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Abstract. The measurement in thermal equilibrium of the vacancy contribution
to the residual resistivity of metals has posed certain difficulties. The recent experi-
ment of Celasco and co-workers represents a new, powerful approach to this pro-
blem, via the measurement of the power spectrum of the voltage noise generated by
resistivity fluctuations. The latter originate in vacancy number fluctuations. We
develop a theory for the power spectrum, incorporating three basic features. Va-
cancies can be annihilated in the material and they diffuse. Grain boundaries act
as sources and sinks for vacancies. Both annihilation (a form of reaction) and diffusion
are noisy processes. We therefore set up and solve a reactive-diffusive stochastic
equation for the instantaneous density, with appropriate finite boundary conditions.
Assuming for simplicity that the grains are spherical, the power spectrum is evaluated
exactly, in closed form. A detailed comparison with experiment is made. -The
physical origins of different time scales in the problem and the consequent frequency
regimes in the power spectrum are analysed. Recognising the very general applica-
bility of our theory, we also mention possible applications to other problems.

Keywords. Resistivity; fluctuations; vacancies; reactive-diffusive system: power
spectrum.

1. Introduction

The measurement of the vacancy contribution to the residual resistivity of a metal
presents certain special problems. At low temperatures (I/T), < 1, where Tj,
is the melting point), the equilibrium concentration of vacancies is too low for san's—
factory measurements to be made. " The concentration is therefore artificially built
up and the defects are frozen in, for example by quenching from a higl.l_T, befor'e
measurements are made at low T. This implies, of course, non-equilibr.lum condi-
tions in the thermodynamic sense. The subsequent extraction of information on ther-
modynamic quantities of interest such as the vacancy activation energy and the
entropy of formation is not straightforward, and requires further assumptions. Eg«
periments have been performed under equilibrium conditions (see the refe.rences in
Celasco et al 1976), but they involve measuring the resistivity of the metal right upto
T,, and then subtracting the estimated resistivity of the perfect cm{stal. The weak-
ness of this last procedure has been brought out by Seeger (1973). Ttis therefore neces-
sary to look for an alternative experimental method that iperr.mts measgrc.npen}: mn
thermal equilibrium and yields a value for the vacancy contribution to resistivity in a
reasonably unambiguous manner.
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This is precisely the problem that has been solved in the experiment of Celasco
et al (1976) (referred to as CFM hereafter). A careful measurement has been made
of the power spectrum of the current noise generated by vacancy number fluctuations
in a small specimen of aluminium at relatively high temperatures: 435°C or T|Ty=
0-76, and 475°C or T/T),,=0-80. The experimental set-up involved a bridge circuit
and cross-correlation techniques, and eliminated the large but flat Johnson noise
component, amplifier noise, electromigration effects, etc. Spectral analysis could
be carried out with a remarkable sensitivity, as fine as 5x 1072! V'2/Hz right down to
5 Hz. At the upper end, the power spectrum was measurable upto frequencies of the
order of 10 Hz. Two distinct components were observed in the power spectrum
at each temperature, as shown in figure 1. At low frequencies (& 7-20 Hz), the power
spectrum is roughly linear in a log-log plot, with a slope approximately equal to —2.
There is an ankle in the region 20-40 Hz, beyond which the spectrum resumes linea-
rity, but with a slope &~ —1-6. It turns out that the latter component is the one that
arises from the monovacancy contribution to the resistivity. (CFM also observe
that some other mechanism, possibly the scattering from vacancy clusters, must be
responsible for the low-frequency component.) If one envisages a simple shot-noise
like model, in which each vacancy contributes a constant ¢ pulse * of resistance AR
during its lifetime =, it is easy to work out the consequent power spectrum. A const-
ant current / is maintained in the sample. Each vacancy therefore contributes a
voltage pulse of height AR during its lifetime. - Let these pulses occur at a rate v
per second. The Fourier transform of the autocorrelation of the voltage fluctua-
tion, i.e., the voltage power spectrum, is then given by
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Figure 1. Observed power spectra of the voltage noise in an Al specimen (Celasco
et al 1976) under constant current conditions. The much larger, but flat, Johnson

noise spectrum is eliminated by subtracting out the power spectrum in the absence
of a current through the specimen. ‘
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where « denotes the frequency. This expression is now averaged over all positive
values of the lifetime =, with a distribution ‘

P (7) = (1/7) exp (—/zy), 2)

about a mean lifetime 7. The resultant power spectrum of the voltage noise in a
specimen containing an average number N of vacancies is then given by

S(w) =4 A R Nv 72/(14+w? 72). (3)

This is a Lorentzian spectrum. If we further assume, simply, that the average rate
of occurrence of pulses is the same as 1/7,, then

S (w) =4 (I A R? Nro/(1+o? 72), ' (4)

the form assumed by CFM in the analysis of their experiment. They obtain, finally
the numerical values Ap=1-87 and 1-85 pu Q cm/at %, for the vacancy contribution
to the resistivity* of Al at 435°C and 475°C respectively, with an estimated error of
less than 109,. CFM have thus developed an elegant experimental method of
measuring the vacancy contribution under equilibrium conditions, and at fairly high
temperatures. Another favourable point is the fact that the measured spectrum
depends on the square of A p, allowing for greater precision in the determination of
the latter quantity.

We regard the above measurement of the power spectrum resulting from resistivity
fluctuations as a very significant development, heralding the feasibility of resistance
Auctuation spectroscopy (Venkataraman 1975). The experiment vindicates the intro-
duction of correlation methods in yet another class of physical techniques, that of
resistivity measurements. In the case chosen by CFM for study, and in several other
cases as well, it is the number fluctuations of a specific entity that are responsible for
the fluctuations in the resistivity and various other physical quantities. Such entities
interact with each other and with other species, diffuse from one point to another,
and are absorbed and emitted by sinks and sources such as grain boundaries. In
view of the considerable generality of the problem (ranging, for example, from strain
fluctuations in crystalline solids to concentration fluctuations in chemical reactions),
it is worth analysing the number fluctuations of a species that undergoes both reaction
and diffusion in a noisy manner, and which is confined in a finite medium. In most
cases, much of the information required is contained in the corresponding auto-
correlation. It is desirable, therefore, to calculate the power spectrum of number
fluctuations in a reactive-diffusive system in a finite geometry. Subsequent applica-
tion to the experimental results of CFM naturally enables us to dispense with the
rather ad hoc pulse-sequence type of model (equation (4)) assumed by CFM, and to
understand the role played by each relevant physical parameter.

