi-

sion algebra with center F. Let π be an irreducible admissible representation of G. The

twisted Jacquet module πN,ψ of π is multiplicity-free as a D
∗-module.

Borrowing the terminology of [4] for an l-space X, we let S(X) = C∞
c (X). We let

S∗(X) = HomC(S(X),C). If H is a subgroup of a group G, then the action of h ∈ H

on the left (resp. right) on G will be denoted λh (resp. ρh), i.e., λh · g = hg (resp.

ρh · g = gh−1). Any involution ∗ on G induces an involution T 7→ T∗ on S∗(G).

Theorem 6.5 If T ∈ S∗(G) is a distribution which satisfies

(i) T is invariant under conjugation by S, the Shalika subgroup of G;

(ii) λn · T = ψ(n)T and ρn · T = ψ−1(n)T for all n ∈ N;

(iii) T∗
= −T.

Then T = 0.

The proof of Theorem 6.5 will require a few lemmas. Observe that ∗ is defined

such that if T satisfies (i) and (ii), then so does T∗. Hence, the theorem may also be

stated as: a distribution satisfying (i) and (ii) is invariant under ∗. The proof heavily
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uses Bernstein’s localization principle, see [3, p. 58] or [5, Proposition 4.3.15]. To

begin, consider the short exact sequences

0 → S∗(P) → S∗(G) → S∗(PwP) → 0,

0 → S∗(S) → S∗(P) → S∗(P − S) → 0.

Observe that all the spaces PwP, P − S and S are preserved by inner conjugation by

S, left and right translations by N and by g 7→ g∗. It suffices to prove the theorem for

T ∈ S∗(PwP) and then for T ∈ S∗(P − S) and finally for T ∈ S∗(S). We consider

these cases in Lemmas 6.6, 6.7 and 6.8.

Lemma 6.6 If T is a distribution on PwP which satisfies hypothesis (i)–(iii) of Theo-

rem 6.5, then T = 0.

Proof Let T ∈ S∗(PwP) be a distribution which satisfies hypothesis (i)–(iii) as in

the statement of the theorem. (It will turn out that we need T to satisfy only (ii) and

(iii) for this case.) We apply Bernstein’s localization to PwP by considering the map

p1 : PwP → F∗ × F∗ given by the formula

(

a b

c d

)

7→ (NrdD/F(c),NrdD/F(b − ac−1d)).

(Note that b − ac−1d 6= 0.) Let y = (c, δ) ∈ F∗ × F∗. Let c0, δ0 ∈ D∗ such that

NrdD/F(c0) = c and NrdD/F(δ0) = δ. The fiber p−1
1 (y) may be described as:

p−1
1 (y) =

{(

1 e

0 1

) (

0 1

1 0

) (

c0u 0

0 δ0v

) (

1 f

0 1

)

: e, f ∈ D; u, v ∈ D
(1)

}

,

where D(1)
= SL1(D) which is the group of reduced norm-one elements in D. We

may therefore identify p−1
1 (y) with D × D(1) × D(1) × D via the map

(

a b

c d

)

7→ (ac−1, c−1
0 c, δ−1

0 (b − ac−1d), c−1d).

The left and right N-action and the involution ∗ may be transferred to actions on

D × D(1) × D(1) × D as follows:

• The left N-action is via left translations on the first factor D of p−1
1 (y).

• The right N-action is via right translations on the last factor D of p−1
1 (y).

• The involution ∗ acts via

(e, u, v, f ) 7→ (e, u, v, f )∗ := ( f , c−1
0 u c0, δ

−1
0 vδ0, e).



1066 A. Raghuram

It suffices to prove that a distribution T ∈ S∗(D × D(1) × D(1) × D) which is

left-(N, ψ) and right-(N, ψ−1) invariant is also invariant under ∗.

To prove this we use Bernstein’s localization again as follows. For brevity, let U =

D(1) × D(1). If u = (u, v) ∈ U , then u
∗

= (c−1
0 uc0, δ

−1
0 vδ0). Consider the map

p2 : D ×U × D → Sym2(U ),

where Sym2(U ) := (U × U )/(Z/2Z) with the action of (Z/2Z) being to switch the

two factors. The map p2 sends (e, u, f ) to the class of (u, u
∗), which can be identified

with the set {u, u
∗}. Having fixed the map p2, it is relatively straightforward to check

that any nonempty fiber p−1
2 (y2) with y2 = {u, v} ∈ Sym2(U ) cannot support such

a distribution. We leave the details to the reader.

Lemma 6.7 If T is a distribution on P − S which satisfies hypotheses (i)–(iii) of The-

orem 6.5, then T = 0.

Proof For this proof it will suffice to assume that T satisfies only hypothesis (ii) of

Theorem 6.5. Here one can use Bernstein’s localization by taking the map p3 : P −
S → D∗ × D∗ given by

(

a b
0 d

)

7→ (a, d). We leave the details to the reader.

Lemma 6.8 If T is a distribution on S which satisfies hypothesis (i)–(iii) of Theo-

rem 6.5, then T = 0.

Proof For this proof it suffices to assume that T satisfies (i) and (iii) in the hypoth-

esis of Theorem 6.5. The lemma can then be restated as: a conjugation invariant

distribution T on S is also invariant under ∗. This follows from well-known results of

Bernstein and Zelevinskii (see [4, Theorems 6.13, 6.15] or [17, pp. 460–461]) once

we establish the following claim.

Claim In S, any element s is conjugate to s∗.

To see this, let s =
(

a b
0 a

)

∈ S. If a ∈ F, then choose t ∈ D∗ such that tbt−1
= b.

Then
(

t 0
0 t

)

conjugates s to s∗. If b ∈ F, then choose t ∈ D∗ such that tat−1
= a.

Then
(

t 0
0 t

)

conjugates s to s∗.

Assume henceforth that a /∈ F and b /∈ F. Consider the matrix equation

(

a b

0 a

) (

t x

0 t

)

=

(

t x

0 t

) (

a b

0 a

)

.

The above matrix equation is also the following system of equations:

at = ta, ax + bt = tb + xa.

We need to show that we can solve these equations with t ∈ D∗ and x ∈ D. Let

W1 = {y ∈ D : ay = ya} and let W2 = {y ∈ D : by = yb}. It is clear that both W1

and W2 are two dimensional F-subspaces of D. Since we assumed that neither a nor
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b are central, we also have W1 ∩Z = W2 ∩Z = (0) if Z ≃ F is the center of D. Hence

W1 and W2 intersect non trivially mod-the-center, i.e., there is a t ∈ D∗ and z ∈ Z

such that t ∈ W1 and t+z ∈ W2. The latter condition implies b(t+z) = (t+z)b, which

gives bt − tb = zb−bz = z(b−b). Observe that (b−b)/(a−a) is a nonzero element

of the center. Let x = z(b− b)/(a− a). Then we have z(b− b) = x(a− a) = xa− ax.

Hence we have solved the above equations for t and x. This establishes the claim and

completes the proof of Lemma 6.8.

Proof of Theorem 6.5 Theorem 6.5 follows from Lemmas 6.6–6.8.

Proof of Theorem 6.4 The proof using Theorem 6.5 is entirely standard. One can

argue as in the proof of multiplicity one for Whittaker models for GL(n) [5, pp.

456-458]. (See also [2, Theorems 1.1, 1.2, 2.5, 2.6].) The involution used in [5]

needs to be replaced by our involution g 7→ g∗, while using an earlier theorem of

ours [17, Theorem 3.1] that for GLn(D), given an irreducible representation π, its

contragredient representation is equivalent to g 7→ π((g∗)−1). We leave the details to

the reader.
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