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ABsTrACT. Let II be a cohomological cuspidal automorphic representation of GLa, (A) over a totally real
number field F. Suppose that II has a Shalika model. We define a rational structure on the Shalika model
of ITy. Comparing it with a rational structure on a realization of Il in cuspidal cohomology in top-degree,
we define certain periods w*(IIf). We describe the behaviour of such top-degree periods upon twisting IT
by algebraic Hecke characters x of F'. Then we prove an algebraicity result for all the critical values of the
standard L-functions L(s,II ® x); here we use the recent work of B. Sun on the non-vanishing of a certain
quantity attached to Il. As applications, we obtain algebraicity results in the following cases: Firstly, for
the symmetric cube L-functions attached to holomorphic Hilbert modular cusp forms; we also discuss the
situation for higher symmetric powers. Secondly, for certain (self-dual of symplectic type) Rankin—Selberg
L-functions for GL3 x GL2; assuming Langlands Functoriality, this generalizes to certain Rankin—Selberg
L-functions of GL;,, X GL,,—1. Thirdly, for the degree four L-functions attached to Siegel modular forms of
genus 2 and full level. Moreover, we compare our top-degree periods with periods defined by other authors.
We also show that our main theorem is compatible with conjectures of Deligne and Gross.
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1. INTRODUCTION

Let F be a totally real number field and G = GLs,,/F, n > 1, the split general linear group over F'. Let II
be a cuspidal automorphic representation of G(A) and x an algebraic Hecke character. Attached to this data
is the standard Langlands L-function L(s,II ® x). The main aim of this paper is to study the algebraicity
of the critical values of L(s,II® y) for representations II which admit a Shalika model. To that end, we will
also investigate the arithmetic of such Shalika models.
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Manin and Shimura independently studied the arithmetic of L-functions associated to holomorphic Hilbert
modular forms, see [42] and [55, Thm. 4.3]; and more generally, Harder [22] and Hida [28] proved algebraicity
theorems for critical values of L-functions of cuspidal automorphic representations of GLy. These results
relate the L-value at hand to a non-zero complex number, called a period, which essentially captures the
transcendental part of the critical L-values. Underlying this construction is the fact that the cuspidal
automorphic representations considered are of cohomological type, i.e., have non-vanishing cohomology with
respect to some finite-dimensional algebraic coefficient module. Then the periods arise from comparing a
rational structure on the Whittaker model of the finite part of the cuspidal representation and a realization
of the latter in cohomology. This idea of defining a period attached to cohomological cuspidal representations
was pursued by several other authors, among them Kazhdan-Mazur—Schmidt [35], Mahnkopf [41], Raghuram
[47] and Raghuram—Shahidi [49]. All these works have in common that they use the Whittaker model and
the lowest possible degree of cohomology which can carry a cuspidal automorphic representation. Here, we
replace the Whittaker model by what is called the Shalika model — if there is one — of a cuspidal automorphic
representation Il of G(A); furthermore, we will work with the highest possible degree of cohomology in which
a cuspidal representation may contribute. In particular, this approach gives rise to different periods than
the ones considered by the previous authors.

To put ourselves in medias res, let S/F = AGL,, - M,, C GLa,, be the Shalika subgroup of G = GLa,, 7
an idéle class character of F' such that ™ equals the central character wyy of II and ¢ a non-trivial additive
character of F\A. The latter two characters naturally extend to characters of S(A), cf. Sect. 3.1. A cuspidal
automorphic representation II of G(A), which we do not assume to be unitary, is said to have an (n, 1))-Shalika
model, if

S = [ (11(g) - ¢) (s)(s)~ ()5 # 0
Za(A)S(F)\S(4)
for some ¢ € II and g € G(A). According to Jacquet—Shalika [33], this is equivalent to a twisted partial
exterior square L-function L°(s,II,A2 @ n~!) = vazs L(s,1L,,A> @ n;!) having a pole at s = 1, cf. Thm.
3.1.1. One may again reformulate this by saying that I has a Shalika model if and only if II is the Asgari—
Shahidi transfer of a globally generic, cuspidal automorphic representation of GSpin,,, ;(A), see Prop. 3.1.4.
For the definition of the Shalika model S;)(IT), see Def. 3.1.2.

If II is cohomological and cuspidal, then we know that its o-twist 7II := ®, arch. Il,-1, ® (IIf ®¢ ;-1 C)
is also cohomological and cuspidal for all o €Aut(C); see Clozel [13]. We would like to define an action
of Aut(C) on Shalika models and hence define rational structures on such models. Toward this we have
the following theorem which says that having a Shalika model is an arithmetic property of a cohomological
cuspidal automorphic representation II. See Thm. 3.6.2. The appendix of this article contains a simple and
elegant proof of this theorem by Wee Teck Gan.

Under our present assumptions, it is known that the rationality field Q(II) of II, i.e., the fixed field of
all automorphisms o € Aut(C) which leave II invariant, II = °II, is an algebraic number field. The same
holds for Q(II, n), the compositum of the rationality fields of II and 5. By virtue of Thm. 3.6.2, we are able
to define a “o-twisted action” on the Shalika model SZ; (ITf) of the finite part I of II, and hence obtain a
Q(I1, n)-structure on SZ’; (ITf). That is, there is a Q(II, n)-subspace of S% (ILy), stable under the action of
G(Ay), which - tensored by C - retrieves the Shalika model, see Lem. 3.8.1.

Let Koo =[], wren, O(2n)R* and g9 = dimg(F) - (n® + n — 1). Then qo is the highest degree in which
a cuspidal automorphic representation IT can have non-vanishing (geo, K )-cohomology with respect to
some finite-dimensional, irreducible algebraic coefficient system EY. It is known that every character € of
70(Goo) = Koo/ K5, appears in H%(goo, K3, oo ® EY) with multiplicity one. Hence, taking the e-isotypic
component gives a one-dimensional space H% (go0, K3, lloo ® E}))[¢] = C. Fixing a basis vector [I1o;]¢ of the
former cohomology space defines an isomorphism

Of1 : Syl (Iy) = HY(goo, K, 11 ® Ey)e].

The right hand side also has a Q(II, n)-structure, which originates from a geometric realization of automor-
phic cohomology. One may normalize O¢ in such a way that it respects the Q(II, n)-structures on both
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sides. This normalization factor is a period which we denote we(Ily); it is well-defined as an element of
C*/Q(IL, ). See Definition/Proposition 4.2.1. Call this normalized isomorphism ©f .

In Sect. 5 we prove the first main algebraicity result of this paper; see Theorem 5.2.1. It describes the
behaviour of our top-degree periods w*(Ily) under twisting II by an algebraic Hecke character x of F. Let
G(xy) be the Gaufs sum of x; and €, the signature of x, cf. Sect.5.1. Let € be a character of K /K2, with
rationality field Q(e) and let w(IIf) be the attached period. Let x be an algebraic Hecke character of F,
and let €, be its signature. For any o € Aut(C) we have

(Gooramn) = (o))

This roughly says that the periods of 11y ® x ; differ from the periods of Il by the n-th power of the Gauf sum
of x up to an algebraic number in a canonical number field determined by the data at hand. In the context
of periods arising from Whittaker models and bottom-degree cohomology, such a theorem was proved by
the second author and Shahidi; see the main theorem of [49]. The strength of Thm. 5.2.1 relies on the fact
that in order to prove an algebraicity theorem for all the critical values of L(s,II ® ), it suffices to prove
an algebraicity theorem for just one critical value of the wuntwisted L-function L(s,II). In the rest of the
introduction we show how one can prove such an algebraicity theorem for L(%, IT), assuming that s = % is
critical for L(s,II).

For a Shalika function &, = S} (¢) € S,(II), following Friedberg-Jacquet [15], one may define the Shalika-

zeta-integral
) 0 .
o= [ s (4 7)) 1aentale 2,
GL,, (A)

which may be shown to extend to a meromorphic function in s € C, c¢f. Prop. 3.1.5. This also makes
sense locally, i.e., at a place v of F. Under the standing assumption that II is cohomological and cuspidal
automorphic and admits an (n,¢)-Shalika model, we prove in Sect. 3.9.3 that there is a very special vector
&1, in the Shalika model SZ’; (IT;) which satisfies

(1) Cu(3,&R,) = L(3,10,) for all unramified finite places v,
(2) Cu(3,&h,) =1 for all ramified finite places v.

Moreover, this vector §ﬁf is rational, i.e., §I°If lies inside the Q(II, n)-structure of the Shalika model. Let
H := GL,, x GL,, which is naturally a subgroup of G = GLq,,. Next, one uses the result of Friedberg—Jacquet
that the period integral along H(F)\H(A) of a cusp form ¢ is nothing but the Shalika-zeta-integral of .
Hence, we get an integral representation of the central critical value L( %, II) as a period integral of a cusp
form, which in the Shalika model corresponds to a rational vector. Our main algebraicity result follows by
interpreting this period integral in cohomology. Towards such a cohomological interpretation, consider the
real orbifolds

SR, = H(F\H(A)/(K3, 0 Hoo)e ™ (K ) —> GIF\\G(A) /K Ky =2 SF,

where ¢ : H < G denotes the natural embedding of H into G and K is an open compact subgroup of G(Ay).
It is a crucial observation that dimg ngl = qo. This numerical coincidence is a very important ingredient
in making the whole story work. Another important ingredient, which follows from a classical branching
law (cf. Prop. 6.3.1), is the observation that s = 1 is critical for L(s, II) if and only if the essentially trivial
representation of Ho, appears (and then necessarily with multiplicity one) in the representation E}. Finally,
we use a version of Poincaré-duality fggf (cf. Sect. 6.4) to obtain our main diagram of maps, see Sect. 6.5
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for details and notation unexplained here:

HP(SE,.88) ———— HP(SE, &) ———= HO (S, 0,-w)
H® (oo, K3 1@ E)eo] 7 Jsg,
o]
Sy (Ip) s C

The “Main Identity” proved in Thm. 6.7.1 shows that chasing our special vector fﬁf through this diagram

essentially computes the L-value L(3,1I;). Here, we use recent work of Sun [56], which shows the non-
vanishing of a quantity w(Il.), depending only on the choice of generator [II.]¢. This, together with our
theorem on period relations then gives the second main algebraicity result of this paper; see Theorem 7.1.2.
Let x be a finite-order Hecke character of F' and Crit(II) = Crit(II® x) be the set of critical points in 3 + Z
for the L-function L(s,I1® x) of II® x. Let 2 + m € Crit(Il ® x). Then, for any o € Aut(C), we have

cr( L(z +m 11y @ xy) ) _ L(3 +m, 7Ty ® “xy)
WD e (1) Gx )" w(Tloo, m) W=D e (011 p) G(ox )" w(Ilog, )
where the quantity w(Ils,m) is defined in Thm. 6.6.2.

For the case of trivial coefficients (i.e., when u = 0) for the group GL4, a weak form of the above theorem
is implicit in a construction of p-adic L-functions due to Ash—Ginzburg [7]. (There the authors worked over
Q - the algebraic closure of Q in C — instead of the number field Q(II, 7, ) and needed to assume the
non-vanishing of L(%, II; ® xr) for some unitary character x trivial at infinity.) There are several parts of
that paper which are for GLs,, however, to quote them from the introduction of their paper, “our results
are definitive when n = 2 and F totally real.” The reader should view our Thm. 7.1.2 as a generalization, as
well as a refinement, of some of the results of [7].

For a cohomological cuspidal representation 7 of GL,,/Q, Mahnkopf [41] was the first to prove a general
rationality result for the critical values of the standard L-function L(s, 7). (See [41, Thm. A].) His rationality
result, which is under the assumption of a non-vanishing hypothesis, is formulated in terms of certain periods
Q*F(7) attached to 7. These periods however depend not only on 7, but also on a series of representations
T =T, T1, ..., where 7; is a representation of GL,,_2;/Q. Unfortunately, 7 does not canonically determine
the m;’s; besides, there is no relation between the rationality fields Q(7) and Q(r;). This raises significant
problems in any particular instance; for example, using Langlands Functoriality for the symmetric cube
transfer, it seems impossible to apply Mahnkopf’s results to prove that the critical values of the symmetric
cube L-function of the Ramanujan A-function, divided by his periods Q*(Sym®(A)), are rational numbers.
(See, for example, Mizumoto [43] for the critical values of the L-function of Sym®(A).) In comparison, our
Thm.7.1.2, which is totally independent of Mahnkopf’s paper, has the advantage that it is unconditional,
and furthermore, it is sufficiently refined to give algebraicity results for critical values of concrete examples
like the symmetric cube L-functions of Hilbert modular forms, or of the degree four L-functions of Siegel
modular forms.

In Sect. 8 we take up various such examples to which Thm.7.1.2 is applicable. Consider a primitive
holomorphic Hilbert modular cusp form f of weight k = (k,)vecs., and let w(f) be the corresponding cuspidal
automorphic representation of GLy(A). If f is algebraic, we prove that II := Sym®(w) being the Kim—
Shahidi symmetric cube transfer of 7 = 7(f) ® | - |[*/2, ky = maxk,, satisfies all the assumptions made
in our Thm. 7.1.2, cf. Prop. 8.1.1. Hence, we get a new algebraicity theorem for the critical values of such
symmetric cube L-functions, see Cor. 8.1.2. The reader should compare this with a previous theorem of
Garrett—Harris [17, Thm. 6.2] on symmetric cube L-functions. In fact, using their paper, we derive Cor.
8.1.3, which compares our top-degree periods with the Petersson inner product of f. Further, assuming
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Langlands Functoriality, we get a theorem for all odd symmetric power L-functions of f, see Prop. 8.1.4.
This should be compared with Raghuram [47, Thm. 1.3].

Next, we consider Rankin—Selberg L-functions for GL3 x GLy attached to a pair (m,7) of unitary cuspidal
automorphic representations. This L-function is the standard L-function of the Kim—Shahidi transfer II :=
7 X7, which is a representation of GLg(A). We show that if 7 is essentially self-dual, 7 is not dihedral and =
is not a twist of the Gelbart—Jacquet transfer of 7, then wX 7 is a cuspidal automorphic representation; if 7o,
and 7T, are also cohomological and “sufficiently disjoint” (a mild condition on their Langlands parameters),
then we prove that II is cohomological, too, and finally we verify that II admits a Shalika model, see Prop.
8.2.1. Hence, we get a new algebraicity theorem for the critical values of L(s,7m x 7), cf. Cor. 8.2.3. We
compare this result with Raghuram [47, Thm. 1.1] in Cor. 8.2.4, which yields a comparison of our top-
degree (Shalika—)periods and the bottom-degree (Whittaker—)periods used in the aforementioned reference.
In Sect. 8.2.3, we indicate how these algebraicity theorems may be extended to the case of Rankin—Selberg
L-functions of GL,, x GL,,_; assuming Langlands Functoriality.