This is the task we have performed in this paper. For the sake of definiteness,
we have worked in the framework of the resistivity problem pertinent to CFM, but

*Ap is related to AR by Ap=(AR)C4 s*/100, where C4 is the number of atoms per unit volume
and s is the cross-sectional area of the specimen, for the geometry used in CFM.
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the formalism may be modified to suit other cases. Our method consists in comput-
ing the autocorrelation of the vacancy number density n(x, ¢) with the help of a simple
stochastic reactive-diffusive equation for that random variable. The ° strengths
of the stochastic sources driving the density fluctuations occur in the answer. These
parameters are eliminated in favour of known physical quantities (the diffusion co-
efficient, average lifetime and equilibrium concentration of vacancies) with the help
of a fluctuation-dissipation theorem. The final result is an analytical expression for
the power spectrum of the corresponding voltage noise, which is then studied in
detail. .

We have organised the rest of this paper as follows. In § 2, we set up the problem
of evaluating the power spectrum of the voltage noise and the stochastic equation
for n(r, t). An important physical fact is then incorporated in the theory—namely,
that the experimental specimen generally has a grain structure, with the grain bounda-
ries acting as the predominant sources and sinks for vacancies. The grains are assumed
to be spherical, for simplicity, and the stochastic differential equation for n(r, t) is
solved with appropriate boundary conditions. The autocorrelation of n(r, ) and
thence the power spectrum S(w) are calculated exactly, in closed form. The key
steps in the calculation are outlined in the Appendices. In § 3, we first consider
the special cases corresponding to © reaction ’ alone (no diffusion) and to diffusion
alone (no reaction: applicable to density fluctuations of, say, interstitial impurity
atoms). The different time scales and frequency regimes relevant to the problem are
then identified. Three distinct quantities with the dimensions of time occur in
S(w): the average vacancy lifetime, the © diffusion time ° 7, =12/D where [ is the aver-
age grain diameter and D is the diffusion coefficient for monovacancies, and of course
w™l. The interplay of these parameters leads to a spectrum with an interesting
structure. In § 4, we compare the theory developed with the (albeit * preliminary **)
results of CFM. We find that the high-frequency component that represents the
monovacancy contribution is well explained by the form of the power spectrum we
have derived; in the frequency range actually covered in the experiment, the spectrum
is largely a ‘ reactive * one (i.e., a Lorentzian as in (4)), but with definitely detectable
corrections owing to the occurrence of diffusion in addition. These corrections be-
come more important as the frequency increases. At higher frequencies, just beyond
the upper limit (~10? Hz) of the range covered in CFM, the ¢ diffusive * contribution
is expected to begin to dominate. The power spectrum, however, drops below pre-
sently measurable levels. Asymptotically, S(ew) will reduce to an w=3/2 power law con-
trolled entirely by the diffusion of vacancies. That this effect is already incipient in the
observed power spectrum is clear from the value (—1-6) quoted earlier for the slope
in the log-log plot of S(w) against w. This value is quite close to the predicted asymp-
totic value —1-5, and is appreciably different from the value —2 expected of a purely
Lorentzian spectrum. We also comment in §8 3 and 4 on the grain-size dependence
of S(w), a feature which provides a convenient handle for future experiments. An
observation is made on the possible nature of the entity responsible for the low-
frequency component of the observed power spectrum, by noting the temperature
independence of the quantity S(w)/N, where N is the total number of vacancies in the
material under equilibrium conditions at a given 7. In § 5, we conclude with some
remarks on the applicability and utility of the theory in regard to certain other prob-
lems, to be reported elsewhere. ‘
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2. Theory
2.1. Power spectrum of the voltage noise

As explained in § 1, we hold the vacancy number fluctuations responsible for the
voltage noise in the specimen. The predominant sources and sinks for vacancies
are the grain boundaries. We assume that the experimental sample is made up of ,
grains of average volume (). The boundaries are taken to be perfect sources and
sinks for vacancies, with no correlations between different grains. For simplicity,
we further assume each grain to be a sphere of radius /, so that Q =4x[3/3.

Let AR denote the change in resistance of the specimen due to a single vacancy.
as in CFM. If ny(r, t) is the instantaneous concentration of vacancies at the point r
in the ith grain at time ¢, the instantaneous resistance of the sample is

Rt)=ARY | dr n, (x, 7). (5)
i 0

We regard #; (r, 7) as a stochastic variable.* Under steady state conditions, the power
spectrum of the voltage noise is obtained from the autocorrelation function

V@)V te+Ddeq = TARE 7, [ dr [ di' (ale, 1)1, tyt )deq. (6)
Q Q

Here { )eq stands for the non-transient, i.e., the ¢, co limit of the correlation func-
tion. We have also made use of the lack of correlation between different grains,
so that r and r” in (6) range over the volume of the same, given grain.

In equilibrium, there is a constant, uniform concentration n, of vacancies in the
specimen. This number is independent of r and the grain label i, and depends on
the temperature and other physical parameters. Let us write

dn(r, 1) = n(r, )—<n(x, Hdeq = nr, H)—n,. )

The power spectrum of the voltage noise is then given by

S(w) = 4T AR, f v | ar f dt cos wt - <8n(r, o) 8n(r’', t-1) Yeq. (8)
Q Q

The correlation function required will be computed with the help of a stochastic
equation for én(r, 1).

