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Abstract. In the presence of a synthetic non-Abelian gauge field that produces
a Rashba-like spin–orbit interaction, a collection of weakly interacting fermions
undergoes a crossover from a Bardeen–Cooper–Schrieffer (BCS) ground state
to a Bose–Einstein condensate (BEC) ground state when the strength of the
gauge field is increased (Vyasanakere et al 2011 Phys. Rev. B 84 014512).
The BEC that is obtained at large gauge coupling strengths is a condensate of
tightly bound bosonic fermion pairs. The properties of these bosons are solely
determined by the Rashba gauge field—hence called rashbons. In this paper,
we conduct a systematic study of the properties of rashbons and their dispersion.
This study reveals a new qualitative aspect of the problem of interacting fermions
in non-Abelian gauge fields, i.e. that the rashbon state ceases to exist when
the center-of-mass momentum of the fermions exceeds a critical value that is
of the order of the gauge coupling strength. The study allows us to estimate
the transition temperature of the rashbon BEC and suggests a route to enhance
the exponentially small transition temperature of the system with a fixed weak
attraction to the order of the Fermi temperature by tuning the strength of the non-
Abelian gauge field. The nature of the rashbon dispersion, and in particular the
absence of the rashbon states at large momenta, suggests a regime in parameter
space where the normal state of the system will be a dynamical mixture of
uncondensed rashbons and unpaired helical fermions. Such a state should show
many novel features including pseudogap physics.
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1. Introduction

Cold atoms are a promising platform for quantum simulations. The controlled generation of
synthetic gauge fields [1–3] has provided an impetus to the realization of novel phases in cold
atomic systems. The recent generation of synthetic non-Abelian gauge fields in 87Rb atoms [3]
is a key step forward in this regard. While a uniform Abelian gauge field is merely equivalent to
a Galilean transformation, a uniform non-Abelian gauge field nurtures interesting physics [3–5].

The clue that a uniform non-Abelian gauge field crucially influences the physics of
interacting fermions came from a study of bound states of two spin-1

2 fermions in its
presence [6]. The remarkable result found for spin-1

2 fermions in three spatial dimensions
interacting via an s-wave contact interaction in the singlet channel is that high-symmetry non-
Abelian gauge field configurations (GFCs) induce a two-body bound state for any scattering
length, however small and negative. The physics behind this unusual role of the non-Abelian
gauge field that produces a generalized Rashba spin–orbit interaction was explained by its
effect on the infrared density of states of the noninteracting two-particle spectrum. The non-
Abelian gauge field drastically enhances the infrared density of states, and this serves to ‘amplify
the attractive interactions’. A second remarkable feature demonstrated in [6] is that the wave
function of the bound state that emerges has a triplet content and an associated spin-nematic
structure similar to those found in liquid 3He.

The above-mentioned study [6] motivated the study of interacting fermions at a finite
density in the presence of a non-Abelian gauge field [7]. At a finite density ρ (∼ k3

F, kF is
the Fermi momentum), the physics of interacting fermions in a synthetic non-Abelian gauge
field is determined by two dimensionless scales. The first scale is associated with the size of
the interactions −1/kFas, where as is the s-wave scattering length, and the second one, λ/kF, is
determined by the non-Abelian gauge coupling strength λ. For small negative scattering lengths
(−1/kFas � 1), the ground state in the absence of the gauge field is a BCS superfluid state
with large overlapping pairs. The key result first demonstrated in [7] is that at a fixed scattering
length, even if small and negative, the non-Abelian gauge field induces a crossover of the ground
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state from the just discussed Bardeen–Cooper–Schrieffer (BCS) superfluid state to a new type
of Bose–Einstein condensate (BEC) state. The BEC state that emerges is a condensate of a
collection of bosons which are tightly bound pairs of fermions. Remarkably, at large gauge
couplings λ� kF, the nature of the bosons that make up the condensate is determined solely
by the gauge field and is not influenced by the scattering length (as long as it is nonzero) or by
the density of particles. In other words, the BEC state that is attained in the λ� kF regime at
a fixed scattering length does not depend on the value of the scattering length, i.e. the BEC is
a condensate of a novel bosonic paired state of fermions determined by the non-Abelian gauge
field. These bosons were called ‘rashbons’ since their properties are determined solely by the
generalized Rashba spin–orbit coupling produced by the gauge field. As shown in [7], a rashbon
is the bound state of two fermions at infinite scattering length (resonance) in the presence of the
non-Abelian gauge field. The crossover from the BCS state to the ‘rashbon BEC’ (RBEC) state
induced by the gauge field at a fixed scattering length is to be contrasted with the traditional
BCS–BEC crossover [8–11] by tuning the scattering length [12–14], but with no gauge field.
Gong et al [15] have investigated the crossover including the effects of a Zeeman field along
with a non-Abelian gauge field. The BCS–BEC crossover and certain properties of rashbons in
the extreme oblate (EO) gauge field (explained later) have been investigated in [16] and [17].
The role of population imbalance has also been investigated [18].