As another class of examples, let ® be a non-zero genus two cuspidal Siegel modular eigenform of full
level. By a recent work of Pitale-Saha—-Schmidt [46], one knows the existence of the Langlands transfer of ®
to a cuspidal automorphic representation II(®) of GL4(Ag). We check that our Thm. 7.1.2 applies to II(®),
giving a new theorem on the critical values of the degree four L-function of Siegel modular cusp forms, cf.
Cor. 8.3.1. This should be compared with Harris [25, Thm. 3.5.5].

In Sect. 8 we also comment on the compatibility of our theorem with Deligne’s conjecture on the criti-
cal values of motivic L-functions. As it stands, it seems impossible to compare our periods with Deligne’s
motivic periods directly. However, Blasius and Panchishkin have independently computed the behaviour of
Deligne’s periods upon twisting the motive by characters, and based on this they predict how critical values
of automorphic L-functions change upon twisting. Our theorem is compatible with their predictions; see
Cor. 8.4.1. We also note that our result is compatible with Gross’s conjecture on the order of vanishing of
motivic L-functions at critical points; see Cor. 8.5.1.
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thank Ameya Pitale, Abhishek Saha and Ralf Schmidt for showing us their preprint [46]; Binyong Sun for sending
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A R. thanks Paul Garrett for a lot of helpful discussions. We are grateful to the referee for a thorough reading and
for several insightful comments. Finally, both H.G. and A.R. thank the Max Planck Institut fiir Mathematik, Bonn,
for its hospitality; this work was conceived and carried through when both were visitors at the Max Planck Institut.

2. NOTATION AND CONVENTIONS

2.1. Let F be a totally real number field of degree d = [F' : Q] with ring of integers O. For any place v we
write F, for the topological completion of F at v. Let S be the set of archimedean places of F. If v ¢ So,
we let O, be the local ring of integers of F,, with unique maximal ideal p,. Moreover, A denotes the ring of
adeles of F' and Ay its finite part. We use the local and global normalized absolute values and denote each
of them by | - |. Further, ®p stands for the absolute different of F, i.e., D' = {z € F : Trp/p(z0) C Z}.

2.2. Throughout this paper we let G := GLo,/F, n > 1, the split general linear group over F. Let
H := GL, x GL,,/F which is viewed as a subgroup of G consisting of block diagonal matrices. The center
of G is denoted Zg/F. If A is any abelian F-algebra, G(A) (resp., H(A)) stands for the A-rational points of
G (resp., H). In accordance with the usual conventions, we write Goo = [[,cq_ G(Fy) = GLa, (R)? (vesp.,
Heoo = [l es.. H(Fy) = (GLy(R) x GL,(R))%). Lie algebras of real Lie groups are denoted by the same
letter but in lower case gothics; for example, goo = Lie(Gwo), 9o = Lie(G(F,)), v € Seo.

2.3. We fix once and for all a maximal F-split torus of G, the group of diagonal matrices in G. Fixing
positivity on the corresponding set of roots in the usual way gives us that the set of tuples p = (fiy)ves.,,
Ho = ([o 1y fp,2n) With fiy1 > o0 > fyon and py; € Z, for all v € So and 1 < 4 < 2n, can be identified
with the set of equivalence classes of irreducible finite-dimensional algebraic representations E, of G (on
complex vector spaces) via the highest weight correspondence. It is clear that any such representation F|,



6 HARALD GROBNER AND A. RAGHURAM

factors as B, = Q5. Ep,, where E,, is the irreducible representation of G(F,) = G(R) of highest weight
Hv. The representation I, is called essentially self-dual if all its local factors I, are, i.e., if for all v € Vo
there is a w, € Z such that

Hoi + Ho2n—it1 = Wy, 1<i<n.

This is equivalent to saying that £,, = E) ® det"”. Tt is called self-dual if w, =0, i.e., E,, = E}, .

2.4. At an archimedean place v € Sy, we let K, be the product of a maximal compact subgroup of the real
Lie group G(F,) = GL2,(R) and Zg(F,) = Z¢(R). We make the following explicit choice:

K, =0(2n)R*,

and set Koo = [[,cq.
K. Hence, locally

K,. By K5 we mean the topological connected component of the identity within

K = SO(2n)R..

All Lie-group representations II,, = ®vesw II, of G appearing in this paper define a (goo, K3, )-module
and for each v € Sy a (gy, K )-module, which we shall all denote by the same letter as the original Lie
group representation. In particular, this applies to a highest weight representation £, = @), s Ep,- It
furthermore Iloo = @ ,c5. Iy is any (geo, K3, )-module, then we denote by H?(goo, K3, [lo) its space of
(900, K3, )-cohomology in degree g, cf. Borel-Wallach [12], I.5. A module II, is called cohomological, if there
is a highest weight representation £, as in Sect. 2.3, such that H?(geo, K., Iloc ® E);) # 0 for some degree
q. Tt is a basic fact that these cohomology groups obey the Kiinneth-rule, i.e.,

HY(goo, K3, 1oo @ E},) @ ® H™(g,, K, 11, ® B, ).
Zu qv=q VES

Hence, Il is cohomological, if and only if all its local components II, are, i.e., they have non-vanishing
(gv, K2)-cohomology with respect to some local highest weight representation E}..

2.5. For o € Aut(C), let us define the o-twist v of a representation v of G(Ay¢) (resp., G(F,), v ¢ So) on &
complex vector space W as in Waldspurger [58], I.1: If W’ is a C-vector space with a o-linear isomorphism
t': W — W' then we set

Y=t ovot' L.

This definition is independent of ¢ and W’ up to equivalence of representations. If voo = @ ,cq_ Vo is a
representation of G, we let
Voo 1= ® Vo—1y,

VES
interpreting v € So, as an embedding of fields v : F < R. For ¢ € Aut(C), this defines the o-twist on a
global representation v = vo, @ vy of G(A) be setting

V= Voo ® V5.

Recall also the definition of the rationality field of a representation from [58], I.1. If v is any of the repre-
sentations considered above, then let G(v) be the group of all automorphisms o € Aut(C) such that v = v.
Then the rationality field Q(v) is defined as

Q) :={z€Clo(z) =z for all 0 € &(v)}.

As another ingredient we recall that a representation v on a C-vector space W is said to be defined over a
subfield F C C, if there is a F-vector subspace Wy C W, stable under the given action, and such that the
canonical map Wy @ C — W is an isomorphism. In this case, we also say that (v, W) has an F-structure.
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2.6. We let II be an irreducible cuspidal automorphic representation of G(A) with central character wryy, cf.
[11] 4.4-4.6. Tt is of the form

=M |det]’, teC,

with II being a unitary cuspidal automorphic representation of G(A). It decomposes abstractly into a
restricted tensor product of local representations II = ®/II, of irreducible admissible representations II, =
1T, ® |det,|* of G(F,). Collecting the local representations at the archimedean (resp., non-archimedean)
places, we obtain an irreducible admissible representation II,, = ®,ecs_ 11, of the real Lie group G (resp.,
an irreducible admissible representation Iy = ®/ ¢S IT, of the totally disconnected, locally compact group
G(Ay)). The finite set of places where II; ramifies is denoted Snf and we let St = S U Snf. We assume
furthermore that there is an ideéle class character n : F*\A* — C* such that

n
n = wrIr.

It is hence of the form n = 7 ® | - [*, 7} being unitary. We will write S, for the set of places where 7 ramifies
and define Sty := Su U S, Further, let

Q(IL,n) := QINHQ(n),

the compositum of the rationality field Q(IT) of IT and the rationality field Q(n) of 7.

2.7. We fix, once and for all, an additive character ¢ig of Q\A, as in Tate’s thesis, namely, g (z) = e>™A®)
with the A\ as defined in [57, Sect. 2.2]. In particular, A = Zpgoo Ap, where A (t) = —t for any t € R and
Ap(zp) for any x, € Q, is the rational number with only p-power denominator such that x, — \p(z;,) € Zp.
If we write g = Yr ® ®ptq,, then Yr(t) = e~ 2™ and tq, is trivial on Z, and nontrivial on p~1Z,. Next,
we define a character ¢ of F\A by composing g with the trace map from F to Q: ¢ = g o Trp/q. If
1) = ®41)y, then the local characters are determined analogously. In particular, if Op = [] o p"e with the
, 1.e., U, is
trivial on g, ® and nontrivial on o, * . Let Sy = {p : ¢ D} the set of non-archimedean places of F,
where 1) ramifies. Note that ¢ takes values in the subgroup p_, of C* consisting of all roots of unity. This
comment will be relevant when we deal with rational structures on Shalika models, cf. Sect. 3.7.

product running over all prime ideals g, then the conductor of the local character v, is g, ©

2.8. For v ¢ Se, let dhy = d(h1,p,h2) = dg1,4 X dga,, be the unique local Haar measure on H(F),) for
which the volume of each copy of GL,(O,) equals 1. Define dgi,s = [[,¢5_dgiv, i = 1,2, let dhy =
d(hi,f,ha,y) = dgi,5 x dga,y be the corresponding measure on H(Ay). This choice implies that certain
volume terms that will appear will be rational numbers. (See, for example, the proof of Lem. 3.9.1.) Observe
that Zg(F)\Zc(A)/RE = Zg(F)\Za(Af) x {£1}97!, whence its volume is already determined by our
choice of dhy made above. Just for this subsection, let ¢ be this volume. Now, at an archimedean place
v € S, let dgy, and dga, be the local Haar measures that give the respective copy of SO(n) volume
1 and define dg; o == ¢ - Huesx dgy,, and dgg o = HvGS(x, dgs.». This defines global invariant measures
dg; = dgi co - dgi,r, © = 1,2, on each copy of GL,(A), well as a global invariant measure dh = d(h1, hs) on
H(A) by dh := dg; X dgs.

3. SHALIKA MODELS AND RATIONAL STRUCTURES

3.1. Global Shalika models. We will now define the notion of a Shalika model of a cuspidal automorphic
representation Il as in Sect. 2.6. Let

s (5 ) (0 Y)

It is traditional to call S the Shalika subgroup of G. The characters n and 1 can be extended to a character
of S(A):

XeM,

h e GL, } ca

s= (o 2) (0 1) = me e = @ co),
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We will also denote 71(s) = n(det(h)) and ¢ (s) = ¢(Tr(X)). For a cusp form ¢ € II and g € G(A) consider
the integral

Sh(e)(g) = (TL(g) - ) (s)n~ " (s)~ " (s)ds.

It is well-defined by the cuspidality of the function ¢, cf. Jacquet—Shalika [33] 8.1, and hence yields a function
S (p) : G(A) — C. Tt satisfies the transformation law

Sh(p)(sg) = n(s) - ¥(s) - S} (#)(9),
for all g € G(A) and s € S(A) as above. In particular, we obtain an intertwining of G(A)-modules

/Zc (M)S(FN\S(A)

11— Indg(}) [ © ¢]

given by ¢ — S/(¢), which by the irreducibility of II is either trivial or injective. The following theorem,
due to Jacquet—Shalika, gives a necessary and sufficient condition for SZ being non-zero.

Theorem 3.1.1 (Jacquet—Shalika, [33] Thm. 1, p.213). The following assertions are equivalent:

(i) There is a v €11 and g € G(A) such that S;}()(g) # 0.
ii) S defines an injection of G(A)-modules
(2

G(A
II— IndS((A)) [N ® ).
(iii) Let S be any finite set of places containing Sm,. The twisted partial exterior square L-function

L(s, A2 @0~ Y) o= [ Ls, T, A2 @)
vgS

has a pole at s = 1.
Proof. This is proved in [33] for unitary representations and its extension to the non-unitary case is easy. [

Definition 3.1.2. If II satisfies any one, and hence all, of the equivalent conditions of Thm. 3.1.1, then
we say that II has an (n,v)-Shalika model, and we call the isomorphic image S}/(II) of I under S a global
(1, v)-Shalika model of TI. We will sometimes suppress the choice of the characters 7 and 1) and the fact that
we deal with a global representation (i.e., a representation of G(A)) and simply say that IT has a Shalika
model.

Corollary 3.1.3. Let II be a cuspidal automorphic representation of GLa(A) with central character wry.
Then II has a global (w1, v)-Shalika model.

Proof. For GLg, the Whittaker model and the Shalika model of a representation II coincide. O

The following proposition gives another equivalent condition for II to have a global Shalika model, which
puts this notion into a broader context within the theory of automorphic forms and will be of particular
importance in Wee Teck Gan’s appendix. We will use the functorial transfer from GSping,+1 to GLay,
established for unitary globally generic cuspidal automorphic representations by Asgari-Shahidi in [4, Thm.
1.1] in its weak form and finally in [5, Cor. 5.15] at every place. Its extension to the non-unitary case, which
we are going to use, is given as follows: Every cuspidal automorphic representation 7 of GSpin,,,  ;(A) is of
the form m = 7 ® |det|*/™ for a unitary cuspidal automorphic representation 7 and some ¢ € C. Further, 7
is globally generic if and only if 7 is. Now, if II is the Asgari-Shahidi transfer of such a 7, then we let
transfer to the cuspidal automorphic representation II := II ® |det|* of GLa,(A). With this set-up in place
we obtain

Proposition 3.1.4. Let I be a cuspidal automorphic representation of G(A) = GLa,(A) with central char-
acter wyr. Then the following assertions are equivalent:

(i) II has a global (n,)-Shalika model for some idéle class character n satisfying n"™ = wiy.
(i) II is the transfer of a globally generic cuspidal automorphic representation m of GSping,, ,(A).
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In particular, if any of the above equivalent conditions is satisfied, then 11 is essentially self-dual. The
character 1 may be taken to be the central character w, of 7.

Proof. Let II be a cuspidal automorphic representation of G(A) with central character wyy. By Thm. 3.1.1,
IT has an (7, v)-Shalika model for some ideéle class character n satisfying n™ = wry, if and only if the partial
exterior square L-function L (s, I, A2®7~!) has a pole at s = 1. (Here S is any finite set of places containing
Stiy.) Furthermore, a functorial transfer of a globally generic, cuspidal automorphic representation of
GSpin,,, 1 (A) is essentially self-dual by [5], Cor. 5.15. Observing that L (s, I, A?@n~1) = L3(s, I, A?@7 1),
the equivalence of (i) and (ii) follows now from Hundley—Sayag [29], Thm. A, together with Asgari—-Shahidi,
[5], Thm. 5.10.(b). O

The following proposition is crucial for much that will follow. It relates the period-integral over H of a
cusp form ¢ of G to a certain zeta-integral of the function Slz () in the Shalika model corresponding to ¢
over one copy of GL,,.

Proposition 3.1.5 (Friedberg-Jacquet, [15] Prop. 2.3). Let II have an (n,%)-Shalika model. For a cusp
form o € 11, consider the integral

. hy O
Zg(A)H(F)\H(A)

Then, U(s, ) converges absolutely for all s € C. Next, consider the integral

o= s (7)) et

Then, ((s, @) is absolutely convergent for R(s) > 0. Further, for R(s) > 0, we have
C(s,0) = V(s,9),
which provides an analytic continuation of ((s, ) by setting ((s,¢) = VU(s,p) for all s € C.