2.2. Reactive-diffusive stochastic equation .

If spatial inhomogeneities are ignored, a simple phenomenological rate equation for
the vacancy concentration is #=—A(n—n,), where A is the inverse of the average

*This is a practical, phenomenological approach. The resistance is taken to be proportional to
the defect concentration, and fluctuations in the latter are studied. A more formal analysis in
terms of ‘ slow’ fluctuations in the dynamical structure factor is possible, and is described else-
where (Venkataraman and Balakrishnan 1978).
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vacancy lifetime. The actual rate of change of the vacancy concentration, however,
is an inherently noisy process. F urther, the diffusion of vacancies within each grain
must be taken into account and this is also a noisy process. The phenomenological
rate equation must be replaced, therefore, by the random equation

"2; n, 1) = — N (x, )—np) + £, 1) — . i(x, 1), ©)

where the final term on the right represents the diffusion current into the volume ele-
ment about the point r. The second term on the right is a stochastic source, the
analogue of the random force in the familiar Langevin equation. For the noisy
current j, we must again use Fick’s law together with another stochastic source:

i) = —DUa(, N+g 1), (10)
where D is the diffusion constant for vacancies in a grain. To proceed, we must of
course specify the statistical properties of S, t) and g(r, #). The simplest theory

corresponds to the white noise assumption for these sources*, expressed by

S DS, 1)) = 1y 8(r—1') 8 (¢—1"),

11

{galr, t) gp . =r, 8ap 8 (r—r') 8 (t—1"),
where a, B are Cartesian indices, and further

<f(l', t) ga(r,’ t’)> =0. . (12)
Combining (9)~(12), we obtain the stochastic equation

%sz(r, 1) = — Mnfx, t) + DVn(r, 1) + Fix, 1), (13)

t

where the driving term

Fie,t) =fr, )—v g (r, 1) (14)
is correlated according to

F@w 1) F(', 1)) = (T, + T, v, - V) 8 (t—1") & (t—1"). 15

Equations (13)~(15) are, of course, precisely the same in form as those which obtain
in a linear, one-component reactive-diffusive chemical reaction (Grossmann 1976;

*One may, of course, generalize the formalism by a more complicated choice of statistics for
fand g. For instance, the © strengths * Ty and a
‘memory ’ effects may be included by taking fand g to be exponentially correlated sources instead
of whlte_ noise.‘ These modifications necessitate going over to a generalized (integro-differential)
stochastic equation for », with r- and I-dependent kernels replacing the constants A and D. How-

ever the power spectrum of the voltage has a physically transparent and yet sufficiently rich struc-
ture even in our simple model, as we shall see in what follows. ‘
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Gardiner 1976). The difference here is merely in the boundary condition, which we
write as 8n(r, t)=0 for r=I, corresponding to the fact that the grain boundaries act
as perfect sources and sinks for the vacancies. The solution of (13) and evaluation
of the correlation function required for the power spectrum in (8) are given in Appen-
dix A.

Using the results obtained there, the power spectrum is found to be

S(w) = (4}m) n, AARIY | dq Ly (@Dall®
- (T + T/ [(DG* + NP + o). (16)

Here, j, is the spherical Bessel function of order 1, and / is the average radius of a
grain, as already mentioned. The integration is over all values of the momentum g.
We shall not pause to discuss the form of the above result here, beyond remarking
that its structure is very intimately connected with the incorporation of diffusion in
a finite geometry. A unified discussion is given in §3. We first eliminate the
unknown parameters I'; and [", with the aid of the fluctuation-dissipation theorem.

2.3. A fluctuation-dissipation relationship

The driving terms in a stochastic equation such as (13) cause random excursions of
the system from its equilibrium state, and fluctuation-dissipation (FD) relationships
express the manner in which these fluctuations are damped. Since the equation we
are concerned with is comparatively simple, the derivation of these relationships is
quite easy, the only noteworthy point being that two independent variables (r and t)
are involved. In Appendix B, the FD theorems pertinent to (13) are written down.
We need here the special case of the second FD theorem that is expressed by (B. 5).
This reads '

Iy +4* Ty = Q (Dg2+X) {Bn(0, 1) Ve a7

where (to recall our notation)  is the volume of a grain. Of course, no information
is obtainable from the stochastic equation for 8n(r, t) regarding the mean square or
equal-time, same-site correlation involved in the above relation. However, it is
physically plausible and quite reasonable to assume that the vacancy number fluctua-
tions are locally Poissonian, i.e., that the variance is equal to the mean at equal times
for two points in the same infinitesimal volume element. More rigorous arguments
(e.g., using master equation methods—see Gardiner et al 1976; van Kampen 1977)
support this statement (Gardiner 1976; Grossmann 1976). Expressed mathematic-
ally,

{@Bn(r, 19))*Deq = <Culo, 10)*Deq = Mo/ Q2 (18)
The FD theorem then becomes

T+ ¢* T, = n(Dg? + ). 4 | (19)
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2.4. Final expression Jor the power spectrum

It only remains to substitute (19) in equation (16) for § (w). The angular integrals
in (16) trivially yield a factor 47. We may further change the variable of integration
to x=gl, use 4x13/3 =Q, and also write N for nn,Q, the total number of vacancies
in the specimen. Finally, it is convenient to introduce the time scale 7,=I%{D asso-
ciated with the diffusion of a vacancy across a grain. The expression for the relevant
correlation function is found to be

f dr f dr’ {én(r, t)on (r', Lot1)Deq
Q Q

=GmmQ [ dxj? (%) exp [—(-FAn)sfr, (> 0) (20)
0 .

- Where  jy(x) = (sin x — x cos x)/x2, @1

Substituting this in (8), the required power spectrum is
[va)
S() = (fmXTARY N, [ dx j2(x)o4-2r) + [(2-4Areotr fL (22)
0

We note that two characteristic time scales, A~ and 74 Occur simultaneously. Their
interplay produces an interesting structure for the power spectrum. While a consider-
able amount of information on this structure can be obtained directly from the inte-
gral representation (22), for instance by scaling arguments, we have also been able

to evaluate the integral fully in closed form in terms of elementary functions.*
Our final answer reads

S(&) = 2UARR N [+ |
+ 3 raRe {2~z 22 (24 12 exp (—2/2)}1, 23)
where z = [(\Hiw)r]-12, (24)

3. DiscuSsion

Numerical evaluation and comparison with experiment are givenin §4. Prior to that,
it is instructive to study analytically the behaviour of S(w) in order to highlight thq
physical processes involved. We consider, in particular, two limiting cases: the purely

reactive one (thus also recovering the result of CFM) and the purely diffusive one,
respectively.