It was shown in [7] that the Fermi surface of the noninteracting system (with as = 0) in the
presence of the non-Abelian gauge field undergoes a change in topology at a critical gauge
coupling strength λT (of order kF). For weak attractions (−1/kFas � 1), the regime of the
gauge coupling strengths, where the crossover from the BCS state to the RBEC state takes
place, coincides with the regime where the bare Fermi surface undergoes the topology change.
The properties of the superfluid state (such as the transition temperature) for λ& λT were
argued to be determined primarily by the properties of the constituent anisotropic rashbons.
It is therefore necessary and fruitful to conduct a detailed study of the properties of rashbons
and their dispersion, and this is the aim of this paper.

In this paper, we study the properties of rashbons and their dependence on the nature of
the non-Abelian gauge field, i.e. we obtain the properties of rashbons for the most interesting
GFCs. This study entails a study of the anisotropic rashbon dispersion, i.e. the determination of
its energy as a function of its momentum by the study of the two-body problem in a non-Abelian
gauge field with a resonant scattering length (1/λas = 0). In addition to the determination of
the properties of rashbons, we report here a new qualitative result. It is shown that when the
momentum of a rashbon exceeds a critical value which is of the order of the gauge coupling
strength, it ceases to exist. Stated otherwise, when the center-of-mass momentum of the two
fermions that make up the bound pair exceeds a value of the order of the gauge coupling
strength, the bound state disappears. To uncover the physics behind this result, the two-fermion
problem in a gauge field is investigated in detail for a range of scattering lengths and center-
of-mass momenta. The study reveals a hitherto unknown feature of the non-Abelian gauge
fields: while the non-Abelian gauge field acts as an attractive interaction amplifier for fermions
with center-of-mass momenta q much smaller than the gauge field strength (q � k), the gauge
field suppresses the formation of bound states of fermions with large center-of-mass momenta
(q & k). In fact, it is demonstrated here that when q & k, a positive scattering length (very
strong attraction) is necessary to induce a bound state of the two fermions, quite contrary to
q � λ where a bound state exists (essentially) for any scattering length.
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Figure 1. BCS–RBEC crossover induced by a non-Abelian gauge field. Here,
as is the s-wave scattering length, kF is the Fermi momentum determined by
the density, TF is the Fermi temperature (= k2

F/2), T is the temperature and λ is
the strength of the gauge coupling. The solid red line represents the transition
temperature of the superfluid phase (shaded in light red) obtained in [19] using
the Noziéres–Schmitt–Rink theory [20]. The solid blue curve is based on the
estimate presented in this work. Remarkably, the Tc of the condensate obtained
for λ& kF is independent of the scattering length as. The figure reveals the
qualitative features of the full ‘phase diagram’ in the T –as–λ space. (Figure
courtesy: Sudeep Kumar Ghosh.)

The results we report here have two significant outcomes. (i) A full qualitative picture
of the BCS–BEC crossover scenario in the presence of a non-Abelian gauge field is obtained
(see figure 1) based on the results reported here. Most notably, it is shown that the transition
temperatures of a system of fermions with a very weak attraction can be enhanced to the order
of the Fermi temperature (determined by the density) by the application of a non-Abelian gauge
field. (ii) Our two-body results at large center-of-mass momenta suggest that the normal state
of the fermion system in a non-Abelian gauge field will be a ‘dynamic mixture’ of rashbons
and interacting helical fermions. These could therefore show many novel features such as
pronounced pseudogap characteristics (see [21] and references therein).

Section 2 contains the preliminaries including the formulation of the problem. Section 3
reports on the properties of rashbons, and this is followed by section 4, which discusses the
bound state of two fermions for arbitrary center-of-mass momentum and scattering length for
specific high-symmetry gauge fields. The importance of the results obtained is discussed in
section 5, and the paper concludes with a summary in section 6.