—1/2

det(hy) | n~ " (det(hs)) d(h1, hs).

det(hg)

Proof. This is proved in [15] for unitary representations and its extension to the non-unitary case is easy. O
Remark 3.1.6. The results quoted in this section are valid for any number field F', however, we will need
them only for a totally real F' since our main results will crucially depend on F' being totally real.

3.2. Local Shalika models. Consider a cuspidal automorphic representation II = ®/II, of G(A) as in
Sect. 2.6.

Definition 3.2.1. For any place v we say that I, has a local (1, ¥,)-Shalika model if there is a non-trivial

(and hence injective) intertwining
G(F,
L, < Indg() [0 @ 0]

If IT has a global Shalika model, then SZ defines local Shalika models at every place. The corresponding
local intertwining operators are denoted by S;" and their images by S, (IL,), whence S, (II) = @S, (IL,).
We can now consider cusp forms ¢ such that the function §, = S)/(p) € S, (II) is factorizable as

gap = ®;£gom

where oir
€, €SI (I,) C IndG( 1 10 © ).

Prop. 3.1.5 implies that

v 0 s—
)= [ e (%)) et
GLn (Fy) v

is absolutely convergent for $(s) sufficiently large. The same remark applies to

Glogor= [ e (1)1t s = TT 6ot
n A f

V¢S
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3.3. The next proposition, also due to Friedberg—Jacquet, relates the “Shalika-zeta-integral” with the stan-
dard L-function of II.

Proposition 3.3.1 ([15], Prop. 3.1 & 3.2). Assume that II has an (1, )-Shalika model. Then for each place
v and &,, € S’ (I1,) there is a holomorphic function P(s,&,,) such that

Cv<s>£90u) = L(S7HU)P(87£<M)'

One may hence analytically continue (,(s,&,,) by re-defining it to be L(s,11,)P(s,&,,) for all s € C. More-
over, for every s € C there exists a vector &,, € S{Z}i (IT,) such that P(s,&,,) = 1. If v & Sty := S U Sy,
then this vector can be taken to be the spherical vector &, € SZ’; (I1,) normalized by the condition

&, (idy) = 1.

Proof. This is proved in [15] for unitary representations and its extension to the non-unitary case is easy. [

Prop. 3.3.1 relates the Shalika-zeta-integral to L-functions, on the other hand Prop. 3.1.5 relates this
integral to a period integral over H. As we shall soon see, the period integral over H admits a cohomological
interpretation, provided the cuspidal representation II is of cohomological type.

3.4. An interlude: cohomological cuspidal automorphic representations. We assume from now on
that the cuspidal automorphic representation II of G(A) as defined in Sect. 2.6 is cohomological. By Sect.
2.4, this means that there is a highest weight representation £, = ®yes.. E,, of G such that

HY(goo, K, L@ EY) = HY(goo, K&, loo ® EY) @ Il # 0

for some degree g. Such a highest weight module £, is necessarily essentially self-dual, but even more is true
due to the fact that II is cuspidal. Indeed, according to Clozel [13], Lem. 4.9, there is a w € Z such that for
each archimedean place v € Sy, the highest weight p, = (fy 1, ..., fbv,2n) Satisties

Mo i + Hv 2n—i+1 = W, 1 S 7 S n.

In other words, E,,, differs from its dual by the same integer power |det|*~ = |det|" of the determinant at
each archimedean place v € S, cf. Sect. 2.3. This integer is called the “purity weight” of II and if we write
II = ®|det|* as in Sect. 2.6, then ¢ = %.

As II is generic, the archimedean local component Il must be essentially tempered. More precisely, for
each archimedean place v € S let

lyi = phoi — toon—it1 +2(n—1) +1=2p,; +2(n—i)+1—-w, 1<i<mn,

80 ly1 > Ly 2 > ... > 4y, > 1. Moreover, let P be the parabolic subgroup of G with Levi factor L = H?zl GL>
and D(¢,) the discrete series representations of GLa(R) of lowest (non-negative) O(2)-type £, + 1. Then one
can show, under these assumptions, that

(3.4.1) 1, 2 Ind g [D(C, 1)[det|*/? & .. @ D(£, ) det[*/?], Vv € S,
and so
HY(goo . K3, I @ E}) = @ Q) H(gly,(R),SO2n)R,, 1L, @ E}, )
> Gw=qVES
Q'u_nz
= B @ce A\t

> qw=q V€S

The group Ko./KS, = (Z/27)? acts on this cohomology space. For any character € of K.,/K2 which we
write as:

€= (61,...,6d) S (Z/QZ)d = (KOC/KZO)*7
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one obtains a corresponding eigenspace

qv—n

Hg, K3, M@ B2 P &K N\

Zu qv=q V€S

(As a general reference for the above see Clozel [13, 3]. See also [41, 3.1.2] or [21, 5.5].) In particular, for
any cohomological cuspidal automorphic representation II of G(A), the corresponding e-eigenspace in the
(8o, K5, )-cohomology of Il ® E; in the top degree, i.e., in degree

(34.2) qo:=d(n®+n—1)

is one-dimensional. Observe that gy only depends on n and the degree d of F/Q.
The next proposition explains the behaviour of cuspidal automorphic representations under o-twisting.

Proposition 3.4.3 (Clozel [13], Thm. 3.13 ). Let II be a cuspidal automorphic representation as in Sect. 2.6.
If 11 is cohomological with respect to a highest weight representation Ej,, then the o-twisted representation 11
is also cuspidal automorphic. It is cohomological with respect to °L),. Moreover, for every e € (Ko/K3,)",
the G(Ay)-module H? (go0, K3, 1L ® E},)[e] is defined over the rationality field Q(IL), which in this case is a
number field. The same holds for Q(II) being replaced by Q(I1,n).

Remark 3.4.4. This is shown in Clozel [13] for regular algebraic cuspidal automorphic representations, cf.
[13, 3.5] for this notion. However, a cuspidal automorphic representation II as in Sect. 2.6 is cohomological
if and only if it is regular algebraic, whence we obtain the proposition in the above form. The last assertion
on cohomology being defined over Q(II) and hence also over Q(II,n) — although well-known to the experts
— is only implicitly proved in [13]. For an actual proof one may consider [21, Thm. 8.6]. Here, we note that
I, being cohomological forces its central character to be of the form wp_ & ®,es, sgn® | - |, for some
a, € {0,1}, and so 7 has to be algebraic, whence Q(n) is a number field, too. See also Sect. 5.1. The rational
structure on cohomology has a purely geometric origin and it is inherited by a Q(E;’L)—structure on cuspidal,
or better, inner cohomology.

3.5. Shalika model versus cohomology. Let II be a cuspidal automorphic representation of G(A) as in
Sect. 2.6. On the one hand we can impose the condition that IT has a Shalika model, and on the other hand
we can ask for II to be cohomological. Let us observe that these conditions are independent of each other by
presenting some examples. An example of Shalika model but not cohomological: Take n = 1. According to
Cor. 3.1.3, any cuspidal automorphic representation IT of G(A) = GL2(A) has an (wrg, 1)-Shalika model. But
if I is constructed from a Maass-form, then Il,, cannot be cohomological. An example of cohomological but
no Shalika model for GLy: Let n = 2. Let 7, and 7 be cuspidal automorphic representations of GLo(A),
F = Q, attached to primitive modular cusp forms of weights k and k', respectively. Assume that k # k'
and both numbers are even. Assume moreover that both modular forms are not of CM-type, i.e., Sym?(7)
and Sym?(my/), cf. Sect. 8.1.2, are cuspidal. Put II := (7 ® m/)| - |*/2. Then II is regular algebraic, i.e.,
cohomological, cf. Rem. 3.4.4. Furthermore, II is cuspidal by Ramakrishnan [51, Thm. M]. Further, one may
check that the exterior square of II decomposes as an isobaric direct sum

AT = (Symz(wk) ® wﬁk,) |- |8 (Sym2(7rk/) ® wm) |- .

See, for example, Asgari-Raghuram [2], Prop. 3.1. Hence, A1l has no one-dimensional isobaric summand,
and by Thm. 3.1.1, IT cannot have a Shalika model for any 7. Another example of cohomological but no
Shalika model but now for GLg: Let n = 3. In [53, Thm. 5.1] Ramakrishnan and Wang gave an example
of a cohomological unitary cuspidal automorphic representation II of G(A) = GLg(A), F = Q, which is not
essentially self-dual. Hence, Prop. 3.1.4 implies that II does not admit an (n,)-Shalika model for any 7.

3.6. Shalika models and o-twisting. Having observed in the last subsection that having a Shalika model
is independent of having non-zero (g, K2, )-cohomology with respect to some finite-dimensional, algebraic
coefficient system, one can still ask the question if having a Shalika-model is an invariant under o-twisting.
In other words, we may ask, if having a Shalika model is an arithmetic property of a cohomological cuspidal
automorphic representation. We begin with a useful observation about the character n:
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Lemma 3.6.1. Let II be a cohomological cuspidal automorphic representation of G(A) which admits an
(n,v)-Shalika model. Then, for all v € So we have

Ny = sgn| [".
Proof. See the proof of Thm. 5.3 in Gan-Raghuram [16]. O

By Prop. 3.4.3, Il is also a cuspidal automorphic representation of G(A) for all o € Aut(C). It makes sense
to ask if IT having an (7, )-Shalika model implies that ?II has a (%9, ¢)-Shalika model for all o € Aut(C).
For n = 1 this is obvious in view of Cor. 3.1.3. If n > 2, the situation is more complicated, nevertheless, we
have the following theorem.

Theorem 3.6.2. Let II be a cohomological cuspidal autormorphic representation of G(A) which admits an
(n,¥)-Shalika model. Then °11 has a (°n,v)-Shalika model for all o € Aut(C).

Proof. See the appendix for Wee Teck Gan’s proof of this theorem; this is elaborated further in Thm. 5.3 in
Gan—Raghuram [16]. O

3.7. An action of Aut(C) on Shalika functions. Henceforth, we take II to be a cohomological cuspidal
automorphic representation of G(A) which has an (1, 1)-Shalika model S (II).

Our goal is to define a Q(II, n)-structure SZZ,; (IT¢)q(r,y) on the Shalika model of IT;. The main ingredient
towards this will be a certain “twisted action” of Aut(C) on Indg((ﬁ; )) [ny ® ], which we shall now define.

Recall that 1, being the finite part of a unitary additive character, takes values in pu , C C*, cf. Sect. 2.7.
This suggests that we consider the cyclotomic character:

Aut(C) — Gal(Q(u,)/Q) — iwnng = 1,11, 0,
o — lou..) — ty — to

where the last inclusion is the one induced by the diagonal embedding of Z,, into Hv‘p O,. The element ¢,

at the end may hence be thought of as an element of A?. Let ¢! denote the diagonal matrix

Y Yo 9 )

t, !l =diag(t, ', ..., t;11,...,1),
e — N —

regarded as an element of G(Ays). For o € Aut(C) and £ € SZ; (ILf), we define the function “¢ by
(3.7.1) 7&(gr) = o (&t - 95)),

gr € G(Ay). Note that this action makes sense locally, by replacing t,' by t;}). We see that & — ¢ is

a o-linear G(Ay)-equivariant isomorphism & : Indg((ﬁ; )) [y @ ¥s] = Indg((ﬁf)) [7nf ® ¥¢] and the same holds
locally at any finite place v.

3.8. A certain Q(II, n)-structure on SZ’; (ITf).

Lemma 3.8.1. Let II be a cohomological cuspidal automorphic representations of G(A) which has an (n,v)-
Shalika model S}(I1). Then, & (817)’; (Hf)> = de;f (°ILf) for all o € Aut(C). For any finite extension
F/Q(I1,n) we have an F-structure on SZ’; (I1y) by taking invariants:

Syl () == Syt (I7) A E/P),

Proof. Using Thm. 3.6.2; the first part of the lemma may be proved in analogy to the case of Whittaker
models. See Harder [22, p.80], Mahnkopf [41, p.594] or Raghuram—Shahidi [49, Lem. 3.2]. See also Remark
3.8.2 below.

In order to prove the remaining assertions of the lemma, consider the vector {1, = ®,¢s. &1, , where &1,
is a new vector (called “essential vector” in Jacquet—Piatetski-Shapiro-Shalika [31].) That means that &, is
right invariant by a suitable open compact subgroup of G(F,) which gives rise to a one-dimensional space
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of invariant vectors. At each finite place v, the vector {11, is unique up to scalars and we fix a choice of &y,
by assuming that &y, (id,) = 1. Then we obtain by an easy calculation using (3.7.1) that

7&n, = &om, -

In particular, any o € Aut(C/Q(II, n)) fixes &1, and hence fixes the global new vector i, .
Now, let SZ; (I )q(rr,y) be the Q(II,n)-span of the G(Aj)-orbit of {r,. Then the canonical map

Sy (Mg )oery) @oary C — Sp (1)

is an isomorphism. Indeed, as SZ? (ILf) g,y # O, surjectivity follows from the irreducibility of SZ? (L), and
injectivity follows exactly as in the proof of [58, Lemme I.1.1]. The action of Aut(C/Q(II, 7)) on S;Z}’; (ILy)

may then be identified with the action of Aut(C/Q(IL, 7)) on 81% (If)q(r,n) @,y C, where it acts on the
second factor. We deduce that

Sy gy = Sy (Ly)Aue©/dm),
Now, if F is a finite extension of Q(II,n) then, in the above isomorphism, one can identify

Syt (Mp)r = Sy () gy Soemy F

with SZ; (I1;)Aut(C/F) This proves the lemma. O

Remark 3.8.2. For the first assertion of Lem. 3.8.1 to make sense, we need uniqueness of local, non-
archimedean Shalika models. Uniqueness of Shalika models is proved in the literature only when 7 is the
trivial character; see, for example, Jacquet—Rallis [30] and Nien [44]. If n is the square of a character then
the central character wry is the 2n-th power of a character and so we can twist it away and reduce to the case
when 7 is trivial. However, one expects multiplicity one to be true for (7, 1)-Shalika models for a general 7;
we henceforth assume such a multiplicity one result for local Shalika models. See also Sun, [56], Thm. 4.3.
Similar comments are applicable when we consider the map ©¢ and the definition of the period w*(Ily) as
in Sect. 4.2. Tt is interesting to quote Friedberg and Jacquet [15, p.119]: “the new integral representation
we have obtained for L(s,7) does not depend on the uniqueness of a local model for the representations,”
however, the arithmetic aspects of their integral representation that we are interested in does depend on
uniqueness of the local Shalika model.

3.9. A very specific choice of a rational vector in the Shalika model. Assume that II is a co-
homological cuspidal automorphic representations of G(A) which admits an (7, )-Shalika model. Under
this assumption, we defined a Q(II,n)-structure on the Shalika model SZ’; (II) of IIy in Lem. 3.8.1. Let
Sty = Sn U Sy as in Prop. 3.3.1, resp. Su, y = Su, USy. We shall now fix once and for all a particular
vector
&, = ®gs. bn, € SZ; Iy )oan)

inside this Q(II, n)-structure, which has the following properties:

(1) Q,(%,fﬁv) = L(%J‘Iv) for all v ¢ Sty .y,

(2) CU(%,ﬁﬁ) = 1for all v € St 4.
We divide our discussion into two parts.