*Unfortunately, there is an error in the value quoted for the basic integral sought in various
tables of Integrals (e.g., Oberhettinger 1972), and the errata were not available to us. We have
therefore indicated the source of the error and evaluated the integral in Appendix C.
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3.1. Purely reactive case: no diffusion

As already stated in § 1, CFM regard the voltage noise as arising from fluctuations
in the lifetime of vacancies. The spatial distribution and movement of vacancies
is tacitly assumed to play no role. The power spectrum of CFM is then a simple
Lorentzian, as in (4). This is very easily obtained as a special case of our result
on letting D0, i.e., 7, co in (23). The second term in the square brackets vanishes
in this limit, yielding :

[S(@)]epec = 2 AR)? N7y/(1 +wir?), (25)

where 7,=A"1is the average lifetime of the vacancies. Aside from an overall factor
of 2, this is precisely the result of CFM. The explanation for this discrepancy between
the two approaches (namely, individual pulses AR of varying duration versus number
fluctuations in a stochastic rate equation) has been elaborated upon by Van der Ziel
(1953), and will not be repeated here.* In any case, the functional form of the spec-
trum is not affected; and this form is itself of restricted applicability, being unable to
explain the complete structure of the measured spectrum.

There is another circumstance in which the reactive component will dominate,
namely, when there are no finite boundary effects modulating the diffusion. This
case may be studied by letting / (and hence 7,) become very large, but we should also
take into account the corresponding increase in N. The boundary conditions used
should also be appropriate to the physical situation. Although we have assumed a
spherical geometry in solving the diffusion equation, while the experiment refers to a
specimen of length L and rectangular cross-sectional area s, we may make the fol-
lowing comments. Working in terms of intensive quantities, the power spectrum
when both L and s become very large can be shown to be

S(w) Re (\iw)*24-0 ( Zl"z )] .
(26

Here J is the current density, Ap and C, have been defined already in § 1, 5 is the

molefraction of vacancies, and b is a numerical factor of the order of unity.

- 2X10%J A p) L A3 D12
sCy [A“’—l—w"’* 2L

3.2. Purely diffusive case

1t is of interest to analyse the other extreme case: the effect of the diffusion of infinitely
long-lived vacancies in a finite medium. The result obtained in this instance is rele-
vant to other problems as well. For instance, if instead of vacancies, we considered
the diffusion of a given number of interstitial impurity atoms dispersed uniformly
in the specimen (e.g., hydrogen in Nb, Pd, etc.), the functional form of the power
spectrum of the corresponding voltage noise would be similar to the one quoted
below.** A measurement of the power spectrum, or, quite conveniently, its leading

*The factor is related to the averaging over lifetimes in the pulse sequence approach taken by
CFM. The ad hoc exponential distribution (2) produces the extra factor. .
“*This is not strictly correct. For a given total number of interstitials, we should solve the dif-
fusion equation with somewhat different boundary conditions than the one used in the present
_tpfp%r : théa gradient of z(r, #) normal to the surfaces of the material should be taken to vanish at
e boundaries.
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high-frequency behaviour, could then provide an accurate determination of the
corresponding diffusion coefficient. With some modifications, one can envisage
application to other contributions to resistivity fluctuations, such as that due to the
diffusion of kinks on dislocations.

The formula desired is obtained by simply taking the limit A0 in (23). 1t is con-
venient to express the answer as a function of the parameter a=QQawr,)2. We obtain

[S()]gir = 6 I AR?Nr,; a3 [1+e 2 (cos a}sin @) + 4a-t e cos a
— 2072 4~ 2672 ¢~ (cos ¢ — sin a)]. 27

The trignometric functions are of course a consequence of our spherical approxi-

mation for the grain geometry. The leading asymptotic (wr, > 1) behaviour of the
POWer spectrum is given by

[S@lair ¥ G/v2) UARY NDU 1 o2 4 0 () @)

This (—3/2) power dependence on w is quite expected in a standard diffusion process..

At low frequencies, S(w) can be expanded in a power series in a, the first two terms
of which yield

[S()]gig ~ £ TARR® (NI2/D) [1 — & QL2 DYz 4 ] (29)

A remark on the grain size dependence may be made at this stage. We have
assumed throughout that all the grains are equal in size, with a common radius /.
On the other hand, it is evident that a distribution of sizes and shapes would obtain
in an actual experimental specimen. Both these distributions depend on the mode of
preparation and the metallurgical history of the sample (Chadwick 1972). A common
assumption for the grain size distribution is a narrow Gaussian, little distinguished

from the 8-function distribution implicit in the foregoing. An alternate distribution
that is also physically realistic is

P = (/13 exp (—1/1), (30)

with 2 most probable valye Iy and a mean value 2], If we average the expressions in
(28) and (29) over this distribution, it is casy to see that the power dependence of the
results on /; is the same as the orj ginal /- dependence. Thus the high-frequency power
Spectrum is proportional to the inverse of the average grain diameter, while the low
frequency limit is proportional to its square. The first part of this statement remains
true even in the presence of the reactive contribution. So does the latter part, pro-
vided M*/D < 1 (see (33) below). Precision experiments that measure S(w) could

thus yield independent values for lo if the diffusion constant is known from other
sources.

3.3. Frequency regimes in S(w)

Let us first obtain an asymptotic form for S (w) when [z[ < 1, ie., when either
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w T3 1, or Ary» 1, or both. The exponential term in (23) then drops out of the
asymptotic expansion, leaving behind ‘

N (w) 2 (IAR? N [N(®+a?) + ¥ 7, Re (8—23)], : 31

where z has been defined in (24). If now > A, the leading behavlour is purely
diffusion-controlled, and is given by ‘

'S (@)~ (34/2) AR N (wrp)-2", (32)

which is precisely the result (28). ‘The comments made following (29) apply here too.
At somewhat lower frequencies, provided A continues to remain much larger than
1/74, (31) provides a convenient representation for the power spectrum, corrections
to the expression being of order

exp [—7; (A24w?)l/?].

