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Abstract

The SLIT2-ROBO1/2 pathways control diverse biological processes, including growth regulation. To understand the role of
SLIT2 and ROBO1/2 in cervical carcinogenesis, firstly their RNA expression profiles were screened in 21 primary uterine
cervical carcinoma (CACX) samples and two CACX cell lines. Highly reduced expressions of these genes were evident.
Concomitant alterations [deletion/methylation] of the genes were then analyzed in 23 cervical intraepithelial neoplasia (CIN)
and 110 CACX samples. In CIN, SLIT2 was deleted in 22% samples compared to 9% for ROBO1 and none for ROBO2, whereas
comparable methylation was observed for both SLIT2 (30%) and ROBO1 (22%) followed by ROBO2 (9%). In CACX, alteration
of the genes were in the following order: Deletion: ROBO1 (48%). SLIT2 (35%). ROBO2 (33%),Methylation: SLIT2 (34%).
ROBO1 (29%) . ROBO2 (26%). Overall alterations of SLIT2 and/or ROBO1 (44%) and SLIT2 and/or ROBO2 (39%) were high in
CIN followed by significant increase in stage I/II tumors, suggesting deregulation of these interactions in premalignant
lesions and early invasive tumors. Immunohistochemical analysis of SLIT2 and ROBO1/2 in CACX also showed reduced
expression concordant with molecular alterations. Alteration of all these genes predicted poor patient outcome.
Multiparous ($5) women with altered SLIT2 and ROBO1 along with advanced tumor stage (III/IV) and early sexual debut
(,19 years) had worst prognosis. Our data suggests the importance of abrogation of SLIT2-ROBO1 and SLIT2-ROBO2
interactions in the initiation and progression of CACX and also for early diagnosis and prognosis of the disease.
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Introduction

On worldwide basis, uterine cervical carcinoma (CACX) is the

second common gynecological cancer, mostly afflicting the

developing nations like India [1–3]. Among Indian women CACX

ranks second, next only to breast cancer [4]. High-risk Human

Papilloma Virus (HPV) is an important etiological agent associated

with CACX [5]. It is transmitted sexually and is consequently

ubiquitous among sexually active women. Therefore determinants

of sexual activity namely; parity, age at sexual debut etc

significantly predicts the risk to CACX [6]. Existing evidences

indicated an intricate interplay between HPV infection and

genetic alterations that critically contributes towards cervical

carcinogenesis [7].

Different chromosomal abnormalities namely; deletion, ampli-

fication, rearrangement etc involving several chromosomal regions

were reportedly associated with the development of CACX [7–

11]. Our previous study reported frequent deletion (35–38%) and

methylation (52%) of SLIT2, located at chr. 4p15.31, in CACX of

Indian patients [12]. Whereas, predominant hypermethylation

(64%) and infrequent deletion (9%) of the same was reported in

CACX of Western patients [13]. In normal non-neuronal cells,

SLIT2 is a secreted tumor suppressor protein that through binding

of its cognate receptors ROBO1/2 and via inhibition of WNT,

SDF1 and HGF signaling regulates multiple cellular processes

namely; cell cycle, apoptosis, cell-cell adhesion, cellular motility

and invasion etc [14]. Interaction between SLIT2 and ROBO1/2

causes activation of srGAP molecules and consequent inactivation

of CDC42 (by hydrolysis of bound GTP), leading to cell cycle

arrest at G1-S transition [14]. Similarly, SLIT2-ROBO1/2

interaction relieves the inhibition on DCC receptors by ligand

Netrin-1, leading to activation of apoptosis via caspases-3 and 9

[14]. In the event of abrogation of SLIT2 and ROBO1/2

interactions the cellular surveillance posited in the form of G1-S

checkpoint and apoptosis gets aberrant, giving rise to mutated

forms that has the property of conferring greater growth
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advantage to the cells. This ultimately results in uncontrolled

cellular proliferation and promotion of tumorigenesis.