3.9.1. First, we consider the unramified case. So, let v ¢ St. According to Prop. 3.3.1, the normalized
spherical vector ry, has the property (,(%,&n,) = L(3,11,). Furthermore, for every o € Aut(C) we have
7¢m, = &om,, cf. the proof of Lem. 3.8.1, and so ¢, = &, = &, for all o € Aut(C/Q(IL,n)). Therefore,
we let

¢n, = &m, = normalized spherical vector,
for v & St y.
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3.9.2. Next, consider v € Sm, . Now the situation is more complicated. We introduce the following
notation: For an integer m > 0, we let K, (m) be the principal open congruence subgroup of G(O,) of level
m, i.e.,

Kv(m) = {gv € G(Ov) | Go — idy, € @umM%(Ov)}-

Put

Cy(m) = U toy - Ky(m).
oeAut(C)

As K, (m) is a normal subgroup of G(O,) of finite index, the set C\,(m) is compact and open in G(F,). We
suppose that if m is sufficiently large, then there is a function ¢, € S, (I1,,) such that supp(€,) = S(F,)Cy(m)
and &,|c, (m) = 1. Observe that by the very definition of C,(m),

Co(m) N S(F,) = K, (m) N S(F).

Pick any m large enough so that 7,(s,) = ¥y(s,) = 1 for all s, € S(F,) N Cy(m). Then &, as above is
well-defined. For R(s) > 0 such a function satisfies

v 0 o
Cv(safv) = / & <(98 1 >> |det(gl,v)‘ I/ngl,v
GL,, (Fy) v
» 0 5—
/ o (% L) laettonn) o,
C\y(m)NGL,, (Fy) v S——
—_—

=1 on Cy(m)

=1 on Cy(m)
= wol(Cy(m) N GL,(F,))
=: wvoly(m).

This number is rational and independent of s. In particular, by analytic continuation and the linearity of
the integral, the function

{h, = vol,(m)™t - &,
gives Cu(3,65.) = 1.

Next, observe that if m is chosen as above, i.e., big enough to ensure that n,(s,) = ¥,(s,) = 1 for all
sy € S(Fy) N Cy(m), then also ny,(s,) = ¥y(sy) = 1 for all s, € S(F,) N Cyp(m) and o € Aut(C). Thus, we
defined a vector {5y for all v € Si; 4 and o € Aut(C).

Lemma 3.9.1. Let v € Sp, 4. With the above notation,
UE?I,J = fgnv7
for all o € Aut(C). In particular, °§y = &py, for all o € Aut(C/Q(IL, n)).
Proof. Let 0 € Aut(C). By the very definition of C,(m), we obtain
S(Fy) - Cu(m) = S(Fy) - ton - Co(m) = to, - S(Fy) - Co(m).

So, g, € S(F,)Cy(m) if and only if ¢, 1g, € S(F,)C,(m). In particular, we only need to show the equality

0',

7¢n, = &5y, on the set S(F,)C,(m). Write

t—l = 5.c, = hv 0 111 Xv
o"'ugv - 2vtv — O hv O 11) C’Ua
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with h, € GL,(F,), X, € M, (F,) and ¢, € Cy(m) and let ag,, = diag(ts,v, ..., to,v) € Mp(O,). We obtain
Ufl‘[,v(g'u) = 11, tgygu )

: f<s D 1))

= (7]0 (det hv v( (Xv)) 'glc')lv (CU))

3.9.3. In summary. Putting 3.9.1 and 3.9.2 together, we have a very special vector
gﬁf = ®;;¢nglelv € 817;; (Hf)7
which satisfies
(1) CU(%,ﬁﬁu) = L(%,H,U) for all v ¢ Sy,
(2) Q,(%,ﬁﬁv) =1 for all v € Su, y,
and
7Eh, = @gs. "N, = Ogs. Son, = o,
for all o € Aut(C). In particular,
o Aut(C 11,7
&k, € Syr () /UMY — ST ) g

by virtue of Lem. 3.8.1.

4. AUTOMORPHIC COHOMOLOGY GROUPS AND TOP-DEGREE PERIODS

4.1. Continuing with the notation and assumptions of the previous sections, let II be a cohomological
cuspidal automorphic representation of G(A) which admits an (7, )-Shalika model. Recall from Sect. 3.4
that in top-degree qo = d(n? +n — 1), and for any € = (€,)ves. € (Koo/K2)* =2 (Z/27)%, the e-eigenspace
of (goo, K3, )-cohomology is one-dimensional:

dim H% (goo, K3, oo ® E)))[e] = 1.
The same therefore holds for 11, being replaced by its local Shalika model SZZZ (IIo). We will now fix once

and for all a generator of these one-dimensional cohomology spaces (i.e., for all € € (K. /K2,)* at once). To
this end, observe that

90

K3
HY(goo, K3, Sy (o) @ Ey)[e] C <A(gw/ew)*®322(nw)®E;> ,

cf. [12, 11.3.4]. So, we may choose a generator of H% (goo, K&, Sy (Illoo) ® EJ,)[¢] of the form
dim E,,
Me]:= > ) X ®€5%;.9
= (i1,00050gy) =1
where the following data has been fixed:
(1) A basis {X;} of goo/ts, which fixes the dual-basis {X7} for (goo/tx)”. For i = (i1, ...,4g,), let
X; =X A AXE € N (g00/b)
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(2) Elements ey, ..., €4, 5, making up a Q(E},)-basis of E.

(3) Toeach i and @, £5,; , = @ues. &0 € SZ: (o) = ®ues.. Sy ().
We may and will assume that {X;} is the extension of a fixed basis {Y;} of hoo/(hoc N o) via the block-
diagonal embedding ¢ : H — G. Finally, recall that ¢ € Aut(C) acts on objects at infinity which are
parameterized by S by permuting the archimedean places. This induces an action of Aut(C) on the
cohomology class at infinity:

& ([Meo]®) = [T ]

(Observe that (7€, )o = & )

00,1, o~ lov,i,a

4.2. The map O° and the definition of the period w*(Il;). The choice of the generator [II.]¢ of
H(goo, K2, SZ‘: () ® E),)e] fixes an isomorphism Of; of G(Af)-modules exactly as in [49, 3.3]; it is the
composition of the three isomorphisms:

Sy (My) = SyH(Iy) @ H (goo, K, S (Teo) © By [e]

~

— H%(goo, K2, S(IT) ® B} e]

~

— qu(gongwH ® E;\i)[e]a

where the first map is &,, = &,; ® [[I]%; the second map is the obvious one; and the third map is
the map induced in cohomology by (SZ)’l. More concretely, if we denote by & o = ocija ® &, and
Pia = (S}) 7 (& a), then
dim E,,
(o) = D, Y. X;®pia®cl

i=(i1,0yigy) @=1
Recall from Prop. 3.4.3 that the space H% (g, K5, I1® E})[¢] has a certain Q(II,n)-structure. In partic-
ular, it is defined over a number field. Since we are dealing with an irreducible representation of G(Ay), such

Q(I1, n)-structures are unique up to homotheties, i.e., up to multiplication with non-zero complex numbers,
cf. [58, Lem. 1.1] or [13, Prop. 3.1]. This leads us to the following

Definition/Proposition 4.2.1 (The periods). Let II be a cuspidal automorphic representation of G(A)
which is cohomological with respect to a highest weight representation E},. Assume furthermore that 11
admits an (n,)-Shalika model. Let € be a character of Koo/KS, and let [Il]¢ be a generator of the
one-dimensional vector space H(go0, K3, S, (o) ® E}))[e]. Then there is a non-zero complex number
w(Ily) = w(Ily, IIc]€), such that the normalized map

(4.2.2) Of 0 = w ()" - Of

is Aut(C)-equivariant, i.e., the following diagram commutes:

€
@H,O

H® (goo, K20, 1 ® E})[€]

| :

e
O51,0

Sy (1) H (goc, K5, °TL& °E) ) [e]

In particular, ©f maps the Q(IL, n)-structure SZ; (If)q(r,y), defined in Lem. 3.8.1, onto the Q(IL, n)-structure

of H(goo, K50, I EY,)[€]. The complex number we(Ily) is well-defined only up to multiplication by invertible
elements of the number field Q(I1,n).

Proof. Having fixed a Q(IL, n)-structure on SZ’; (I1) and on H% (g, K3, Il ® E},)[€] above, which are both

unique up to homotheties, we see that there is a non-zero complex number w®(IIy) such that Ofo =

w(Ily)~! - ©f maps the one Q(IL, n)-structure onto the other. Now, recall the normalized new vector &,
from the proof of Lem. 3.8.1. By what we just said, for every o € Aut(C)

7 (Ofo (én,)) and O (3 (€ny))
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are both new vectors in the same Q(?1L, “n)-structure of H (g, K., “II®7E},)[¢]. Hence, these two vectors
only differ by an element in Q(°II, %) and so, by adjusting w(°Ily) accordingly, we may assume that

o (Ot (é,)) = O%mo (9 (¢ny)) -

Since {11, generates SZ; (ITf) as a G(Ay)-representation over C, cf. the proof of Lem. 3.8.1, this implies that
the above diagram commutes. Thus, the assertion. ]

Remark 4.2.3. Note that once we have chosen w(Il¢), requiring the commutativity of the above diagram
actually pins down w*(?Ilf). Further, if we change w*(Il¢) to kw(Ily) with a K € Q(II,7)* then the period
w(“IIy) changes to o(k) - w(“1IIy).

5. BEHAVIOUR OF PERIODS UPON TWISTING BY CHARACTERS

The purpose of this section is to study the behaviour of the periods w(Il;) upon twisting II by any
algebraic Hecke character x of F. This is a generalization to the context at hand of the main theorem of
Raghuram—-Shahidi [49].

5.1. Preliminaries on twisting characters. Before we state and prove the main result of this section, we
need some preliminaries on Hecke characters. By a Hecke character x of F', we mean a continuous homomor-
phism x : F*\A* — C*. By an algebraic Hecke character, we mean a Hecke character x whose component
at infinity, denoted X0, is algebraic in the sense of Clozel [13, 1.2.3]; these are the Grofencharakters of type
Ag of A. Weil. Note that y being algebraic implies that x = Y| -|® with ¥ a finite-order Hecke character and
b € Z. In particular, at each archimedean place v € So, Xo(z) = sgn(x)?®|z|’, for z € R*, a, € {0,1} and
b € Z. We define the signature of an algebraic Hecke character x of F' to be

e = (D)™)o € {1370

We will think of €, as a character of Koo/KS,. We let Q(x) denote the rationality field of x. Since x is
algebraic, Q(x) is a number field. We have Q(x) = Q(Im(x¢)) and €, = €0, for all 0 € Aut(C). We obtain
the following lemma.

Lemma 5.1.1. Let X = Xoo ® Xf be an algebraic Hecke character of F' and 11 a cuspidal automorphic
representation of G(A). If II is cohomological with respect to the highest weight module EY,, then the twisted

7

cuspidal automorphic representation IL® x is cohomological with respect to the highest weight module E;’L_b =

B} ®®ues., det™". IfII has an (n, 1)-Shalika model, then II®x has an (nx?,)-Shalika model. In particular,
the period w*(Ily ® x ) is defined.

Proof. The first part of the lemma being clear, we only prove the second assertion. Therefore, let ¢, € II®x.
It is of the form ¢,(9) = ¢(g)x(det(g)) for ¢ € II, g € G(A). Now, a direct calculation shows that

S$X2(@x)(g) — SZ(W)(Q) - x(det(g)) for g € G(A). So, Il ® x has an (nx?,)-Shalika model, if IT has an
(1, v)-Shalika model, cf. the proof of Thm. 3.1.1. O

The point being made in the first assertion of Lem. 5.1.1 is that we are making a compatible choice of
generators [II.]¢, i.e., given II, x and €, a choice of [II]¢ pins down a choice [IIo ® Xoo]® .

Following Weil [59, VII, Sect. 7], we define the Gaufs sum of x s as follows: We let ¢ stand for the conductor
ideal of x¢. Let y = (yu)ugs.. € A} be such that ord,(y,) = —ord,(c) — ord,(Dr). The Gauk sum of x; is
defined as G(x¢, Vs, y) = vasx G(Xv, Vv, Yv), where the local Gauls sum G(xu, ¥y, Yy) is defined as

G (X, YorYo) = / . X'U(Uv)ili/)v (Youy) duy.
For almost all v, where everything in sight is unramified, we have G(xu, %, ¥») = 1, and for all v we have
G(Xvs Vv, yYo) # 0. (See, for example, Godement [19, Eq. 1.22].) Note that, unlike Weil, we do not normalize
the Gaufs sum to make it have absolute value one and we do not have any factor at infinity. Suppressing the
dependence on ¢ and y, we denote G(x, vy, y) simply by G(xr)-
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5.2. The main theorem on period relations.

Theorem 5.2.1. Let F' be a totally real number field and 11 be a cohomological cuspidal automorphic rep-
resentation of G(A) = GLa, (A) which admits an (n,v)-Shalika model. Let € be a character of Ko /K2, and
we let w*(Ily) be the period as in Definition 4.2.1. Let x be an algebraic Hecke character of F, and let €, be
its signature. We have the following relations:

(1) For any o € Aut(C) we have
” <W“X (I ® Xf)) _ <w”x ("1 ® "Xf))
Gxs)mwe(lly) G(ox )" we(711y)
(2) Let Q(IL,n, x) be the compositum of the number fields Q(II,n) and Q(x). We have
Wy @ xf) ~amax G0)" W ().
By “~q(i1,n,x) " we mean up to multiplication by an element of Q(IL, n, x).

Note that (2) follows from (1) by the definition of the rationality fields of II, n and x. The proof of (1) is
basically the same as the proof of Raghuram-Shahidi [49, Thm. 4.1] but suitably adapted to the situation at
hand. This entails an analysis of the following diagram of maps. (Here, we have abbreviated the (goo, K3, )-
cohomology of a module M simply by H?(M).) Observe that this diagram is not commutative. Indeed, the
various complex numbers involved in (1) measure the failure of commutativity of this diagram.

oft,
(5.2.2) HW0((II ® E})[e]
(Ax®1py)”
ce
e X
Hy®xs &
HIO(M @ x ® E),_p)[eex]
5
o'”f p S Hf q0 (o oV
Sy (OThf) HI (TN ® 7B} )[e]
saxfi (AUX®1UEYL)*
of X
a'(anQ) OUHf®UX_f
Sy, ey @0y H90 (TT1® Tx ® TEY, _,)leey]

Here, the maps S, and A, are defined as follows. If {5 € SZ’; (ILf), then
Sy (€r)(gr) = xs(det(g7))Es(gy)

2
for gy € G(Ay). It is easy to see that S, , maps SZ? (I4) onto SZ;Xf (IIy®xy). Similarly, for any automorphic
form ¢ of G(A) we define A, (¢) by

Ay (v)(g) = x(det(g))p(g)

for g € G(A). It is easy to see that A, maps IT onto II ® x. The identity map on the vector space E} is
denoted 1g. We denote (A4, ® 1EYL)* the map induced by A, ® 1g, in cohomology.
Before we may prove Thm. 5.2.1, we need the following result.