At the other end of the spectrum, we have [z{ s 1, which implies that w r,<1 and
A, < 1, without the relative magnitudes of w and A being specified. We find then

Nf‘ Ry Nrg|1 =2 (2 @t T ]
S (w) ~ 5(IAR)2N ,,[1 3(2) (R+w?) /2+A)1/z+ A d+

(33)

When A=0, this matches equation (29) of the purely diffusive case. If o < )\ the
power spectrum to leading order in w is given by

' 4 ‘ 3 w?
S (0)) ~ -5-(IA.12)2 NTdv[l - g(A ’7")1/z + 7 ATd""" %(AT‘)I/?(-;—Z]. (34)

4. Comparison with gxper-ixiient -

Although the results quoted by CFM are of “ a preliminary nature **, it is instructive
to compare experiment with theory. The data of CFM are shown in figure 1. Error
bars have not been shown, for clarity. To recall the statement made in § 1, S(w)
exhibits two distinct regimes, in each of which it is roughly consistent with a pure
power law of the type S~w™, i.e., a straight line in the log-log plot with a slope equal
to —y. Such a power law behaviour is already current at the beginning of the
experimental frequency range, namely, w/2n=f ~7 Hz. The average value of the
exponent y is found to be 2-:07 at T=435°C and 2-00 at T=475°C. The high fre-
quency regime (f240) is again consistent with a linear log-log plot. It is significant -
that the slope is now smaller in magnitude, the average values of the exponent working
out to be 1:64 and 1:60 respectlvcly at 435°C. and 475°C We attach considerable
importance to this fact. - L

We state at the outset that our theory does not explam the compencnt that is7
dominant at the low frequency: end. - This:will become. ¢lear as we. proceed, but.a
glance atfigures 2 through 4 makes this evident. . It .appears that'the monovacancy

PS5
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Figure 2. Fits to the observed spectra from theory (equation (31)), regarding both 4
and (IAR)*N as adjustable parameters, to illustrate the functional form of the cal-

. culated expression. Note that the low-frequency component is neglected in these
fits for the high-frequency component. :

contribution we have been concerned with is largely responsible for the observed

power spectrum beyond fa: 40 Hz. At low frequencies (< 15 Hz) this contribution

tends to a constant value that is roughly an order of magnitude smaller than the
observed power spectrum at the lowest experimental frequencies, f ~ 7 Hz. There

exists, therefore, some other mechanism whose contribution reaches asymptopia,

i.e., which is effectively of the form S~w3, already at f 7 Hz. 'We shall deduce

an approximate value for § by subtracting the vacancy contribution from the-measured -
power spectrum, - - . SR TR

Defore we can ft the high-frequency componest.of the observed spectrum fo the
theoretical -expression derived; it is necessary.-to know the values of the parameters
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Figure 3. Fits (continuous lines) assuming a purely Lorentzian spectrum, i.e., diffu-
sive effects being neglected. These fits are essentially unaltered when diffusive effects
are included, but when the average grain diameter is taken to be ~ 25 pm, Le., a
single grain assumption for the specimen used by CFM. The fits are unsatisfactory
(see text); note the intersection with the observed spectrum in figure 3b.

occurring in (23), namely, A, 7, and (IAR)?N: It has-already been pointed out that
CFM have assumed a Lorentzian type of spectrum for the high-frequency component,
and deduced a value for AR from the data. “We find, on the other hand, that the
spectrum as given by (23) has a diffusion contribution as well. The values of A, the
inverse-of the average vacanoy lifetime, as quoted in CFM are’ 2'14*se'cﬂ (at-435°C)
and 357 sec-1(at 475°C). ‘We do not have a-value for 7; =I%/D, as the:dverage grain
size inr the: expetimental samples of CFM:is not-available. ‘However, this'is- ég:ftgin}y
gréater than 1 -pm. - The monodvacancy diffusion constant in Al may"be-calculated
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Figure 4. Theory vs experiment: the continuous lines rep;éseﬁt ‘the vacancy contri-
bution to the power spectra as evaluated in the present work. Subtraction from

the measured spectra yields the low-frequency component (dashed lines), presumably
caus_ed by vacancy clusters. ) ) : '

from the numbers quoted in Seeger and Mehrer (1970). We find D=2-33x 10"
cm? sec and 4-02x 107 cm? sec™! respectively at 435°C and 475°C. Thus 7, is cer-
tainly larger than 0-1 sec, so that Ar, exceeds unity by a considerable amount. One
may therefore drop the exponential term in (23) and work with the formula (31), in
the present instance. =~ i R
. Suppose we treat (IAR)®N and r,.4s adjustable parameters, and .use. them. i
(31) to fit (the high-frequency component- of)- the .spectrura. Typical results ate
shown in figures 2a-and 2b, which are meant to illustrate the functional form of the
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theoretical spectrum. At the low frequency end, S(w) as given by (31) saturates to the
value - '

Cso=warram 1 -2 (=) "',(3‘5)

At higher frequencies, the diffusive contribution provides a correction to the reactive
of Lorentzian contribution. As f increases beyond A/27 (34 Hz at 435°C and 57 Hz
at 475°C), this correction is no longer negligible. -The dependence of S on the
parameters concerned is brought out somewhat more clearly if we rewrite (31) in
the form ' ‘

S = o — 3 (reossi—leossel]l @
| | S(w). = (IARPN [A2 (Aa-d)*’/’% ,cosi} | ACOS } ], , | (36)
where | A= (M), - ~ : R | ‘ @7
and  0=tan? [(A—D/A+D]. R )

As f=w[2m runs from O to o, 8 increases from O tow/4. Atsome point beyond §=m/6
(f~ 120 Hz for 435°C and 200 Hz for 475°C), the effect of diffusion begins to
dominate, till finally the power spectrum is essentially given by the «™2 power
law of (32). The experimental range of frequencies for which numerical values
are reported by CFM does not extend to this asymptotic region. -‘However, the
observed spectrum beyond f~ 40 Hz is not a pure Lorentzian (as assumed by
CFM), and does exhibit the effects of the term involving 7, in (36), as we shall see.
This is already manifest in the fact that S(w) varies roughly according to a power law
with exponent ~ —1-6 at the upper end of the experimental frequency range.