Alike SLIT2, frequent methylation (46%) and nominal deletion

(10%) frequencies of ROBO1 was reported in CACX of Western

patients [13]. To the best of our knowledge, alterations of ROBO1

have not been studied in CACX of Indian patients. In addition

alterations of ROBO2 localized 1.3 Mb telomeric to ROBO1 at chr

3p12.3 region, have not been studied in details in CACX, though

its alterations have already been reported in head & neck

squamous cell carcinoma [HNSCC] [15].

Intron2 of ROBO1 harbors two non-coding RNAs [ncRNAs;

BC017743 and BC043430], suggesting their probable role in

modulating the expression of ROBO1. The expression pattern of

these ncRNAs in CACX has not yet been studied but their

differential expression has been detected in various carcinomas

like; lung, breast, oral etc [15,16].

Therefore, to understand the importance of SLIT2-ROBO1/2

pathway in the development of CACX, it is pertinent to analyze

the alterations of these genes in the same set of samples. Thus our

study has been focused on the following aspects: (i) quantitative

mRNA expression analysis, (ii) alteration (deletion/methylation)

analysis and (iii) correlation of molecular alterations of the genes

with clinico-pathological parameters (stage, nodes at pathology,

HPV status, parity etc) and patient outcome. Our data revealed

reduced expression and frequent alterations (37–55%) of SLIT2

and ROBO1/2 in primary cervical lesions. In addition, 84% and

80.5% samples showed co-alterations of SLIT2-ROBO1 and

SLIT2-ROBO2 pairs respectively, indicating the importance of

these ligand-receptor interactions in cervical carcinogenesis.

Moreover Cox multivariate analysis revealed alterations of SLIT2

and ROBO1, in combination with advanced tumor stage (III/IV),

multiparity ($5) and early sexual debut (,19 years) as

determinants of worse prognosis.

Materials and Methods

Ethics Statement
The Institutional Ethical board of Chittaranjan National

Cancer Institute, Kolkata approved the usage of Human speci-

mens in this study. The above board approved usage of these

human clinical samples specifically in this study, pertaining to the

involvement of SLIT2-ROBO1/2 signaling in CACX. The tumor

specimens were collected from the hospital section of Chittaranjan

National Cancer Institute, Kolkata, after obtaining written,

informed consent of the concerned patients, in stipulated format,

approved by the above mentioned Institutional Ethical board of

Chittaranjan National Cancer Institute, Kolkata, India.

Clinical Specimens and Cell lines
This study included a total of 133 primary cervical lesions and

corresponding peripheral blood lymphocytes (PBL) collected from

the hospital section of Chittaranjan National Cancer Institute,

Kolkata, after institutional consent. The tumors were graded or

staged according to FIGO classification. Among these samples, 23

were premalignant/CIN lesions (10 low grade CINI and 13 high

grade CINII/III), 56 stage I/II tumors and 54 stageIII/IV tumors

(Table 1). The normal cervical tissues (n = 8) were collected from

patients with clinically normal cervix, but underwent hystectomy

due to other gynecological reasons. These served as controls for

RNA/protein study. The tissues (normal/tumors) were either

frozen to 280uC or taken in TRIzol reagent (Invitrogen, USA) for

RNA isolation or fixed in formalin and paraffin embedded for

Table 1. Clinico-pathological features of cervical lesions.

Clinical features No of Patients Mean age (yrs) HPV Positivity P-value

HPV + HPV - % positivity

Tumor stage 1

CIN 23 36 20 3 87 0.9962

Stage-I 33 47 28 5 85

Stage-II 27 46 24 3 89

Stage-III 43 47 37 6 86

Stage-IV 7 50 6 1 86

Tumor differentiation

Dysplasia 23 36 20 3 87 0.9491

Well 15 48 13 2 87

Moderate 80 45 69 11 86

Poor 15 44 13 2 87

Lymph node

Node+ 32 45 28 4 87.5 0.8450

Node- 101 46 87 14 86

Parity (Live births only)

Low (0–4) 80 48 68 12 85 0.5451

High ($5) 53 47 47 6 89

Age at sexual debut

Early (12–19 y) 73 42 62 11 85 0.5696

Late (.19 y) 60 45 53 7 88

1According to The international federation of gynecology and obstetrics (FIGO) classification.
doi:10.1371/journal.pone.0038342.t001

Frequent Alterations of SLIT2-ROBO1/2 in CACX
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immuno-histochemistry (IHC). Clinical/follow-up data of the

patients were collected from the hospital records. Demographic

details were obtained by personally questioning the patients.