Proposition 5.2.3. Let I be a cohomological cuspidal automorphic representation of G(A) = GLa,(A)
which admits an (n,v)-Shalika model. Let x be an algebraic Hecke character of F. For any o € Aut(C) we
have

go0Sy, = J(Xf(t;”))SaXfO&
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Proof. Consider the diagram

Sy (1) - S, (°TLy)
Jo o
San?' I & S“(an?') o, @
vy (@) vy (T @)

and chase an element of SZZ,; (IT;) both ways; note that ¢, ™ is the determinant of the matrix ¢, ' that was
used to define the “twisted action” of Aut(C) on Shalika models, cf. 3.7.1. This gives the first equality. The
second follows from a standard calculation which shows that o(G(x¢)) = o(xf(ts))G(%xs)- O

Proof of Thm. 5.2.1. We recall that it suffices to show (1). Therefore, we compute the composition of maps
in the diagram (leading from the top left corner in the back to the bottom right corner in front)

(Ary @ 105;)" 0 570 O,

in two ways. Firstly, we have

_ o (we(ILy)) .
Ao lopv )* 65 = Ao 1opv )* —_ <
( x E“) °9° ", Def./Prop. 4.2.1 ( x @ E”) ° < we(aHf) n; °9
o(w (My)) ) gee N
= 3 N\ 60‘ < O g S"' 3 .
[49] Prop. 4.6 ( we(°IIy) my@7x, 97 07

The latter reference to Raghuram—Shahidi [49], Prop. 4.6 may be used to prove that

* € _ €€x
(AUX ® 1UEYI.) [¢] @aHf —_— 60Hf®gxf OSUXf

by simply replacing the Whittaker models in [49] Prop. 4.6 formally by Shalika models.
Secondly, we obtain

(Aoy ® Logy)" 050 Of, 5o (A @ 1p,)" 0 Of,

[49] Prop. 4.5

~ €€
= g O @ X o S
[49] Prop. 4.6 Up@xy = 7Xf

_ U(we'éx(nf ®Xf)) €€y 0508
Def/Pr; 4.2.1 we'éx(GH ek ) IR x X f
: p- 4.2 f Xf
)

. U(we'ex(nf ®Xf) €€y U(g(Xf)) " ~
Prop. 5.2.3 ( we (71l @ 7xf) @"Hf®"><f G(°xy) Sox; 00
Comparing the two computations for the composition (Ae, ® laEﬁ)* ogo G)f-[f, we obtain that
(o(wﬁ(nf») _ (a(wﬁfx(rff»@x,«))) (a<g<Xf->>)".
we(7Iy) weex (71l @ 7x ) G(oxy)
This implies the result. |

5.3. Finite—order characters. Finally, recall that if a Hecke character x of F is of finite-order, then
Xoo = ®ues,, sgn®, for some a, € {0,1}. Hence, by the description of the archimedean component of
a cohomological cuspidal automorphic representation II, see Sect. 3.4, we obtain Il = II ® X for all
finite-order Hecke characters y of F.

6. THE MAIN IDENTITY: A COHOMOLOGICAL INTERPRETATION OF THE CENTRAL CRITICAL VALUE

In this section, we will first determine the critical points of L(s, II) for a cuspidal automorphic representa-
tion IT of G(A) = GL2,(A) which is cohomological with respect to the highest weight representation £}, and
of purity weight w, cf. Sect. 6.1. As a next step, we consider compactly supported cohomology attached to
certain geometric spaces Sﬁf and S};’f defined using the groups GG and H with values in a sheaf £ constructed
from the highest weight representation E,; this is the content of Sect. 6.2. Using a classical branching law,
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1
2

critical for L(s,II). Assuming this to be the case, we obtain a morphism from the cohomology HZ (ng,é’l‘j)

we see that the representation 1 ® det™" of H,, appears with multiplicity one in E}, if and only if s = 3 is

to the sheaf cohomology Hg(ng,S(oy,w)), where £ _) is the sheaf constructed from 1 ® det™, cf. Sect.

6.3. Finally, we recall Poincaré duality for H g(sf(’f,g(oy_w)) in Sect. 6.4. The cohomological interpretation

of the central critical value is best illustrated by the main diagram in 6.5, which leads to the main identity
in Thm. 6.7.1.

6.1. Critical points. We will now determine the critical points of L(s,II) for a cuspidal automorphic
representation II of G(A) = GLg,, (A) which is cohomological with respect to the highest weight representation
E}. These points can be read off from the coefficient system Ej,. According to Sect. 3.4, we may write a
weight p as 1 = (uy)ves., with each u, being of the form

Hoy = (Mv,h sy Mony Bon4ds - a,uv,2n) = (/’Lv,h sy Hon, W — Uy py ey, W — ,uml)a
where ft,1 > -+ > [y, and w € Z is the purity weight of IL

Proposition 6.1.1. Let II be a cuspidal automorphic representation of G(A) = GLa,(A) which is coho-
mological with respect to the highest weight representation E},. Then the set of critical points for L(s,1l) is
given by

Crit(II) = {% +m e % +Z| =ty <M< —fypy1 YU E SOO} .

In particular, s = % is critical if and only if pty.n > 0 > lynt1, for all v € S.

Proof. Let us recall the definition of a point being critical. For an automorphic L-function L(s,7) of degree
k, a point s € C is critical if sg € %51 +Z and if both L(s, T+ ) and L(1 —s, 7)) are regular at s = so, i.e, if
both the L-factors at infinity on either side of the functional equation are holomorphic at sg. This definition
is due to Deligne [14, Prop.Def. 2.3] for motivic L-functions; for automorphic L-functions of motivic type
one may read off the definition we just gave after accounting for the shift by % coming from the so-called
motivic normalization; see Clozel [13, Conj. 4.5]. The proof is now an exercise using the local Langlands
correspondence (LLC) for GLgy,(R) which allows us to lay our hands on the L-factors at infinity. We refer
the reader to Knapp [38] for all the details on LLC that we use. In our situation of a cohomological cuspidal
automorphic representation II of G(A) = GLa, (A) we have an L-function of degree k = 2n and so the critical
points are all half-integers of the form % +m e % +Z.
Recall from (3.4.1) that for each v € So, we have

L, & Ind 53 [D(£y,1)|det|"/? @ .. @ D(E, p)|det|*/?],

where 4, ;j :=2(py j+n—j)+1—w, 1 <i<n. From [38] we get that the L-factor attached to Il is of the

form
L W+€v,j
L(s,IIy) = | | | |F<5+2>,

V€S j=1
where, by “~”, we mean up to multiplication by non-zero constants and exponential functions (which are

holomorphic and non-vanishing everywhere) which are irrelevant to compute the critical points. By definition
of % + m being critical we want both

L(Sﬂﬂm)‘s:%—o—m ~ H Hr(m+ﬂv1+n*j+1),

V€S j=1
n

L(]'*San\éo)‘s:%—&-m ~ H HF(7WL7W+MUJ+WJ7]+1)
V€S j=1

to be regular values. Here we used that IIY = II|det|™". Using the fact that I'(s) has poles only at
non-positive integers and is non-vanishing everywhere, we deduce that

_,U/vq,j_n'i'j <m < ,uv,j'i'n_j_w
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for all v € So and all j with 1 < j <n. As pyj —W = —fly 2n—j+1 and fy1 > ... > [y 2, the proposition
follows. O

Remark 6.1.2. By Sect. 5.3, Crit(II) =Crit(II ® x) for any finite-order Hecke character x of F.

Remark 6.1.3. One may also phrase the statement of the proposition in a motivic language: The repre-
sentation IT conjecturally corresponds to a motive M, and via the L-factors at infinity one can write down
the Hodge-pairs for M, i.e., pairs of integers (p,q) such that the Hodge number h??(M) # 0. The critical
strip is entirely a function of these Hodge pairs; see Harder—-Raghuram [24, Sect. 3].

6.2. Spaces ng and Sﬁf and the map ¢*. Let Ky C G(Ay) be an open compact subgroup and consider
the “locally symmetric space” for G with level structure K¢ defined as:

S%, = G(P)\G(A)/KSL K.

Recall the group H = GL,, x GL,, which is viewed as a block diagonal subgroup in G. As in Sect. 4.1 we
denote this embedding of F-algebraic groups by ¢ : H — G. Consider also the space

S, = H(F)\H(A)/(K$, N Heo) e (Ky),

which is a real orbifold of dimension dimg S’Hf =d(n? +n — 1) = go. The numerical coincidence

dimg 5}1—{1}0 =d(n?+n — 1) = qo = top non-vanishing degree for cuspidal cohomology for GLa,, (A)

is a crucial ingredient in proving the main identity and the reason why we only consider totally real number
fields F. Moreover, it is a well-known result of A. Borel and G. Prasad, see, e.g., Ash [6], Lem. 2.7, that the
natural inclusion

v:SH s ng
is a proper map.

Let E), be (the dual of) a highest weight representation of G as in Sect. 2.3. It defines a sheaf £ on SI%,
by letting £ be the sheaf with espace étalé G(A)/KS Ky xq(r) £, with the discrete topology on Ej. (See
also Harder, [23, (1.1.1)] for a direct definition of this sheaf.) The sheaf-cohomology with compact support,

HI(S%,, €,

is a module for the Hecke algebra ’Hgf = CX(G(Ay)/ K¢,C). Similarly, the sheaf-cohomology with compact
support

HY(SK,,€%)
is a module for the Hecke~algebra Hgf = CX(H(Ay) /1™ (Ky),C), where for brevity we also wrote &), for
the pulled back sheaf on S%f. Since ¢ is a proper map, we obtain a well-defined morphism in cohomology

(6.2.1) HI(SE,, 1) - HI(SH ).

If o € Aut(C), we let °E} be the sheaf constructed from “E}. Then there are o-linear isomorphisms
of s HI(SE, &) — HI(SE,,°€y) and  of : HI(SE,, &) — HI(SE,,€)),
cf. [13], p.128, and again a well-defined morphism in cohomology

L

HY(S%,,°€%) == HI(SE,,°€}).

The next lemma is a consequence of Clozel [13], p.122-123:
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Lemma 6.2.2. Let E,, be a highest weight representation of G such that there is a cuspidal automorphic

representation 11 of G(A) as in Sect. 2.6, which is cohomological with respect to E},. Then the H%f -module
Hg(ng,El‘;) and the Hgf -module Hg(S}?f,é’;) are defined over Q(IL,n). Moreover, for all o € Aut(C) the
following diagram commutes:

*

HI(SS,, ) ——— HA(SE,, £2)

* *
:iac :\LUH
*

HY(SE,,€}) ————— HI(SE,,€})

In particular, the map * is a Q(IL,n)-rational map, i.e., preserves the chosen Q(I1,n)-structures on both
sides.

6.3. The map T*.

Proposition 6.3.1. Let E,, be a highest weight representation of G such that there is a cuspidal automor-

phic representation 1L of G(A) which is cohomological with respect to E), with purity weight w € Z. Assume

furthermore that s = % is critical for L(s,II), or, in other words that

Hu.n Z 0 2 Mo n+1 Vv € Soo

Let Eq,—w) = 1 ®det™" be the H(C)-representation, where the first block of H(C) = GL,(C) x GL,(C)
acts as the trivial representation 1, and the second block by multiplication by det™". Then we have

dim HomH((C)(EV E(07_W)) =1, WeSs.

Mo

Proof. This follows from Knapp [39, Thm. 2.1] as we now briefly explain. Since s = % is critical we get the
following condition on the weight pu:

Ho,1 Z e Z ,uv,n Z 0 Z Mo ,n+1 Z c 20 Yo S Soo

Since the same argument works for all v € S, let us suppress the symbol v. Let us tentatively denote
A= (p1,-..,pn). Then, by purity, the weight A" := (tpt1,...,p2n) = W+ A where XY = (—pn, ..., —p1).
Write H(C) = H; x Hy with Hy the left-top diagonal block of GL,,(C) and Hs the right bottom. Then,
Knapp’s theorem says that under the above condition on the weight w, as a representation of H;, we have
Ef2 ~ F) ® Ey, where the action of H; = GL,(C) on the right hand side is the diagonal action. We
also have E) ® Eyx ~ E) ® (det” ® EY). Since the trivial representation appears with multiplicity one in
E\ ® EY we conclude that det" appears with multiplicity one in E[Lb, as a representation of H;. This
means that E, ) appears with multiplicity one in £, as a representation of H(C). After dualizing we get
dim Homy (¢ (E},, E(—w,0)) = 1. Now consider the matrix J € GLa,(C) given by J; ; = 0; 2,—j+1, and inner
conjugating by J we conclude dim Hompg(c)(E), , Eo,—w)) = 1, Vv € Seo. |

oy

We will henceforth assume that s = % is critical for L(s,II) and fix a non-zero homomorphism

T = ®U€Soc77} € ® HomH(C)(E;\ivaE(O,—W))'

VES

The map T also gives rise to a map in cohomology
GH T GH
(632) Hgo (SKf7g;\:) — Hgo (SKfﬂg(O,—w))'
For o € Aut(C) we let T be the map
Q oovy To T o
Hgo(Sllgf7 gp,) — Hgo(s’gf’ 6(0,7W)))

induced from T, = Ques., To-1,. Then, the following lemma is immediate:
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Lemma 6.3.3. For all 0 € Aut(C) the following diagram commutes:

v T
HI(3H &0) —— T HI(SH £ )
q ~1i oov 77 q(QH J/g
HC(SKf7 g,u) HC(SKf7 <c/‘(O,—w))~

In particular, the map T* is a Q(IL, n)-rational map. (This is true for all ¢ but we only need it for ¢ = qo.)