2. Preliminaries

The Hamiltonian of the fermions moving in a uniform non-Abelian gauge field that leads to a
generalized Rashba spin–orbit interaction is1

HR =

∫
d3r 9†(r)

(
p2

2
1 − pλ · τ

)
9(r), (1)

1 A more detailed classification of the non-Abelian gauge fields can be found in [6, 7].
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where 9(r)= {ψσ (r)}, σ =↑,↓ are fermion operators, p is the momentum, 1 is the SU(2)
identity, τµ (µ= x, y, z) are Pauli matrices, and pλ =

∑
i piλi ei , ei ’s are the unit vectors in

the ith direction, i = x, y, z. The vector λ = λλ̂ =
∑

i λi ei describes a GFC space; here, λ= |λ|

refers to the gauge coupling strength. Throughout, we have set the mass of the fermions (mF),
the Planck constant (h̄) and the Boltzmann constant (kB) to unity.

In this paper, we specialize to λ = (λl, λl, λr) as this contains all the experimentally
interesting high-symmetry GFCs. Moreover, it is shown in [6, 7] that this set of gauge fields
captures all the qualitative physics of the full GFC space. Specific high-symmetry GFCs are
obtained for particular values of λr and λl : λr = 0 corresponds to EO GFC; λr = λl corresponds
to spherical (S) GFC; and λl = 0 corresponds to extreme prolate (EP) GFC.

The interaction between the fermions is described by a contact attraction in the singlet
channel

Hυ = υ

∫
d3r ψ†

↑
(r)ψ†

↓
(r)ψ↓(r)ψ↑(r). (2)

Ultraviolet regularization [22] of the theory described by H=HR +Hυ is achieved by
exchanging the bare interaction v for the scattering length as via 1

υ
+3=

1
4πas

, where 3 is the
ultraviolet momentum cutoff. Note that as is the s-wave scattering length in free vacuum, i.e.
when the gauge field is absent (λ= 0).

The one-particle states of HR are described by the quantum numbers of momentum k
and helicity α (which assumes values ±): |kα〉 = |k〉 ⊗ |α k̂λ〉. The one-particle dispersion is
εkα =

k2

2 −α|kλ|, where kλ is defined in an analogous manner to pλ, and |α k̂λ〉 is the spin-

coherent state in the direction α k̂λ. The two-particle states ofH can be described using the basis
states |qkαβ〉 = |(

q
2 + k)α〉 ⊗ |(

q
2 − k)β〉, where q = k1 + k2 is the center-of-mass momentum

and k = (k1 − k2)/2 is the relative momentum of two particles with momenta k1 and k2. Note
that q is a good quantum number for the full Hamiltonian (H). The noninteracting two-particle
dispersion is E free

qkαβ = ε( q
2 +k)α + ε( q

2 −k)β . In the presence of interactions, bound states emerge as
isolated poles of the T -matrix, and are roots of the equation

1

4πas
=

1

V

∑
kαβ

(
|Aq

αβ(k)|
2

E(q)− E free
qkαβ

+
1

4k2

)
, (3)

where Aq
αβ(k) is the singlet amplitude in |qkαβ〉, V is the volume and E(q)= Eth(q)− Eb(q)

is the energy of the bound state. Here Eth(q) is the scattering threshold and Eb(q) is the binding
energy, both of which depend on q as indicated.

In the absence of the gauge field (λ= 0), the bound state exists only for as > 0 and Eb(q)=

−1/a2
s is independent of q. The threshold is Eth(q)= q2/4. Physically, this corresponds to

the fact that a critical attraction is necessary in free vacuum (λ= 0) for the formation of the
two-body bound state. As shown in [6], the state of affairs changes drastically in the presence
of a non-Abelian gauge field. For q = 0, the presence of the gauge field always reduces the
critical attraction to form the bound state and in particular, for special high-symmetry GFCs
(e.g. λ = (λl, λl, λr) with kr 6 kl) the two-body bound state forms for any scattering length.

3. Properties of rashbons

The bound state that emerges in the presence of the gauge field when the scattering length is
set to the resonant value 1/as = 0 is the rashbon. As argued above, the binding energy of the
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rashbon state for all the GFCs considered here (except for the EP GFC) is positive. The energy
of the rashbon state ER(q = 0) determines the chemical potential of the RBEC. Other properties
of the RBEC are determined by the rashbon dispersion ER(q), and in particular the transition
temperature will be determined by the mass of the rashbons.