The CACX cell lines: SiHa and HeLa were purchased from

National Centre for Cell Sciences, Pune, India and were grown

according to supplier’s instructions.

RNA Expression Analysis
Expression of ROBO1/2, SLIT2 RNAs and the ncRNAs were

analyzed by Q-RT PCR in normal cervical tissue (n = 8), CACX

samples (#T1–#T21) and cell lines: SiHa and HeLa, using

primers given in Table S1. RNA isolation and cDNA preparation

were done as outlined by Mitra et al (2010) [17] and Information

S1. The real time quantitation of RNA expression was done by

Power SYBR-green PCR assay (Applied Biosystems, USA) using

ddCt method [18,19]. The b2-microglobulin was used as the

internal control. Details of this method have been included in

Information S1.

5-aza-dC Treatment of SiHa and HeLa
HeLa and SiHa cell lines were grown in presence and absence

of 5-Aza-29-deoxycytidine (5-aza-dC) for 3–5 days at 5 mM,

10 mM and 20 mM concentrations. The cells were harvested

followed by RNA isolation, cDNA preparation and real time

quantitations using Power SYBR-green PCR assay according to

protocols described above [18,19].

Microdissection and DNA Extraction
The clinical specimens comprising mostly of biopsy/surgical

materials, were frozen, sectioned in cryomicrotome (5 mm), stained

with hematoxylin-eosin and then the contaminant normal cells

were removed by microdissection [20] under dissecting micro-

scope (Leica MZ 16, Germany). Microdissected samples contain-

ing .60% dysplastic epithelium/tumor cells were taken for DNA

isolation according to the standard procedure [20,21]. Details in

Information S1.

Promoter Methylation Analysis
Methylation sensitive restriction analysis (MSRA) was per-

formed to screen promoter methylation status of SLIT2 and

ROBO1/2 in a cohort of 23 CIN and 110 CACX samples using

primers listed in Table S1 [22]. Among these samples, 17 CIN and

41 CACX samples have already been analyzed for SLIT2

methylation by a previous study of our laboratory [12]. The

methylation sensitive HpaII and its methylation insensitive

isochizomer MspI have been used in the analysis. The b-3A
adaptin gene (K1) was used as digestion control and RARb2 (K2)

served as the control for DNA integrity [22].

Methylation analysis was validated in 20 (2 CIN and 18 CACX)

randomly selected samples by methylation-specific-PCR (MSP)

after bisulphite modification of DNA using primers listed in Table

S1B. The genomic DNA (5 mg) was subjected to bisulphite

modification followed by PCR amplification of the modified DNA

using primers for non-methylation (U) or methylation (M) specific

alleles [23]. Details of MSRA/MSP protocols have been included

in Information S1.

Deletion Analysis
Deletion of the ROBO1/2 and SLIT2 loci were done in 23 CIN

and 110 CACX samples, using microsatellite and exonic markers

[12,15]. Among these, 17 CIN and 41 CACX samples were

previously analyzed only (not ROBO1/2) for SLIT2 deletion [12].

In total, 6 microsatellite and 2 exonic markers [(Ensembl release

49; Genome Database); Details in Table S1] were chosen. Among

them D3S3507, D3S1274 and D4S1546 were informative (high

polymorphic) and the rest were non-informative. The details of the

deletion analysis have been included in Information S1. Scoring of

loss of heterozygosity [LOH]/deletion and microsatellite size

alteration [MA] for informative/non informative markers were

done according to standard protocols [12,20,24] Details in

Information S1.