6.4. Poincaré Duality for S}gf . Let IT again be a cuspidal automorphic representation of G(A) as in Sect.
2.6, which is cohomological with respect to a highest weight module £}, of purity weight w € Z and assume
that s = £ is critical for L(s,II). We may choose K; C G(Ay) to be such that its pull-back ¢ ' (Ky) C H(Ay)
is a direct product ¢~ (Ky) = K{T; x KJ';, with each factor sitting inside the corresponding copy of GLy, (A ).
We additionally assume that the open compact subgroup K¢ of G(Ay) is small enough such that 1y becomes
trivial on det(Kff). Then, it is easy to see that the character 1 x n~1 of H(A) defines a cohomology class
] € HO(SE,, Eom))-

Let X be the set of all connected components of 5}?, Using the map induced by det x det : H(A) —
AX x A* on S'f([f one can see that X is finite (cf. Borel [10], Thm. 5.1) and denote by S'II;IM? the connected
component corresponding to x € X. Each of them looks like a quotient of HS /(K3 N Hu)° by a discrete
subgroup of H(F'). Recall the ordered basis {Y;} of hoo /(s NBoo), from Sect. 4.1, which fixes the dual basis
of (hoo/ (s Nbo))*. This choice of basis determines a choice of an orientation on H° o /(K NHy)®, whence
on each connected component S§ K;,» and so also on SH H . Now, Poincaré duality between HZ (S K €0,-w))

and HO(SKWS(O’W ) gives rise to a surjection

o~

Hgo (Svlfgf’g(ovfw)) — ®I€X C - C
: — (fig 0n1) > Secxfy 0Nl = Jy OAT,

Ky zEX

(6.4.1)

where we remind ourselves that the orientations on all the connected components §§f7m have been compatibly
chosen. The map 60 — |, gu ON [n] given by Poincaré duality is rational, i.e., we have the following lemma:
Ky

Lemma 6.4.2. For all 0 € Aut(C) and for all 0 € HI (Sﬁf75(07,w))

o /ggwm =/S o3 (6) A [,

6.5. The main diagram. We now have all the ingredients to talk about the strategy behind the main
identity which gives a cohomological interpretation of the central critical value. Therefore, let IT be a cuspidal
automorphic representation of G(A) as in Sect. 2.6, which is cohomological with respect to a highest weight
module E}, of purity weight w € Z. Assume that s = 1 is critical for L(s,II). In terms of the coefficient
system F, this means that pyn > 0 > pyny1 Vv € So; see Prop. 6.1.1. Moreover, we suppose that 11
admits an (7, ¢)-Shalika model. Recall the open compact subgroup Ky C G(Ay) from the end of Sect. 6.4.
By making it even smaller, we can assure that it satisfies the following conditions:

(1) 7y is trivial on det(K3',)
(2) &, € SV (I,)%r,
From now on, we fix the choice of such an open compact subgroup K; = K;(IIy). Furthermore, we fix
the character ¢p := ((—=1)"71, ... (=1)" 1) € (Koo/K2)* = (Z/2Z)%. Tt only depends on the parity of n.
Recalling the maps O}, from (4.2.2), ¢* from (6.2.1), 7" from (6.3.2) and fg}jg from (6.4.1), we have the
!
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following diagram of rational maps:

HIO (S, 63) —— e HO(SJL E%) —— T HO (L £ )
H (g, K5, TE© B9 [eo] <1 g
]
Sy )k C

Here we notice that the special choice of € = ¢ is necessary in order to obtain a cohomology class ©5°(§,,) in
H(goo, K3, 1T ® El‘i)[eo]Kf which is compatible with the choice of the orientation on the various connected
components 5’{'{1}"@, T € X, of S'II;If.

We start with a rational vector §,, € SZ’; (I1;)%s and chase it through the above diagram, i.e., we will
compute

[, TR A I
Ky

and see that it is essentially the required L-value. See Thm. 6.7.1 below. In this computation we will need
the following non-vanishing theorem of B. Sun [56].

6.6. A non-vanishing result. Let Y7",..., Y be the basis of (hoo/(Ex N bso))™ chosen in Sect. 4.1 and
recalled in Sect. 6.4 above. Then, for each i = (i1, ...,14,), there is a well-defined complex number s(i) € C
such that

C(XT) = sV A AY).

7
Let II be a cuspidal automorphic representation of G(A) which is cohomological with respect to a highest
weight module E), and has an (7, 1)-Shalika model. Recall our choice of a generator [II] for the one-

dimensional space H(goo, K5, S\ (Iles) ® E};)[€0]. For a moment, let $ be critical for L(s,II), so T exists.
For every such II we define

dim E,,
M) = Y > sl o) Coo(5:62 1.0)-
1= (117 ,’qu) a=1

Now, drop the assumption that % is critical for L(s,II), but take an arbitrary critical point % +m €
Crit(II). Then, consider the representation II(m) := II® |det|™. It is a cuspidal automorphic representation
which is cohomological with respect to E},,,. Observe that the set of critical points is shifted by —m, i.e.,
Crit(II(m)) = Crit(II) — m, and so by the choice of m, 3 is critical for II(m). Hence, by Prop. 6.3.1, there
is a non-trivial homomorphism 7™ e Qoes.. Homu ) (B, 4ms E0,-w—2m)) and we are in the situation

considered above. We define

(6.6.1) (o, m) 1= c(TI(M) oo )-

Note that in this notation ¢(Ilo,0) = c(Ils), if 1 is critical for L(s,II), and by our consistent choice of
generators [I1(m)oo] ("D cf. Lem. 5.1.1,

dim E,,

o) = 37 3 sOT ) Gl + 0250

i=(i1,.. 71q0)

There is the following theorem:
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Theorem 6.6.2 (Sun [56]). For all 3 +m € Crit(II),

dim B,

c(Ma,m) = > > )T (el) Cold +mi€2,,) #0.
a=1

iz(ilﬁ"‘aiqo)
We denote its inverse by w(Iloo, m). So, w(II(M)s) = wW(Iloo, m).

Proof. Let % + m be a critical point for L(s,II). Without loss of generality, we may (and will) suppose
that m = 0, because II was assumed to be a general (i.e., not necessarily unitary) cuspidal automorphic
representation. Moreover, observe that one may see as in the the proof of [50, Prop. 3.24] that ¢(ll,m) =
HvGSoo ¢(IL,, m), where each local factor ¢(Il,, m) is defined similarly. Hence, we may finish the proof by
showing that ¢(II,,0) is non-zero for all v € S.

So, assume that s = % is critical for L(s,II) and let v € Sy be an arbitrary archimedean place. For
sake of simplicity, we drop the subscript “v” now everywhere, so, e.g., I = II,, G = G, = GL2,(R),
H=H, = GL,(R) x GL,(R) and analogous notation is used for other local archimedean objects. Define
x1:=1, xo:=nand let x := x1 ® x2 =1 X7 =1®det" be the corresponding character of H. Then, the
local archimedean zeta-integral at v defines a non-zero homomorphism

C(%7 ) € HomH(Ha X)

This follows from Prop. 3.1.5 and the fact that s = % is critical. Hence, C(%, .) can be taken as the ¢, in
Sun’s Thm. C, [56]. Now, recall our choice of 7 € Hompc)(E}, ® E,—w)) from Sect. 6.3. Putting w; := 0
and wy := —w, we may take 7 to be the non-zero homomorphism ¢, ., from Sun’s Thm. C. Here observe
that the condition that s = % is critical is enough for Sun’s Thm. B to hold in this particular situation,
namely where w; = 0 and ws = —w: In fact, Sun has to assume that % + wy and % + wsy are both critical,
in order for his Lem. 2.3 to hold. But the assertion of this lemma is automatic, if s = % is critical, by our
Prop. 6.3.1.

In summary, we obtain by Sun’s Thm. C, that the map

C : Hom(A™g/t, I ® E}) — Hom(A”h/(¢Nh), x @ E,—w))

fCOf)=(G,)®@T)o foATjs,

is non-zero on the one-dimensional sub-space H% (g, K°, 11 ® E})[eo]. Here, ja, is Sun’s notation for the
embedding h/(h N €) — g/€. By the one-dimensionality of the latter cohomology space, it is hence non-zero
on our choice of a generator

dim E,,

me= > > Xog o,

i=(i1,yigy) @=1
being view as an element of Hompgo (A%g/t, I ® E},)[e]. But, then, C' computes

dim E,
C(®) = (3@ T) o[ on®j, = > > s(i)T(eh)(3,45%) = c(IL,0).

G=(i1,0riqg) Q=1

O

Remark 6.6.3. For n = 1, the numbers ¢(Ilo,,m) are known by an explicit calculation; see Raghuram-
Tanabe [50, Prop. 3.24]. Ultimately, one expects that one may always choose [IIo]® such that w(Ils,m)
is a power of 2wi. Moreover, since any o € Aut(C) acts on I, by permuting the local components and
c(Heo,m) = [, 5. c(Ily, m), we deduce that ¢(? s, m) = c(lloo,m), and w(?Iloc, m) = w(Ile, m).
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6.7. The main identity.

Theorem 6.7.1 (Main Identity). Let IT be a cohomological cuspidal automorphic representation of G(A)
such that s = 1 is critical for L(s,II). Assume that Il admits an (n,)-Shalika model and let €y and
Ky = K¢(I¢) be chosen as in 6.5. Then

T i) Al = .
ggf ’ f weo (Hf)w(noo) UOl(Lil(Kf)) HUGSrIf,w L(i’ H”)

where &y is the rational vector in the Shalika model chosen as in 3.9.3.

Proof. In order to have the notation ready at hand, let £, be the highest weight representation with respect
to which II is cohomological and say that II is of purity weight w € Z. For each i = (i1, ..., i4,) and « let us
write ¢f , = (S)) " (boc,i0 ® &y, ). Then we obtain

dim E,,

[ TrOR,E) Al = vt Y Y / S @l T(El)
SH . ) - SH
Ky i=(i1,..0iqp) =1 Ky
= ol (K)o 1) S s T [ 1] 5 a1y
= H(P)\H(A)/RS

where the last equality is due to the choice of the measure, cf. Sect. 2.8, and the right K -invariance of &5y .
For an individual summand index by ¢ and «, we obtain more explicitly

/ 1] sy o)
H(F)\H(A) /RS

o h 0

-/ el o (5 ) dnna)
H(F)\H(A)/RY 2
-1 o hi O

-/ ) ot () dtons o
H(F)\H () /RS 2

-/ / (et ("5 ) 2) ottt 20 )
Za(AVH(F)\H(A) J Za(F)\Zc(A)/RE \ 2

where hj = (hj oo, hj ) € GL,(A), j = 1,2, and 2z = diag(a, ...,a) € Zg(F)\Zc(A)/RL. Furthermore, this
equals

—n o hi 0O _
/ / st ot (4 )) ot aetas | dinna)
Za(A)H(F)\H(A) J Za(F)\Zc(A) /RS %’1_/ 2

whence the integrand is Zg(A)-invariant and we are left with

o hy O _
wol(F\w /R4 - [ et () ot i ).
Zo(AYH(F)\H(A) 2

Recalling that ¢ = vol(FX\AX/Ri), cf. Sect. 2.8, we may therefore finish the proof by showing that

M) Y swTe [ et () o et )
W(lloo) [Toesy, ., L3 Mo) 43 ZaWH(F\H(A) 2
Recall from Prop. 3.1.5 that for Re(s) > 0 there is the equality
s—1/2
det(hl)

n~ " (det(ha)) d(ha, he)

/ (5 m)
ZewHENEER) T\ 0 he

0
— S7(° ((91 )) det(g1)[*"1/2 dg
Ly s (5))) 1 dettonr 2 as,

det(hg)
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o g 0 s— e o 0 s
= (/ Sip <(ng 1>> | det(g1,)] 1/20191.,f> : (/ €0 ((glo 1>> | det(g1,00)| 1/2d91,oo>
GL, (Ay) GL, (R)4

= Cf(S,fﬁf) ’ Coo(saé.;g@a)a

which after analytic continuation is valid for all s € C. The last factor (s (s,£ ;) is a meromorphic
) i,

function in s, but since s = 5 is critical for L(s,II), the archimedean factor goo(;ggg’i,a) is finite for all ¢

and «, see Prop. 3.3.1. According to our special choice of the vector fﬁf in Sect. 3.9.3 we see that at s = %
the last expression equals

L(%’ Hf) 1 ¢€o
1 II .COO(§7£OO,LO¢)'
HUESnf,@, (57 1))
The result follows since c(Ily) = w(lly) ! = > ias(@) T(e) Coo(%@;gm).

7. ALGEBRAICITY RESULTS FOR ALL CRITICAL L-VALUES

7.1. Before stating the main theorem of this article, let us record a preliminary lemma which says that local
L-values at a critical point transform rationally under o-twisting.

Lemma 7.1.1. For a finite place v of F, let I1,, be (any) irreducible admissible representations of GLay, (F,).
Then

o(L(3,1L,)) = L(3, 7IL,).
Proof. This can be showed exactly as in the proof of Raghuram [47, Prop. 3.17]. |

Recall the periods w*(Ily) from Def./Prop. 4.2.1, the Gaufs sum G(x) from Sect. 5.1 and the non-zero
quantities w(Il,, m) from Sect. 6.6. We now prove the main theorem of this paper on the algebraicity of all
the critical values L(3 + m, Iy ® x).

Theorem 7.1.2. Let F be a totally real number field and G = GLy,/F, n > 1. Let 11 be a cuspidal
automorphic representation of G(A), which is cohomological with respect to a highest weight representation
E} of G and which admits an (n,1)-Shalika model. Let x be a Hecke character of ' of finite-order and
Crit(IT) =Crit(Il® x) C 3 +Z be the set of critical points for the L-function L(s,I1®x) of I1® x. Then for
all critical points % + m € Crit(Il) the following assertions hold:
(1) For every o € Aut(C),
U( L(z +m,I; ® xy) ) _ L(3 +m, I ® °xy) .
wEDTT e (T ) Gx )" w(Ileo, m) WD e (911 ) G (7 )" w(Too, )

(2)
_ n«#'mfl6 n
L(z +m, I @ x5) ~aany @Y X(Ip) G(xg)" w(llog, m),
where “~q1,n,y)” means up to multiplication by an element in the number field Q(IL, 7, x).

Proof. Note that (1) implies (2) by definition of the rationality fields. For convenience of the reader we
divide the proof of (1) into three steps.

Step 1: Assume % is critical for L(s,1I) (i.e., m =0) and x = 1
In this case the sign €, = (+1,...,+1) is the trivial sign character and w(Ilo, m) = w(Il). Let o € Aut(C),
let Ky = Ky(Ily) be chosen for II as in Sect. 6.5 and recall our special choice of the vector £f;, from Sect.
3.9.3. The Main Identity, cf. Thm. 6.7.1, implies that '
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where the last line follows from the fact that the volume appearing in the formula is a rational number by
the choice of the measure, cf. Sect. 2.8. On the other hand,

7 /S T Otmol&in,) A Lem. 6.4.2 /~H & (T* *Geo(gnf)) (]

Kf SK

- To ot (0 0f0(E8,)) A1)

Lem. 6.3.3 S«H

;«

_ /S Triso5 (Of(&,)) A 1]

Lem. 6.2.2
Ky

Lo 12,1 /S T2 15080 (7 (68, )) A 1]

— * % Qo (a o )/\ o
Def. of & /ng Ts 1Ot 0 ("&1, ) A 1]

f
_ 20330 (6m,) 1 1)
eran Jy T30 (En,) 1o
f

By Prop. 3.4.3, “Il is again a cohomological cuspidal automorphic representation and by Thm. 3.6.2 it admits
a (°n,1)-Shalika model. One immediately checks that °TI also satisfies the hypotheses of the Main Identity,
Thm. 6.7.1, and so, applying it to ?II, we see that the last line equals

L(3,°11y) 1
weo (oIly) w(?Il)  wvol(t=1(Ky)) HUE&,HM L(; oI1,)

As w(?lls) = w(Ils) and St = Se1r,, Lem. 7.1.1 finishes the proof in this case.