The curvature of the rashbon dispersion ER(q) at q = 0 defines the effective low-energy
inverse mass of rashbons. The dispersion is, in general, anisotropic and the inverse mass is, in
general, a tensor. However, due to their symmetry, for the GFCs considered in this paper (λ of
the form (λl, λl, λr)), ER(q)= ER(ql, qr), where ql is the component of q on the x–y-plane,
and qr is the component along ez. Thus, the inverse mass tensor is completely specified by its
principal elements—the in-plane inverse mass (m−1

l ) and the ‘perpendicular’ inverse mass, m−1
r .

m−1
l =

∂2 ER(ql, qr)

∂q2
l

∣∣∣∣
q=0

, m−1
r =

∂2 ER(ql, qr)

∂q2
r

∣∣∣∣
q=0

. (4)

With some analysis, we obtain that

m−1
l =

2
∑

kαβ

∂2
|A

q
αβ
(k)|2

∂q2
l

∣∣∣∣∣
q=0(

ER(0)−E free
0kαβ

)2 +
∑

kα

∂2 Efree
qkαα

∂q2
l

∣∣∣∣∣
q=0

(ER(0)−E free
0kαα)

2∑
kα

1

(ER(0)−E free
0kαα)

2

(5)

and a similar expression (not shown) for m−1
r . In the absence of the gauge field, the first term

in the numerator vanishes because of equal and opposite contributions from like and unlike
helicities and recovers ml = mr = 2. An effective mass mef defined as

mef =
3

√
(mr m2

l ) (6)

is useful for the discussions that follow.
In addition to the anisotropy in their orbital motion, rashbons are intrinsically anisotropic

particles. Their pair-wave function has both a singlet and a triplet component; the weight of
the pair-wave function in the triplet sector ηt is the triplet content. The triplet component is
time reversal symmetric, but does not have the spin rotational symmetry—it is therefore a spin
nematic. Keeping this interesting aspect in mind, we shall also investigate and report the triplet
content of rashbons and its dependence on the gauge field.

Before presenting the results we make some general observations. The threshold energy
(Eth) becomes increasingly flat as a function of q in the small q/λ regime as one approaches
the spherical gauge field in the GFC space. In fact, for the S GFC, it is exactly constant in the
small q/λ regime (see figure 3). The mass is therefore determined entirely by the variation of
the binding energy with q (this may be contrasted in the free vacuum case discussed before). It
is reasonable therefore to expect that the effective mass of rashbons is always greater than twice
the bare fermion mass and for it to be the largest for the S GFC.

Figure 2(a) shows the in-plane, perpendicular and effective masses for different GFCs.
Rashbons emerging from S GFCs have the highest mef and that from EP GFCs have the least.
It is interesting to note that apart from the S GFC, there is yet another GFC (kr ≈ 0.65k—see
figure 2(a)), where the low-energy dispersion is isotropic, i.e. the rashbon has a scalar mass. The
triplet content is shown in figure 2(b) for different GFCs. ηt is minimum (1/4) for S GFC and
maximum (1/2) for EP GFC.
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Figure 2. Rashbon properties for different GFCs. (a) The in-plane, perpendicular
and effective masses. (b) The triplet content of rashbons.
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Figure 3. (a) The boson dispersion for various scattering lengths in S GFC. Note
that for any given scattering length, the bound state disappears after some critical
momentum. (b) The critical scattering length (asc) as a function of momentum.
asc goes as 1/

√
q in the large q/λ limit.

A detailed study of rashbon dispersion as a function of its momentum q (center-of-mass
momentum of the fermions that make up the rashbon) revealed a hitherto unreported and rather
unexpected feature. The full rashbon dispersion as a function of q for the S GFC is shown
in figure 3. The rashbon energy increases with increasing q and eventually for q/k & 1.3,
there is no two-body bound state! This curious result motivated us to perform a more detailed
investigation of the dispersion of the bound fermions (bosons) at arbitrary scattering lengths
(away from resonance which corresponds to rashbons), in order to uncover the physics behind
this phenomenon. This study, conducted for specific high-symmetry GFCs, is presented in the
next section.
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4. Dispersion of bosons at arbitrary scattering lengths for specific gauge field
configurations (GFCs)

In this section, we investigate the dispersion of the bosonic bound state of two fermions at
arbitrary scattering lengths. The results of the boson dispersion obtained by solving equation (3)
will be presented for the S, EO and EP GFCs.