Immunohistochemical and Immunocytochemical
Analysis
Protein expression of ROBO1/2 and SLIT2 was studied by

immunohistochemistry (IHC) in normal cervical tissue (n = 8) and

primary CACX (n=15) using primary antibodies [Goat poly-

clonal IgG sc-16611, sc-16615 and sc-16619 for ROBO1,

ROBO2 and SLIT2 respectively] and HRP-conjugated rabbit

anti-goat secondary antibody (sc-2768) from Santa Cruz Bio-

technology, CA, USA, following standard protocols (Information

S1). The scoring of staining frequency and intensity was done

according to Perrone et al [2006] [25]. The expression of these

proteins in SiHa and HeLa cells were studied by immunocyto-

chemistry. The cells were cultured on coverslips till sub-

confluency, fixed with methanol, blocked with BSA, incubated

with respective primary antibodies (as above) followed by

fluorescein isothiocyanate (FITC)-conjugated secondary antibody

(sc-2777), washed and briefly incubated with DAPI (sc-3598) and

subsequently mounted on slides, viewed and photographed by

fluorescence microscope (Leica DM 4000B; Germany) [17].

Detection of HPV-16 and HPV-18
Presence of HPV in the cervical lesions were detected by PCR

using primers (MY09 and MY11) from the consensus L1 region

followed by typing of HPV 16/18, frequent oncogenic variants, in

the L1 positive samples [26].

Statistical Analysis
The x2 analysis determined the association of genetic profile of

tumors (alteration of ROBO1/2, SLIT2) with different clinico-

pathological parameters. Survival curves were obtained according

to Kaplan–Meier method. Cox proportional hazards regression

model predicted the significant determinants (genetic/epidemio-

logical) of patient’s survival. Overall survival (OS) was measured

from the date of surgery to the date of most recent follow-up or

death (upto 5 years). Consistent follow-up records were available

for 86 CACX patients with mean and median follow-up of 14610

months and 10 months respectively. Only these patients were

included in the Cox and Kaplan–Meier survival analyses.

Probability value (P-value) #0.05 was considered statistically

significant. SPSS was used to perform all the statistical analyses

(SPSS Inc. Chicago, IL, USA).

Results

Expression Pattern of SLIT2 and ROBO1/2 in CACX
In quantitative RT-PCR analysis, fold reduction in expression

of the genes in CACX were in the following order: SLIT2

(8.865.2) . ROBO1 (862.3) . ROBO2 (7.465.6). About 48–57%

tumors showed reduction greater than the mean value of

expression of the respective genes (Figure 1A,B). Similar trend

(except for ROBO1) was observed for the CACX cell lines SiHa

and HeLa, in the following order: SiHa: SLIT2 (38 folds) .

ROBO2 (29 folds), HeLa: ROBO2 (80 folds) . SLIT2 (2.8 folds)

(Figure 1A,B). Thus, transcriptions of SLIT2 and ROBO1/2 were

severely impaired during cervical carcinogenesis.

Frequent Alterations of SLIT2-ROBO1/2 in CACX
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Similarly the expressions of the two ncRNAs were also reduced

in both primary CACX and cell lines in the following order:

BC043430 (5.863.14) . BC017743 (362.9) (Figure 1A,B). The

ncRNA BC017743 showed 2 folds reduction in SiHa and

BC043430 showed 26 folds reduction in HeLa, though ROBO1

was not reduced in any of the cell lines. A comparison of

expression levels (ddCt) of the ncRNAs versus ROBO1, showed

frequent, relatively more reduced expression of ROBO1 (data not

shown), in the primary tumors. These facts probably suggest that

the ncRNAs and ROBO1 were transcribed from separate

promoters.

Frequent Promoter Methylation of SLIT2-ROBO1/2 in CIN
and CACX
To understand the mechanism of impaired expression of SLIT2

and ROBO1/2 in cervical lesions, the promoter methylation status

of these genes were analyzed. In CIN, methylation frequencies of

SLIT2 (30%, 7/23) and ROBO1 (22%, 5/23) were high, followed

by ROBO2 (9%, 2/23) (Figure 1C, Table S2A,C). In CACX, the

methylation frequencies of SLIT2 (34%, 37/110) and ROBO1

(29%, 32/110) were comparable to CIN, though there was

substantial increase in methylation frequency of ROBO2 (26%, 29/

110) (Figure 1C, Table S2B,D). In SiHa and HeLa cells, ROBO2

was methylated, whereas SLIT2 was methylated only in SiHa.