Step 2: m is arbitrary and x =1
Now, let +m € Crit(II) be an arbitrary critical value of II. Consider the representation II(m) := I1®|det|™
as in Sect. 6.6. It is a cuspidal automorphic representation which is cohomological. Observe that the set of
critical points is shifted by —m, i.e., Crit(II(m)) = Crit(II) — m, and so by the choice of m, = is critical for
II(m) and c(II(m) ) = c(lloo, m) # 0 (i.e., w(Il(m)s) = w(HOC,m) exists) by Thm. 6.6.2. Furthermore we
may take K¢(II(m)s) = Kf(Ily), since |det(Ks(II;))™ = 1. Therefore, we can apply the result proved in
step one to II(m) and obtain

( L(3, T1(m);) )- L oMm)) LG+ m, I
o (T(m) ) w(ll(m)) )~ @ (TT(m) ) w(ll(m) ) @ (7TL(m) ) (Moo, m)

For the last equation, observe that 7(|det|™) = o(|det|)™ = |det|™. Applying Thm. 5.2.1 on period
relations to the algebraic Hecke character | - |™ associated to the twist |det|™ and keeping in mind that
G(| - [7') = 1 gives the theorem in this case.

Step 8: m and x are arbitrary
Finally, let x be any finite-order Hecke character of F'. Applying step two to the twisted representation
II ® x, gives

U L(g +m,1Lr ® xs) _ L( +m, 7Ty ® xs)
Oy @ xp) w(lleo,m) ) WD (T @ o) w(Te, m)

for any critical value £ +m € Crit(II) = Crit(II® x) and o € Aut(C). Here we observe that Il 2 Il ® Xoo,
since x is of finite-order, see Sect. 5.3. The result now follows from Thm. 5.2.1. O
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8. COMPLEMENTA

In this section we give several families of examples to which our main result (Thm. 7.1.2) on L-values
applies. We also comment on the compatibility of this theorem with Deligne’s conjecture on the critical
values of motivic L-functions. Our theorem is also weakly compatible with a conjecture of Gross on the
order of vanishing of a motivic L-function at a critical point.

8.1. The symmetric cube L-functions for Hilbert modular forms.

8.1.1. In this section we want to construct a family of examples for Thm. 7.1.2 starting from Hilbert modular
forms. For a d-tuple k = (ky)ves. € Z¢ with k, > 1 and an integral ideal n C O of F, let Mj,(n,@) be the
space of holomorphic Hilbert modular forms of level n and character @. The subspace of cuspidal holomorphic
Hilbert modular forms is denoted Sk(n,@). To each primitive cusp form f € Si(n,&) we can associate a
cuspidal automorphic representation 7 (f) of GLy(A) with archimedean component

T(f)oe = X) D(ky —1).
VES
All details concerning this construction may be found in Raghuram-Tanabe, [50, Sect. 4] to which we refer.
We write wy(s) for the central character of 7(f). Let ko (resp., k) be the maximum (resp., the minimum)
of all k,, v € Sy and set
Ti=n(f)®]-|F/2,
If k, > 2 and k, = k,, (mod 2) for all v,w € S, then 7 is cohomological, cf. [50, Thm. 8.3].

8.1.2. Let Sym® be the a-th symmetric power of the standard representation of GLy(C). By the Local
Langlands Correspondence, see Harris—Taylor [26] and Henniart [27] for the non-archimedean places and
Langlands [40] for the archimedean places, Sym®(7) := @/, Sym®(,) is a well-defined irreducible admissible
representation of GL,11(A). According to Kim-Shahidi, [37, Thm. 6.1], the symmetric cube Sym?(7) of =,
is known to be an automorphic representation.

8.1.3. With this notation in place we obtain the following proposition.

Proposition 8.1.1. Let k = (ky)ves.. € Z% with k, > 2 and k, = k,, (mod 2) for all v,w € So. Let
f € Sk(n,©) be a primitive holomorphic Hilbert modular cusp form and let w(f) be the corresponding cuspidal
automorphic representation of GLa(A). Assume that m(f) is not dihedral and denote by ™ = n(f) @ | - |Fo/2.
Then the symmetric cube transfer

I = Sym®(n)
of ™ is a cuspidal automorphic representation of GL4(A) which is cohomological with respect to a highest
weight module EY., and admits an (n,1)-Shalika model with n = wi(f)\ - |3ko,

wr

Proof. For convenience we divide the proof in three parts.

IT is cuspidal: As we assumed that 7(f) is not dihedral, Sym®(7(f)) is cuspidal unless 7(f) is of tetrahedral
type, cf. Kim—Shahidi [37, Thm. 6.1]. But for 7(f) to be tetrahedral, it is necessary that the local Langlands
parameter of 7(f). has finite image. Using Knapp, [38], we obtain that at each v € Sy this local Langlands
parameter is Indg/ﬂ‘{[(%) kv{l], which has infinite image unless k, = 1 for all v € S. Since we assume that
k, > 2, this shows that Sym® (7 (f)) is cuspidal, and hence IT = Sym? (7(f) ® | - [F/2) = Sym® (= (f))®|-|?k0/2,
is also cuspidal.

II is cohomological: For each v € Sy, let

3(ky — 2) +3ko ko — 2+ 3ko —(ky —2) +3ko —3(ky — 2) + 3ko
My = 9 ) 9 ) 9 ) D)

) = (ky —2)pa + %a

where py is half the sum of positive roots of GL4(R). Then, II, is cohomological with respect to E}, for
all v € S by Raghuram-Shahidi [48, Thm. 5.5] and so, using the Kiinneth rule, II is cohomological with
respect to the highest weight module £, with p = (o) ves.. -
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IT has a (n,)-Shalika model: Let n = (wx(e)| - |*)3. Then one easily checks that n? = wi, so 7 is an
idéle class character as considered in Sect. 2.6. We now show that II has an (7, ¢)-Shalika model. By Thm.
3.1.1, this amounts to proving that the partial L-function L°(s,1I,A> ® n~!) has a pole at s = 1, S being
any finite set of places containing Sr,,. We obtain

N2 (Sym3 (7r(f) ®|- |k°/2)) o A2 (Sym3 (m(f)) @] - |3k°/2)
A2 (Sym® (x(£)) @ | [0 2 (Sym (x(£)) © waqe) Budee) ) @] - [0,
where “B” denotes the isobaric direct sum of automorphic representations. Observe that we have used Kim

[36, Sect. 7] in order to obtain the last line. This shows that A?(I1) @n~! = (Sym4(7r(f)) ® w;(zf)) B1. Now,

Kim [36, Thm. 7.3.2] together with Jacquet—Shalika [32, Thm. (1.3)] shows that L°(s, I, A> ® n~!) has a
pole at s = 1 as desired. (|

A* (1)

Il

IR

Corollary 8.1.2. Thm. 7.1.2 can be applied to any representation 1I = Sym3(7r) as in Prop. 8.1.1. In
particular, if x is a finite-order Hecke character of F, then for all integers m with —’“02—_2 <m+ % < #
the following assertions hold:

(1) For every o € Aut(C),

5 L(3 +m, 1 ® x5) B L(5 +m,1l; ® 7xy)
wED™ (M) G(xs)? w(lloe,m) ) wED™ e (7T0) G(7xf)? w(llag, m)

(2)
_ m,+1€
L(g +m. 1 @ X5) ~ouna @707 (1) Glxy)? w(lleg, m),
where “~q11,,y)” means up to multiplication by an element in the number field Q(IL, n, x).

Proof. This is a direct consequence of Prop. 8.1.1 and Prop. 6.1.1, which implies that the set of critical points
for II is given by

Crit(IT) = Crit( @ x) = {1 +m e L + 2| - 22 < 4 ko < 22}
O

The critical values of symmetric cube L-functions of a Hilbert modular form f have been studied by
Garrett and Harris [17, Thm. 6.2]. They analyzed the critical values of triple product L-functions and
obtained those for symmetric cube L-functions as a by-product. One can use the symmetric cube L-values
as an anchor to deduce certain relations between the top-degree periods of this paper and the Petersson
norm of f. We record such a period relation in the corollary below. For simplicity we work with an elliptic
modular form of even weight k, but the reader should be aware that a similar, but far more tedious, exercise
can be carried through in the Hilbert modular setting.

Corollary 8.1.3 (Period Relations I). Let f € Si(n,@) be a primitive holomorphic elliptic modular cusp
form. Assume (for simplicity) that k is even. Let Il = Sym®(x(f)). Put k' = A lande=ep = (—1)F' 1,
We have
we (Hf) we (ﬂ-(f)f)Z ~Q(w(f)) C(Hoov k,) g(w)78 <fa f>%lasiusﬂ
where (£, £)Blasius 8 the Petersson norm of f normalized as in Blasius [8§].
Proof. Consider the triple product L-function L(s,f x f x f) as defined in [17, Introduction]. We have
L(s, £ x £xf) = L(s— 2520 () s x n(f); x w(f))
k— k— ~
= L(s— 2D 1) L(s — 2N n(f); @ @)%

Put s = 2(k — 1), which is the right—most critical point of L(s,f x f x f); see [17, (6.4.1)]. Using (6.4.2)
and (6.4.3) of [17] we obtain

L(S,f x f x f) ~Q(n(f)) (27ri)2(k_1) g(dj)_ﬁ <f7f>?])31asius'
(Note that the Gauss sum G(@) of [17] is our G(@ ™) ~g@) G(@) 1)
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On the other hand, by the above Corollary for IT = Sym® (7 (f)), and noting that s — @ at s =2(k—1)
is nothing but 3 + &', we get
L(% + k/, Hf) NQ(ﬂ'(f)) wE(Hf) w(HOO, kj/)

By using Shimura’s classical theorem on the critical values for L(s — 3k-1) 7(f)y ® @), in the form stated

2
in [50, Corollary 1.3], we obtain furthermore

L(z + K, m(f); @ ®)* ~qeary (2m)2 D wi(n())? G(@)°.
The corollary now follows keeping in mind that w(Ily, k')~ = c(Il, k'), cf. Sect. 6.6. O

By working with the critical point m = 2k—3, which is next to the right-most critical point of L(s, f xfxf),
one may deduce a similar relation for w™¢(II;) w=¢(7(f) s)?. We leave the details to the reader.

8.1.4. Higher symmetric powers. The entire discussion may be generalized to higher symmetric powers.
Let II, := Sym® ™! (x) for r > 2. Criteria for II, being cuspidal automorphic are not yet known in all
generality; however, there are some very interesting results due to Ramakrishnan [52]. Assuming Langlands
Functoriality, 1L, should at least always be automorphic.

Proposition 8.1.4. Let k = (ky,)ves.. € Z¢ with k, > 2 and k, = k,, (mod 2) for all v,w € S. Let f €
Sk(n, @) be a primitive holomorphic Hilbert modular cusp form, n(f) the corresponding cuspidal automorphic
representation of GLa(A) and write 7 = 7(f) @ | - [Fo/2. The odd symmetric power transfer

IT, = Sym* ™! (n), r>2,
of m is an irreducible admissible representation of GLo(,41)(A) which is cohomological with respect to a highest
weight module E),. Assume furthermore that 11, is cuspidal automorphic and Sym* "~ (x(£)), 0 < a <r, is
an isobaric direct sum of unitary cuspidal automorphic representations. Then, 11, admits an (n,1)-Shalika

model with n = wi?ﬁ . |(2T+1)k“. In particular, Thm. 7.1.2 can be applied to the odd symmetric power

transfer 11, = Sym* ™ (x), r > 2.

Proof. For each v € S, let

Hoy = (kv - 2)p2(r+1) + %a

where po(,41) is half the sum of positive roots of GLy(,41)(R). Then, II, is cohomological with respect to
E} for all v € So by Raghuram-Shahidi [48, Thm. 5.5] and so, using the Kiinneth rule, II is cohomological
with respect to the highest weight module E}, with p = (ttv)ves,,- A similar calculation as in the proof of
Prop. 8.1.1 shows that

/\Q(HT) = A2 (Sym2r+1 (71')) o (EHZZOSymA‘(T_“) (ﬂ(f)) ® wiz(z;;l) ® | . ‘(2r+1)k0.

Hence, by Jacquet—Shalika [32, Thm. (1.3)] and Thm. 3.1.1, II, has an (7,)-Shalika model with n =
w2?$1 "(2r+1)k0. ([l

8.2. Rankin—Selberg L-functions for GL3 x GLs.

8.2.1. We describe another class of examples where our theorem applies, and this concerns Rankin—Selberg
L-functions for GL3 x GLg via transfer to GLg. Let F be totally real as before, and 7 = ®!m, (resp.,
T = ®!7,) be a unitary cuspidal automorphic representation of GL3(A) (resp. GLa(A)). For each place v
of F, let m, ¥ 7, be the irreducible admissible representation of GLg(F,) attached to 7, ® 7, via the Local
Langlands Correspondence ([26], [27], [40]). Then, IT := 7 X 7 is an irreducible admissible representation of
GLg(A), which by Kim—Shahidi [37, Thm. 5.1], is automorphic. Recall also the symmetric square transfer,
cf. Sect. 8.1.2. By Gelbart—Jacquet [18] it assigns to each unitary cuspidal automorphic 7 as above an auto-
morphic representation Sym?(7) of GL3(A).

Let v € Swo. We say that 7, is cohomological with respect to a highest weight module EY, = of GL3(R) if
H(gl3(R), O(3)Ry, m, ® E), ) # 0 for some ¢. Similarly, we say that 7, is cohomological with respect to
El, p= (ty)ves., , if ™, is cohomological with respect to E} forall v € Sw. Observe that 7, being unitary
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implies that 1, = (f.1,0, —pe,1) € Z3. Putting £, := 24, 1 + 2, we obtain that 7, is necessarily isomorphic
to

~ GL3(R Ev
Ty = Indp(;’l() (])R) [D(eu) 02y Sgnv }

for a uniquely defined e, = €, (p,,) € {0,1}. For this, see, for instance, [41, Sect. 3.1] or [48, Sect. 5.1].

8.2.2. With this setup in place we obtain the following proposition.

Proposition 8.2.1. Let m (resp., 7) be a unitary cuspidal automorphic representation of GL3(A) (resp.,
GL2(A)). Let m be cohomological with respect to Ey,, p = (t)vesa, o = (H,1,0, —f1v,1), and let T be
cohomological with respect to EY, X = (Ay)ves., Ao = (Av,1,—Av,1). (Note that the unitarity of 7 and T
forces the weights p and X to be self-dual and hence to be of the above form.) Put £, = 2u,1 + 2 and
0, =2\, 1+ 1. Let w. be the central character of T. Assume furthermore that

(1) 7 is not dihedral and 7 is not a twist of Sym?(7).

(2) Too and T are “sufficiently disjoint”, i.e., £, > £, and £, # 20, for all v € S.

(3) m is essentially self-dual; say T ~ T & Xr.
Then 11 = 7 X 7 is a cohomological cuspidal automorphic representation of GLg(A) which has an (n,)-
Shalika model for n = w,x,;* Further, the standard L-function L(s,11) of 11 is the Rankin-Selberg L-function
L(s,m x T) of the pair (7, 7).

Proof. For convenience, we divide the proof into four parts:

IT is cuspidal: This follows from the cuspidality criterion [53, Thm. 3.1(a)] of Ramakrishnan-Wang for the
Kim—Shahidi transfer: The hypothesis that 7 is not dihedral and that 7 is not a twist of the Gelbart—Jacquet
transfer of 7 guarantees cuspidality of the transfer II.