' We have already said that the fits shown in figures 2a and 2b merely serve as illus-
trations. In particular, these fits ignore the low-frequency component of the observed
spectra, in the sense that this component has been essentially assumed to be zero and
only the high-frequency fitted. In reality, the observed spectrum is a superposition
of the component which dominates at low frequencies (and which is not encompassed
by our theory), and that which is given by the theory developed (and which dominates
at higher frequencies). We may determine the value of the overall factor (IAR)*N
appropriate to each temperature by working backwards from the result quoted in
CFM for the change in resistivity due to the vacancies, together with the values given
for the current density and the dimensions of the experimental specimen. If Ap
is the resistivity change per unit vacancy concentration in atomic per cent, and 7% is
‘the molefraction of vacancies, CFM find that

1-3% 10718 (Q cm/at%)?  (T=435°C)
(ApPn = B (39
2:3x 10718 (Q cmfat%)*  (T=475°C). - = -
‘We deduce from these values that 4 |
' 1 - (3TIXI0B Y (T=435C) o CER
ARPN =4~ | e V)
: 6:60x 10718 P2 (T=475°C). o
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As a check, we note that the logarithm of  the ratio N(475°C)/N(435°C) computed
from (40) yields a value 0-65 eV for the monovacancy formation energy E;, in good
agreement with the number 066 eV of Seeger and Mehrer (1970). With (40) in hand,
T, remains the only undetermined parameter. ~ Although we do not know I, the
average grain diameter in the sample, we can set limits on its magnitude. The experi-
mental specimen.used by CFM was a film of dimensions 1-5 umx 15 pm X 3mm,
obtained by a photoetching technique. Suppose we assume that the entire volume
of the sample is a single grain. (We have worked with a spherical geometry for the
sake of simplicity.) The effective dimension / works out then to be roughly 25 pm,
Using the values of D already mentioned, we obtain 7,=27-3 sec at 435°C and 159
sec at 475°C. These values are so large that the diffusive correction to the Lorenti-
zian spectrum is essentially negligible. What happens physically-is-that the finite
mean lifetime of the vacancies is the only effective source of fluctnations in their
number at the frequencies of interest. The disappearance of vacancies by diffusion
to the boundaries does not contribute comparably. In figures 3a and 3b the conti-
nuous solid lines depict the calculated power spectra corresponding to the above-
mentioned values of ~, and with (IAR)®N as in (40). The dashed line in each figure
represents the * other’ component, obtained by subtracting the calculated power
spectrum from the experimental spectrum of CFM. It may be added that, to within
the accuracies involved, these same figures also represent a fitting of the spectra with
Lorentzians alone (dropping the term in curly brackets in (36)), as in CFM, for reasons
already stated, It may appear that the agreement is reasonable. We claim, however,
that this is not so—implying, therefore, that the diffusive corrections to the Lorent-
zian do affect the spectrum even at the frequencies concerned, and that the true values
of =, must be somewhat smaller than those used in these fits: The calculated spectrum
at T=475°C is too large in magnitude at the high-frequency end, as is immediately
clear from figure 3b. While it may seem that there is no manifest discrepancy of this
sort in the spectrum corresponding to 435°C, this fit is just as unsatisfactory. For
instance, the magnitude of the slope of the calculated spectrum is approximately
equal to 1-8 when it reaches rough linearity (in the log-log plot) beyond f=100 Hz;
in contrast to this, the observed spectrum reaches linearity already by f~ 50 Hz, with
a slope of magnitude ~ 1-6. :

The conclusion, therefore, is that the observed spectrum corresponds to a Lorent-
zian with significant corrections due to the diffusive effects. We attempt to find an
estimate for 7, as follows. Taking a cue from the approximate power law behaviour
of S(w) at the upper end of the experimental frequency range, with an exponent
~ 1-6 that is not far removed from the'asymptotic value 1-5, let us insert the value of S

at the highest frequency used in the asymptotic formula (32), and solve for =, We
find then ' '

© (023'sec (T=435°C)
RN ' 1)

021 sec (T=475°C).

The corresponding power spectra are drawn in figures4a and 4b. The slope beyond
J=100Hz is found from these graphs o be 2 1-44 at 435°C and ~ 1-50 at 475°C. The
average grain diameter now works out to be x2-3 um at T=435°C and increases to

~2'9 pm at 475°C, The actual value is most likely to 'be somewhat larger, but
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certainly less than the 25 wm upper limit.* = To deduce this value more precisely from
a nieasurement of S(w), one either needs a theory for the low-frequency component,
or else one must further improve the already impressive sensitivity of the experimental
set-up to measure S(w) at frequencies beyond 100 Hz. Even data upto just 200 Hz
would be most helpful in the present instance. '

Finally, regarding the ‘ other > component that dominates at low frequencies, we
have little to add to the comments made in CFM. The dotted lines in figures 4a
and 4b show the variation of this component with frequency. This is approximately
a power behaviour of the form w-3, where §=2-4 in both cases. It has already been
stated that this component is not directly related to the monovacancy contribution.
However, we have the following interesting observation to make. Let us divide out
the measured values of the power spectrum at each temperature by the corresponding
overall factor (/AR)2N given in (40). The variation of the quantity S(w)/(ZAR)*N
with frequency is shown in figure 5. It is evident that the high-frequency component
(the monovacancy contribution) that we have been concerned with does exhibit a
further temperature dependence, owing to that of A and 7, On the other hand,
the low-frequency component is now practically independent of T. Thus, whatever
be the nature of the entities (e.g., vacancy clusters) responsible for this contribution
to the power spectrum, the 7T-dependence of this component arises primarily from
that of N, the total number of monovacancies in the sample. A plausible picture,
therefore, is the following. The low-frequency component is caused by entities
other than monévacancies, and already at f ~ 7 Hz it has reached a pure power-law
behaviour. It is therefore of the form

S(w) N‘(IAR')‘#N'X/wS | | ~ .‘ :'(42)

-1 ' ’

|
WY
°o

e

o
!
#

[stw) /(1 AR N] (1)
Ce
'.

o Xk I N RN N N N NN SO _,
1 2 5 10 200 50 100 500

Frequency , w /2mr = f{Hz)

Figure 5. Observed -power spectra after scaling out by the overall factor. ({ AR)?/N.
~ Note the approximate temperature independence of thexlow-frcquency component.