4.1. Spherical GFC

S GFC corresponds to λr = λl and hence produces an isotropic boson dispersion as discussed
before. The boson dispersion depends only on q = |q|. Solving equation (3), the boson
dispersion obtained for various scattering lengths is as shown in figure 3(a). The key features of
this spectrum are the following. For any attraction, however large (small and positive scattering
length), there exists a critical center-of-mass momentum qc such that when q > qc the bound
state ceases to exist.

This is best understood by fixing our attention on a particular momentum q. When the
momentum is ‘small’, there is a bound state for any attraction. This is in fact the case for all
q < qo, where qo = 2 λ

√
3
. For q > qo, a critical attraction described by a nonzero scattering length

asc is necessary for the formation of a bound state. For q = q+
o , the critical scattering length is

asc = −
2
√

3
λ

. With increasing q, a stronger attractive interaction is required to produce a bound
state, and when q reaches ∼

4λ
3 , a resonant attraction is necessary to produce a bound state. For

q & 4λ
3 , a very strong attractive interaction described by a small positive scattering length is

necessary to produce a bound state. In fact, for q � λ, the critical scattering length scales as

asc ∼

√
1
λq . The dependence of asc on the center-of-mass momentum is shown in figure 3(b).

How do we understand these results? Here the ε0–γ model introduced in [6] comes to our
rescue. The model states that if the infrared singlet density of states gs(ε)∼ εγ for 06 e6 e0,
where e is the energy measured from the scattering threshold, then the critical scattering length
is given by

√
ε0asc ∝ γ 2(γ )/(2γ − 1), where 2 is the unit step function. Note that for γ 6 0,

the critical scattering length vanishes.
It is evident that there is a drastic change in the infrared density of states at q = qo. In

fact, this special momentum qo is such that the threshold energy corresponds to that state where
the relative momentum k between the pair of fermions vanishes. Clearly, for q < qo, there are
many degenerate k states that produce a nonzero density of states at the threshold. In fact, when
q = 0, the density of states diverges as 1/

√
ε, i.e. γ = −1/2. For q < qo, there is still a finite

density of states at the threshold with an effective γ < 0. Thus the critical scattering length, as
given by the ε0–γ model, vanishes. Let us turn our attention to what happens for q � k. From
equation (3) it is evident that the density of states gs(ε) has the contributions from the ++, −−,
+− and −+ channels. It can be shown that in the regime q � k, the ++ channel has a density of
states that has e3/2 behavior. The +− and −+ channels have a threshold which is λq larger than
the threshold of the ++ channel; the density of states of the + − /− + channels goes as

√
ε from

this higher threshold. These arguments provide an estimate of ε0 ≈ qλ. The result on the critical
scattering length is then asc ∼

1
√

q , precisely as obtained from the full numerical solution shown
in figure 3(b).
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As a byproduct of the analysis of the boson dispersion, we are able to obtain an analytical
expression for the mass of bosons (which is isotropic in this case)

mB

mF
=

6

7 + 2λ2

E(0) − 4
(

1 + λ2

3E(0)

)3/2 , (7)

where

E(0)= −
λ2

3
−

1

4

(
1

as
+

√
1

a2
s

+
4λ2

3

)2

. (8)

At a given λ, as expected, the mass for a small positive scattering length as > 0 is twice the
fermion mass. The mass at resonance is the rashbon mass, which is equal to =

3
7(4 +

√
2)mF ≈

2.32mF. Interestingly, the value of mB/mF in the small negative scattering length limit is
(integer) 6.

4.2. Extreme oblate GFC

EO GFC corresponds to λr = 0 with λl =
λ

√
2
. It can be easily shown that for this GFC,

E(ql, qr)= E(ql, 0)+ q2
r
4 . Thus, the two-body dispersion as a function of ql provides all the

nontrivial features of the two-body problem arising from this gauge field.
Figure 4 shows the boson dispersion for various scattering lengths. Remarkably, we find

that the dispersion has very similar features as found for the S GFC, i.e. for any given scattering
length there is a qc such that for ql > qc, the two-body bound state ceases to exist. Clearly, this
is a generic feature of the boson (bound fermion-pair) dispersion in a gauge field.