IT is cohomological: Recall from Sect. 3.4 and from Sect. 8.2.1 above that for each v € So, we have

GL3(R)

Ty = IndP(z,l)(R)

[D(4,) ®sgni?] and 7, = D(L,),

This shows that

I, = Indg® (D(6, + €,) © D6, — £,) © D(L,)].
Now one can check that I, is regular algebraic, i.e., cohomological (cf. Rem. 3.4.4) if ¢, > ¢/ and ¢, # 20,
for all v € Se.

II has a (n,)-Shalika model: We show that the n~!-twisted partial exterior square L-function of I has a
pole at s = 1. This hinges on the following easy identity in linear algebra: Let V and W be finite-dimensional
vector spaces over some field then

NV W)= (Sym*(V) @ A?W) @ (A’V @ Sym*(W)).

Applying this to a local unramified place v of F, we see the following factorization of partial L-functions for
any finite set of places S containing St

(8.2.2) L, N2 @ ) =L%s,r@7,Sym*> @ A2 @n 1) - L¥(s,m@ 7, A2 ® Sym? @ n71).
But A%7 is nothing but the central character w, of 7, hence the first factor of the right hand side of (8.2.2)
may be rewritten as
L¥(s,m, Sym? @ w,n ') = L (s, 7, Sym® © xx),
which has a pole at s = 1, since we assumed that 7¥ = 7 ® x. Indeed, as 7 is essentially self-dual,
L(s, " x m) = L¥(s,m,Sym? ® xx) - L% (s, 7, A* @ xx)
has a pole at s = 1. But since 7 is on GL3, we have
L3(s,m, A2 @ xx) = L5 (5, @ waXxr) = L5 (5,7 @ wax?),

which is entire by the cuspidality of m. Hence, the pole at s = 1 of L%(s,7" x 7) must come from
L7(s,m,Sym? @ xx).
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Now let us look at the second factor on the right hand side of (8.2.2). Since 7 is not dihedral, the
symmetric square transfer Sym?(7) of 7 is cuspidal by Gelbart-Jacquet [18, Thm. 9.3]. Moreover, since 7 is
on GLg, as above, we have A%2m = ¥ ® wy = T ® Xrwx. Hence, the second factor is the same as

L5(s,m x Sym*(7) @ Xpwan~ ') = L (s,m x (Sym*(7) ® B))
for the unitary character 8 = x2w,w; 1, i.e., it equals the partial Rankin-Selberg L-function for GL3 x GL3
attached to the unitary cuspidal automorphic representations 7 and Sym2(7) ® B. The second factor is
therefore non-vanishing at s = 1 by Shahidi [54], Thm. on p. 462. We conclude that L°(s,II, A2 ® ') has
a pole at s = 1. It follows from the equivalence of (i) and (iii) of Thm. 3.1.1 that II has an (7, ¢)-Shalika

model. Compare these considerations to Gotsbacher—Grobner, [20], Sect.s 4.2 and 4.3.

Equality of L-functions: Finally, the equality of L(s,II) and L(s, 7 x 7) is proved in 37|, Prop. 5.8. O
Corollary 8.2.3. Thm. 7.1.2 can be applied to any representation Il = 7X7 as in Prop. 8.2.1. In particular,
if X is a finite-order Hecke character of F, then for all % + m € Crit(II), the following assertions hold:

(1) For every o € Aut(C),
a( L(3+m,mp x 75 @ Xx7) ) _ L(% +m, %y X o1y ® °X5)
wD"ex () G(x£)? w(llos, m) wD"ex (711 ) G(7x )3 w(llo, m)

(2)
L3 +m,mp x1r@Xy5) ~oanas @00 %(1f) Gxs)® wlle, m),
where “~q1,y,x)” means up to multiplication by an element in the number field Q(II, 7, x).

In Raghuram [47], for F = Q, another type of periods p*(7¢), p~ (7f) and poo(pt, A) was introduced for
cuspidal automorphic representations m and 7 as above — the latter one exists thanks to Kasten—Schmidt
[34, Sect. 4]. This was done by considering cohomology in bottom-degree. Using the results obtained in [47],
we get another corollary, which compares our top-degree (Shalika—)periods for II with the bottom-degree
(Whittaker—)periods of 7 and 7.

Corollary 8.2.4 (Period Relations IT). Let F = Q and let w, u, 7, A and Il = 7« X 7 be as in Prop. 8.2.1.
We get the following relation:

wee (Hf) oJ(l_loo) ~Q(w,T,n) p+ (7Tf )pi (Tf)g(wa )pOO (ILL7 )‘)7

where Q(,7,m) is the composition of the rationality fields of m, T and n and the rest of the notations are as
in [47].

Proof. This follows directly from comparing the algebraicity results for L(,1I) = L(3,m x 7) given by

Theorem 7.1.2 for L(3,1I) and by [47, Theorem 1.1] for L(%, 7 x 7). O

8.2.3. Rankin—Selberg L-functions for GL,, x GL,_1. We would like to point out that — similar to the case
of Sym? — the entire discussion in this section may be generalized, assuming Langlands Functoriality, to the
situation where 7 (resp., 7) is a unitary essentially self-dual cuspidal automorphic representation of GL,,(A)
(resp., GL,,—1(A)) such that one of them is of symplectic type and the other of orthogonal type and for
which the transfer IT = 7 X7 is cuspidal as a representation of GL,,—1)(A). The same remark applies to the
corollary on period relations, if one additionally assumes the validity of Hypothesis 3.10 of [47]. However,
as pointed out by Sun [56], p. 4, this hypothesis may soon be proved to hold, applying similar techniques as
used in the proof of [56] Thm. C.

8.3. Degree four L-function of a Siegel modular form. In this section we let F' = Q. Let ® be
a non-zero holomorphic cuspidal scalar-valued Siegel modular eigenform of degree 2, weight ¢ and of full
level, i.e., for the full modular group Sp,(Z). (Existence of such a ® implies ¢ > 10.) Let 7 = 7(®) be
the cuspidal automorphic representation of GSp,(A), associated to ® as in [3, Thm. 2]. Then 7 has trivial
central character, is unramified everywhere, and the representation m., at infinity is a holomorphic discrete
series representation. The representation 7 is not globally generic since 7o, is not generic, hence 7 does not
come under the purview of “generic-transfer” from GSp, to GL4 of Asgari—Shahidi [4, Prop. 7.8].



34 HARALD GROBNER AND A. RAGHURAM

However, under the assumption that ® is not of Saito-Kurokawa type (i.e., 7 = 7(®) is not CAP with
respect to the Siegel parabolic subgroup or the Borel subgroup of GSp,), Pitale-Saha—Schmidt [46] have
recently proved the existence of the “non-generic-transfer” to a representation II = TI(®) of GL4(A). Tt
follows from [46] that II = II(®) is a cuspidal automorphic representation whose exterior square L-function
has a pole at s = 1. Hence, by Theorem 3.1.1, we get that II has a (1,1)-Shalika model. Next, the Langlands
parameter of I, described in [46], is the representation

Id2[(2)#] @ Indl2[(2) 57

3 ]
It is easy to see then that II,, = Indg%ﬁ)(m [D(2¢ — 3) @ D(1)] is cohomological with respect to E}, with
w=(£—3,0,0,—(£—3)), cf. Sect. 3.4. All these observations collectively say that II = II(®) is a representation
to which our main theorem on special values, Thm. 7.1.2, applies. The standard L-function of II is the
degree four spinor L-function of ® and so we get a description of the critical values of twisted degree four
L-functions of @ in terms of the top-degree periods w(Ily) of the transferred representation. We record this
as the following corollary to Thm. 7.1.2.

Corollary 8.3.1. Let FF = Q and let ® be a non-zero holomorphic cuspidal scalar-valued Siegel modular
eigenform of degree 2, weight £ and for the full modular group Sp,(Z). Let 11 = TI(®) be the cuspidal
automorphic representation of GL4(A) attached to ® by Pitale-Saha—Schmidt [46]. For any finite-order
Hecke character x of Q the following assertions hold:

(1) For every o € Aut(C),

( L(5, 1y ® xy) ) _ L(3, Ly @ °xy)
w™(Mf) G(xf)? w(lls) w=x (7TL) G(ox f)? w(llog) |

(2)
L(z: 00y @ xg) ~ouy @ ([17) G(xs)? w(llso),
where “~q,y) " means up to multiplication by an element in the number field Q(IL, x).

Note that L(s,II; ® xy) has only one critical point, namely s = 1. This follows from the Prop. 6.1.1,

recalling that II is cohomological with respect to E,, = E), with p= (£ —3,0,0,—(£ — 3)).

Remark 8.3.2 (Period relations III). The critical values of degree four L-functions for GSp(4) have been
studied by Harris [25]. The periods appearing therein come via a comparison of rational structures on Bessel
models and rational structures on coherent cohomology. Using the L-values as an anchor, one may compare
the whimsically titled “occult” periods of Harris with the top-degree periods in this paper in the situation
where the representation of GSp, comes from a Siegel modular form ® as considered above.

Remark 8.3.3. With the current state of Langlands functoriality we can only deal with Siegel modular forms
of genus 2 and full level, however, it is clear that the entire discussion in this subsection can be generalized to
give algebraicity results for the degree four L-functions for holomorphic Hilbert-Siegel modular cusp forms of
genus 2 and arbitrary level. Further, although we did not work out the details, using Arthur’s classification
of the discrete spectrum for classical groups (see [1]), one should be able to get algebraicity results for spinor
L-functions for certain representations of the split group SO(2n + 1) over a totally real field.

8.4. Compatibility with Deligne’s conjecture. Given a critical motive M, a celebrated conjecture of
Deligne [14, Conj. 2.8] relates the critical values of its L-function L(s, M) to certain periods that arise
out of a comparison of the Betti and de Rham realizations of the motive. One expects a cohomological
cuspidal automorphic representation IT to correspond to a motive M (IT) and under this correspondence the
standard L-function L(s,II) is the motivic L-function L(s, M (II)) up to a shift in the s-variable; see Clozel
[13], Sect. 4. However, with the current state of technology, it seems impossible to compare our periods
w(Il;) with Deligne’s periods ¢* (M (I1)). Blasius [9] and Panchishkin [45] have studied the behaviour of
Deligne’s periods upon twisting the motive by a Dirichlet character (more generally by Artin motives). Using
Deligne’s conjecture, they then predict the behaviour of critical values of motivic L-functions upon twisting
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by Dirichlet characters. For a critical motive over QQ, assumed to be simple, and of rank 2n this prediction
looks like

L(m, M ®xy) ~q@rx) Lm, M)G(xy)".
Observe that no periods need to be mentioned to make such a statement about L-values. Our Thm. 7.1.2

is compatible with Deligne’s conjecture in the sense that an analogous relation holds between critical values
of L(s,II) and L(s,II® x).

Corollary 8.4.1. Let F be a totally real number field and G = GLa,/F, n > 1. Let 1l be a cuspidal
automorphic representation of G(A), which is cohomological with respect to a highest weight representation
E} of G and which admits an (n,1)-Shalika model. Let x be a Hecke character of F' of finite order and
let & 4+ m € Crit(II) = Crit(IL® x). We have

L(z +m, Iy @ xf) ~oumyy LG +m )G 0xs)"

8.5. Compatibility with Gross’s conjecture. A conjecture due to Gross [14, Conj. 2.7(ii)] says that the
order of vanishing of a motivic L-function at a critical point is independent of which conjugate of the motive
we are looking at, i.e., if M is critical, then ords—oL(s, o, M) is independent of the embedding o : Q(M) — C.
We are unable to say anything about the “order” of vanishing, however, it follows trivially from Thm. 7.1.2
that the property of vanishing is independent of which particular conjugate of the representation we consider.

Corollary 8.5.1. Let F' be a totally real number field and G = GLa,/F, n > 1. Let II be a cuspidal
automorphic representation of G(A), which is cohomological with respect to a highest weight representation
E}, of Goo and which admits an (n,v)-Shalika model. Let x be a finite-order Hecke character of F and let
2 4+ m € Crit(Il) =Crit(I1 ® x). Then for o € Aut(C),

Lz +mI;@xs) =0 <= L(&+m, ;%) =0.

APPENDIX: ARITHMETICITY FOR SHALIKA MODELS

by Wee Teck Gan
The purpose of this appendix is to prove Thm. 3.6.2. More precisely, we show:

Theorem. Let I be a cohomological, cuspidal automorphic representation of GLan(A) which admits an
(n,¢)-Shalika model, then for any o € Aut(C), °II admits a (°n,)-Shalika model.

Proof. Since II has (1, ¢)-Shalika model, it follows by Thm. 3.1.1 that L%(s,II, A2®7~!) has a pole at s = 1,
and thus IV = 11 ® n~!. Further, the reader is reminded of Lem. 3.6.1 which says that all the archimedean
components of 7 are equal to sgn”| |*. Now, we note the following:

e By recent results of Asgari-Shahidi [4, 5] and Hundley—Sayag [29], II is a Langlands functorial lift
of a cuspidal representation of GSpin,,, ,(A) with central character 7. See Prop. 3.1.4. Moreover,
the lift is strong at the archimedean places, i.e., for each archimedean place, the L-parameter ¢, of
I1, factors through the dual group GSp,,, (C) of GSpiny,, ,; with similitude character 1,,.

e For any o € Aut(C),
Y T @ %L,
and thus
L5(s,°TI® Tl @ %) = L5(s, °I1, Sym? ® %~ 1) - LS (s, 1L, A2 @ 1)
has a pole at s = 1.

To prove the theorem, we need to show that the Sym? L-function does not have a pole at s = 1. Suppose
for the sake of contradiction that L5 (s, °II, Sym? ® %y~ ') has a pole at s = 1. Then by Asgari-Shahidi [4, 5]
and Hundley—Sayag [29], one knows that °II is a Langlands functorial lift from a cuspidal representation of
GSpin,,, (A) with central character “n, and this lift is strong at the archimedean places. Since the archimedean
components of ?II and ?n are, by definition, permutations of the archimedean components of II and 7, we
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deduce that for all archimedean places v, the L-parameter ¢, of II, factors through the dual group GSOa,,(C)
of GSpin,,, with similitude character 7,.

As a result, for each archimedean place v, the L-parameter ¢, of 1L, preserves both a non-degenerate
symmetric bilinear form b; and a non-degenerate skew-symmetric bilinear form by on C?" up to the same
similitude character 7,. However, since 11, is cohomological, it follows from (3.4.1) that ¢, is a direct sum
of (2-dimensional) irreducible representations ¢;, of the Weil group Wpg,, and each ¢;, is not a twist of
another ¢;,. This shows that b; and by must remain non-degenerate when restricted to each ¢;,. This
gives two W, -equivariant isomorphisms ¢} , & ¢;, @1, 1. Since ¢;, is irreducible, this contradicts Schur’s
lemma. (Il

The reader should see Gan-Raghuram [16], where the above result is put into a broader context of
arithmeticity for periods of automorphic forms.
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