*A grain whose linear dimensions are of the order of a few microns is still sufficiently large (>10*

atomic distances in each direction) to enable us to use the continuum approximation implied by
. the diffusion equation, - ' R o o i
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where AR’ is the analogue of the single-vacancy contribution AR. The rate equations
for the densities n(r, r) and n’(r, #) must be coupled to each other. In equilibrium,
‘the total numbers N and N’ must be proportional to each other. Further, the effective
‘rate constant A" for the unknown entities must be only very weakly T-dependent, at
least to the extent of being roughly constant as T changes from 435°C to 475°C:
hence the observed T-independence of S(w)/N at low frequencies. The exponent §
would normally be expected to be equal to 2, if (42) were simply the high-frequency
limit of a Lorentzian. ' The approximate value 2-4 that we have deduced from the
data may be the result of correlations (Mazzetti 1964), or, in another language,
memory effects—recall that we have assumed white noise stochastic sources in the
rate equation for n(r, ¢). Finally, the fact that the component in question is already
linear at f~ 7 Hz in a log-log plot suggests that r'>10-2 sec, where = is the mean
lifetime of the entities concerned. ' - '

S, Concluding remarks

The reactive-diffusive model for number fluctuations that we have developed brings
out the existence of the two time scales 1/A and =, controlling lifetime effects and

 diffusion respectively. The latter introduces finite geometry effects via /, the average
grain diameter. The dependance on / provides a convenient experimental method of
.altering r,, with its attendant consequences, as opposed to achieving this by varying
the temperature (and hence the diffusion coefficient); besides, varying T' also
changes the total number N and the lifetime 1/A, whereas 7, alone is altered if / is
varied. ‘

Our theory is quite general, and several other applications can be envisaged
(Venkataraman 1978). It appears to be quite feasible, and very useful, to carry out
“ resistance fluctuation spectroscopy ’ at the various annealing stages in the recovery
of irradiated metals. An advantageous alternative to the conventional method of
monitoring the resistivity is thus provided, because one can work directly at the
annealing temperature at each stage. Moreover, the technique is likely to yield
additional information of importance. For example, one can visualise an independent
and fairly direct method of discriminating between alternative pictures of the recovery
stages. Ambiguities in reconstructing the sequence of processes that occur physically
can therefore be resolved. A much-discussed question (Seeger 1975; Buck and Seeger
1977; Schilling 1975, 1977; Wichert et al 1978) is the following: in stage III, do
vacancies migrate freely and annihilate at interstitial clusters, or is it single intersti-
tials that migrate and annihilate, having survived till this stage in metastable forms?
We believe that the power spectra of the resistance fluctuations in the two schemes
will be quite different, because of the dependence on different effective lifetimes and
diffusion coefficients, among other reasons, enabling experiment to distinguish
between them.

Another conceivable application concerns the behaviour of hydrogen interstitials
in metals. In particular, the technique could be used as an aid in the spinodal de-
composition in coherent metal-hydrogen systems (Janssen 1976). However, an

v impqrtant and non-trivial generalisation of our theory is needed before this problem
is considered. Since the long-range elastic interaction between interstitial H atoms
is primarily responsible for their condensation into various phases, the corresponding
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stochastic equation for n(r, t) must include the effects of this interaction. In addi-
tion to becoming a non-local integro-differential equation as a consequence, it also
becomes a non-linear one, posing considerable difficilties in the way of its solution.
Similarly, application to most chemical reactions would also require an extension of
our theory to the non-linear regime, for the rate equations.governing the deterministic
evolution of the average concentrations are themselves essentially non-linear equations
or coupled sets of such equations. However, it is possible to develop approximation
schemes for the evaluation of the required correlation function (Haken 1977). These
equations are of current interest in the study of dynamical critical phenomena,
chemical reactions, etc. (Haken 1977; Prigogine and Nicolis 1977; Dewel et al 1977).

There are further applications in the field of mechanical properties as well. At
sufficiently high values of T/T,,, the diffusion of vacancies in a metal contributes

significantly to its plastic deformation under an applied stress.. Various forms of
such diffusion creep occur (e.g., see ‘Gittus 1975), involving different: mechanisms:
Nabarro-Herring creep, Coble creep, Harper-Dorn creep. The cdrresponding creep
rates have different grain-size dependences. A careful theoretical analysis of the
entire phenomenon involving the simultaneous operation of the various mechanisms,
that goes beyond the simple diffusion equation model, is called for (Rama Rao 1978).
Here, too, a study of the density fluctuations via an appropriate power spectrum may

“provide an accurate and convenient method for deducing the time evolution of the
average strain, once the two are connected by a fluctuation-dissipation relation.
Experimentally too, such a procedure would be considerably faster than the conven-
tional direct monitoring of the creep. It is worth mentioning that this particular
application involves non-equilibrium conditions—plastic flow under an applied stress.
The transient region in time (which was not of interest in the problem considered in
this paper) now becomes relevant, and transient terms in the solution for n(r, t)
must be retained. Stationarity does not obtain any longer, and one must identify
time scales in which the random processes concerned are quasi-stationary, and work
with power spectra appropriate to such processes.
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Appendix A
Solution for dn(x, t) and its autocorrelation
Equation (13) for Sﬁ(r, 1), together with the boundary condition 8n(r, )=0 for r=I,

. can be solved by a Fourier transform with respect to r and a Laplace transform with
respect to t, i.e, ' R o .
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e ) = oo o [ @ [da S@p e Gairtm. @D