For this GFC, mr is just twice the fermion mass. The in-plane mass (ml) extracted from the
two-body dispersion is shown in figure 5. ml for small positive scattering length is again twice
the fermion mass. The resonance value which corresponds to rashbon is ml ' 2.4mF. This result
agrees with [16, 17]. It is again interesting to note that the value of ml/mF in the small negative
scattering length limit is (integer) 4.
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Figure 5. In-plane mass of tightly bound fermion pairs in the RBEC side in the
presence of an EO GFC.

4.3. Discussion

The analysis of the dispersion of the boson (bound state of two fermions obtained in a gauge
field) reveals that the boson ceases to exist when its momentum exceeds a critical value. For the
case of rashbons (bosons obtained at resonant scattering length), the critical momentum is of
the order of the strength of the gauge field.

The analysis presented here shows that this is again because of the influence of the gauge
field in altering the infrared density of states. When the momentum is smaller than the magnitude
of the gauge coupling, the gauge field works to enhance the infrared singlet density of states.
On the other hand, for large momenta, the gauge field has the opposite effect, i.e. it depletes the
infrared singlet density of states.

4.4. Extreme prolate GFC

For the sake of completeness, we now discuss the two-body problem in EP GFC, which
corresponds to λl = 0 or equivalently λr = λ. In this GFC, E(q)= E(0)+ q2

4 , and the mass
is isotropic and is equal to twice the fermion mass, i.e. mr = ml = 2mF.

The threshold energy (which corresponds to the noninteracting two-body ground state)
varies with the center-of-mass momentum as

Eth(q)=

{
q2

4 − λ2 if |qr |< λ,

q2

4 − λ|qr | if |qr |> λ.
(9)

This is shown in figure 6 (solid red curve). The singlet density of states goes as
√
ε starting from

q2

4 − λ2. We refer to this threshold as the singlet threshold (shown by the dashed blue curve).

This is exactly the density of states in the absence of the gauge field starting from q2

4 . Thus, the
bound state exists only for as > 0 and the binding energy is independent of q and is given by
Eb =

1
a2

s
.

The noninteracting two-particle states with energies lying between the total and the singlet
thresholds (represented by the yellow shade in figure 6) are pure triplet states. The interaction,
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Figure 6. The singlet (dashed blue curve) and the total (solid red curve) threshold
energies as a function of qr of two fermions in EP GFC. The pure triplet states
are shown in yellow shading. It can be seen that the bound states (green dots)
formed by the attraction in the singlet channel can be higher in energy than the
free two-fermion triplet states.

which is in the singlet channel, produces bound states whose energies are below the singlet
threshold by Eb =

1
a2

s
(represented by green dots in figure 6). Note that there can be unbound

triplet states lower in energy compared to these bound singlet states. This feature can also be
seen in GFCs with λr > λl .

5. Significance of the results

The above results allow us to infer many key aspects of the physics of interacting fermions in
the presence of a non-Abelian gauge field.

First, these results allow us to estimate the transition temperature. For large gauge
couplings, the transition temperature as noted above will be determined by the mass of the
rashbons. We have argued (and demonstrated) that the mass of the rashbons is always greater
than twice the fermion mass. Thus the transition temperature of RBEC will always be less than
that of the usual BEC of bound pairs of fermions obtained in the absence of the gauge field by
tuning the scattering length to small positive values.

However, there is something remarkable that a synthetic non-Abelian gauge field can
achieve. Consider a system with a weak attraction (small negative scattering length). In the
absence of the gauge field, the transition temperature in the BCS superfluid state is exponentially
small in the scattering length. Interestingly, the transition temperature can be brought to the
order of the Fermi temperature by increasing the magnitude of the gauge field strength (keeping
the weak attraction, small negative scattering length, fixed).

While Tc in the BCS regime is determined by the pairing amplitude (1), in the BEC regime
it is determined by the condensation temperature of the emergent bosons [20], rashbons in the
present case.
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The mean field estimate of the former (i.e. for small kF|as|, as < 0 and small λ/kF)

is obtained by simultaneously solving −1/(4πas)=
1

2V

∑
kα

(
tanh

ξkα
2Tc

2ξkα
−

1
k2

)
and the number

equation ρ =
1
V

∑
kα 1/

(
exp

(
ξkα
Tc

)
+ 1
)

, where ξkα = εkα −µ. In this limit, the chemical

potential at Tc is almost equal to that of the noninteracting one at zero temperature, i.e.
µ(Tc, as, λ)≈ µ(0, 0−, λ), and 1(T =0)/Tc ≈ π/eγ where [7] 1(T =0) is the pairing amplitude
at zero temperature and γ is Euler’s constant (≈ 0.577).

The Tc on the RBEC side can be extracted from the effective mass (mef) as the condensation
temperature of the bosonic pairs:

Tc

TF
=

(
16

9π(ζ(3/2))2

)1/3 1

mef
(RBEC), (10)

where we recall that mef = (mr m2
l )

1/3. Using the information of mass given earlier (equation (7)
for S GFC and figure 5 for EO GFC) one can obtain Tc in this regime as a function of λas in S and
EO GFCs. In particular, rashbon Tc in the S case is ≈ 0.188TF and in the EO case it is ≈ 0.193TF.
The rashbon Tc can be obtained for various GFCs, using mef shown in figure 2(a). Since, among
all GFCs, the rashbon mass corresponding to S GFC is the largest, it also corresponds to the
condensate with the smallest Tc.

The results obtained in both BCS and RBEC limits for kFas = −1/4 in S and EO GFCs
are shown in figure 7. We can see, as advertised, that Tc increases by two orders of magnitude
with increasing gauge coupling strength λ. These considerations, along with the fact that Tc of
the condensate when λ� kF is the same for all as, also allow us to infer an overall qualitative
‘phase diagram’ in the T –as–λ space as shown in figure 1.

What is the nature of the system above Tc? The parameter space shown in figure 1 contains
a regime where the normal state can be quite interesting. Consider, for example, k ≈ 1.5kF. The
ground state will be ‘very bosonic’, i.e. a condensate of rashbons in the zero-momentum state.
On heating the system above the transition temperature .TF, the system becomes normal. At
these temperatures, there is a thermal breakup of rashbons. On top of this, rashbons that are
excited to higher momenta states break up into the constituent fermions since there is no bound
state at higher momenta. There should, therefore, be a temperature range where the system is
a dynamical mixture of uncondensed rashbons and high-energy helical fermions—a state that
should show many novel features such as, among other things, a pseudogap. It is interesting
to note that the effects of the non-Abelian gauge field should also be observable at higher
temperatures than Tc.

These results also suggest important consequences for the structure of topological defects
in the superfluids induced by the gauge field. In particular, the fact that the bosonic pairs will
cease to exist above a critical center-of-mass momentum suggests that pair breaking effects will
be quite significant at the core of the vortices of such superfluids.

6. Summary

The new results of this paper are as follows:

1. A systematic enumeration of the properties of rashbons, including closed-form analytical
formulae, for various GFCs.
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Figure 7. Estimate of the transition temperature in S and EO GFCs as a
function of the gauge coupling strength which takes the regular BCS state to an
RBEC. Tc in the small λ/kF limit is obtained from mean field theory (analytical
approximation is shown in the text). Tc in the large λ/kF limit is obtained
from the condensation temperature of the tightly bound pairs of fermions
(the analytical form of the S GFC can be obtained from equations (7)
and (10)). The horizontal dashed line corresponds to rashbon Tc. The vertical line
indicates the gauge coupling corresponding to the Fermi surface topology
transition [7].

2. A detailed study of the rashbon (boson) dispersion, which results in a new qualitative
observation. Although a zero center-of-mass momentum bound state exists for any
scattering length for many GFCs, the bound state vanishes when the center-of-mass
momentum exceeds a critical value. Thus, although the gauge field acts to promote bound
state formation for small momenta, it acts oppositely, i.e. inhibits bound state formation for
large momenta. We provide a detailed explanation of the physics behind the phenomenon.

These results allow us to make two important inferences:

1. For a fixed weak attractive interaction, the exponentially small transition temperature of
a BCS superfluid can be enhanced by orders of magnitude to the order of the Fermi
temperature of the system by increasing the magnitude of the gauge coupling.

2. There is a regime of T –as–λ parameter space where the normal phase of the system will
have novel features.

It is evident from these conclusions that systems with spin–orbit coupling generated via
synthetic non-Abelian gauge fields provide a platform for exploring new states of interacting
fermions. Furthermore, these systems also provide opportunities for the realisation of exotic
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objects such as magnetic monopoles [23]. We hope that this will stimulate further experimental
and theoretical studies on this topic.
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