—foo
Then the non—trahsient part of Sn(r, t)is obtained by substituting the solutidn
87(a, ) = F (g, P)/(Dg*+A+p) (A2)
in (A.1). The transient term will give a contribution ~ exp (-At——qu2t) to &n(x, 1),

and is irrelevant for our present purposes. ‘
When this solution is used to compute the correlation function

[dr [ a nte, 1) 8nc', tg+Ddeqs (A3)
I | ‘

we encounter the integral
f drexp (iq 1) =3Q jl(ql)/ql : 2 ‘ (A.4)

where A1) = 2/mx)2 Ty 5(x) = (sin x—x cos x)/x2, | (A.S)

This leads to all the important finite geométry effects ‘discussed in the paper. We
note that in the limit./~co, we simply obtain (27r)? 8(q) for the value of the integral,
The correlation function (A.3) involves the force autocorrelation

FenFarmy @9

which can be evaluated with the help of equation (15) for the autocorrelation of
E(r, t). Carrying out the algebra yields

Fla. ) F@, 2)> = @nf (T+4T,) a+0)/ -+ (A7)

The rc,quired correlation functiqn entails inversion of the transforms with respect
go %q,p fmd p. The integration over q’ is trivial because of the presence of the
-function in (A.7). We then integrate with respect to p and p’, and drop a transient

term proportional to exp [—(Dg*+A(2t4+-1)]. Again, we omit the algebra and
quote the result: : ,

{_{ dr f{ ar’ (8’1(1', fo) 871(1", to+t)>eq === (Iﬁ/»;r) f dq [11(4’)/ql]“ S

T+ PTG + Ve —Dg + 0L >0 ag)

4 Integr_ating th1:s with respect to 7 from 0 to co with the factor cos w? in accdr—
ance with (8) yields the desired power spectrum. This is written down in (16).
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Appendix B
The fluctuation-dissipation theorems

While we need only a special case of the second FD theorem in the text (eq. (17)),
it is not difficult to derive the general forms of the first ‘and second FD theoréms
(Kubo 1966) pertinent to the reactive-diffusive stochastic eq. (13). The procedure
is similar to the one used (Balakrishnan 1976) in the case of the generalised Langevin
equation, and is indeed simpler because of the white noise nature of F(r,t). The

only minor complication is the spatial dependence of the vanables We shall merely
quote our results here.

. We find that the first FD theorem in the present 31tuatlon reads

Bn(g, 1) On(d, 19)e
dt {én(q, ty) on(q, g o'/, .
f R S

Here 3n(q, t) denotes the spatlal Fourier transform of &n(r, ¢) and { Deq refers to the
stationary (or t,~ co0) regime. This theorem relates the autocorrelation of &n to its
mean squared value in equilibrium.

The second FD theorem involves the autocorrelation of the random source, and
turns out to be

{8n(q, to) Sn(q', tg)Deq = (2m) 8(q+q) (T'y + ¢2T)/(Dg"*+4).  (B.2)
This is the generalization of a more restrictive relaﬁon, which is
(8n(q, tg)8n(—q, 1y))eq = Q (T's + ¢*T)/(Dg*+A). (B.3)

We may revert to co-ordinate space on the left-hand side, and use the fact that, at
equal times,

(Bn(r, 1) (', 1)deq = Q2 {On(E, t))eq 86—F). (B4
Equation (B.3) then yields
T, +¢°T, = Q DO+ {Gn0, 1)Deqs . B

and this is the theorem used in the text in § 2.3. ,
Appendix C
Evaluation of the integral for S(w)

We start with equation (22) for S(w). Breaking up the dcnommator in the inte-
grand into partial fractions, we get » -

S(w) = 6(I AR?2N~, J’ dx x1J2, (). Re [xt + QFiw)r] ™ (C1)
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We have then merely to find the value of the integral
f dx x1 (x2+ka)—1 ng (x), Re k',>. 0, (€Y
3 . . S ,

in order to solve our problem. It is €asily seen that the integral converges, even for

k=0. Unfortunately an incorrect value (reducing to a negative definite quantity

when k is a positive number) is quoted in various standard tables; hence this Appen-

dix. Our procedure may be used to correct the values of various associated integrals

listed in the tables, as well. , :
Instead of (C.2), let us begin with the integral (Watson 1928)

Iy = [ dx xR Ty () HE (x) €.3)
.0 V

where 0<Re p<<3 and H ;1/; is the Hankel function of the first kind. The integral can

be evaluated by considering a contour running just above the real axis from — oo to
+ oo (both the Bessel functions have branch cuts from — oo to 0) and closing it with a

large semicircle in the upper half plane—hence the introduction of H{,. Convergence

at the origin, vitiated by H:S;,'is restored by the introduction of x& with Re >0,

Cauchy’s theorem may be applied to pick up the contribution of the pole at x=-}-ik
where: k stands for the square root of k* with Re k>0. In the integral above the
negative real axis, we use the relations - :

a2 (e €xp (i) = exp (3im[2) Jy/q (%),
H, (x exp (im) = exp (—3im/2) [HE) (%) — 2 Jyje (9] (C.4H

On analytic continuation to p=0, the Jaa-H,) terms cancel out, leaving behind on

the left-hand side essentially the integral in (C.2), together with a contribution from

a small semicircle of radius e around.the origin in the upper half plane. The latter
is non-zero for the simple reason that | " |

im Lm e =1 (50), | AR
0 ps0 ©

anc.l the omission of this contribution is responsible for the error referred {6 above.
Using the definition H{ S

= Jy/3+iNyj together with the leading behaviour

Tais (2) ~ 2%, Ny (z) ~ 732 (C.6)
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for z-0, the extra contribution to the integral in (C.2) is easily determined. Further

writing J/, (ik) and H{: (ik) in terms of modified Bessel functions, we obtain

o _
dx J? 1 . |
& ﬁ% SIS MO INC (%)
0
However, Iy, (k) K3/ (k) = (1-+K) (k cosh k—sinh k)/k® exp k, (C.8)

from which the result for S(w) quoted in (23) follows on simplification.
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