Methylation of ROBO2 in CACX was not reported earlier. The

promoter methylation statuses of the ligand-receptor genes were

confirmed in 20 (2 CIN and 18 CACX) randomly selected samples

by MSP and the results were concordant with MSRA (Figure 1C3,
Table S5).

About, 15.5% (17/110) and 13% (14/110) of the CACX

samples showed methylation exclusively for ROBO1 and ROBO2

respectively, indicating that none of the events were epiphenom-

ena (Table S2B). However, significant association was also found

between the methylation statuses of ROBO1 and ROBO2 in both

CIN and CACX (Table S3A), suggesting their possible coopera-

tivity during cervical carcinogenesis.

In case of SLIT2 and ROBO1 methylation was frequent (20–

30%) in premalignant CIN lesions and remained comparable

thereafter (Figure 2D). However, the methylation frequency of

ROBO2 increased gradually from CIN to subsequent stages of

tumorigenesis, indicating that methylation was a late event for

ROBO2 inactivation (Figure 2D). Thus, promoter methylation of

Figure 1. Comparative representation of RNA expression of (A) ROBO1, ROBO2 & SLIT2 and (B) ROBO1, BC017743 & BC043430 in
CACX. Bars represented the gene expression normalized to b2- microglobulin and relative to a pool of normal cervical tissues, using the 2̂-ddCt
method. Bars 22 and 23 represent the SiHa and HeLa cell lines, respectively. Analysis of promoter methylation of ROBO1/2 and SLIT2 by MSRA and
validation by MSP. (C1) Schematic representation of promoter regions of candidate genes revealing distribution of HpaII/MspI (CCGG: arrowhead)
restriction sites. R: location of methylation primers. +1: transcription start site. (C2) Representative tumor samples (#3920T, #3229T, #4025T)
showing methylated status at different genes, normal cervical tissue were unmethylated. M and H: MspI and HpaII digested DNA respectively. U:
Undigested DNA. K1 and K2: Controls for DNA digestion and integrity respectively, T: Tumor DNA, N: DNA from corresponding normal tissue. (C3)
Representative tumor samples showing methylation status of candidate genes by MSP. U: amplicon obtained with primer for bisulphite modified
unmethylated DNA, M: amplicon obtained with primer for bisulphite modified methylated DNA, T: Tumor DNA, N: DNA from corresponding normal
tissue. (D) Reactivation of RNA expression of ROBO1 and the ncRNAs in SiHa and HeLa cells. Reactivated RNA expression of the ligand-receptor genes
in SiHa (E) and HeLa (F) cell lines in presence of 5 mM, 10 mM and 20 mM 5-aza dC. The bars represent increased gene expression in 5-aza dC treated
cells compared to untreated control.
doi:10.1371/journal.pone.0038342.g001

Frequent Alterations of SLIT2-ROBO1/2 in CACX
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SLIT2 and ROBO1/2 might account for the lowered expression of

these genes during cervical carcinogenesis.

Validation of Promoter Methylation of the Genes by 5-
Aza Deoxycytidine
To confirm if downregulation of the SLIT2, ROBO1/2 and

ncRNAs were due to methylation, demethylation experiment was

performed by treatment of SiHa and HeLa cells with 5-Aza

Deoxycytidine (5-aza dC). Dose dependent reactivation of SLIT2

and ROBO1/2 expression was observed in the cell lines w.r.t

untreated controls. At the high 20 mM 5-aza dC concentration

increase in expression frequencies were as follows: SiHa: SLIT2
(14.5) . ROBO2 (2.6) . ROBO1 (2.1) . BC043430 (1.8) .

BC017743 (1.7) and HeLa: ROBO2 (4.6) . BC043430 (3) .

SLIT2 (2.8) . BC017743 (2.5) . ROBO1 (1.9) (Figure 1D–F).

The comparatively high expression of ROBO2 in both cell lines

and SLIT2 in SiHa were in concordance with their methylation

statuses. Differential increase in expression of ROBO1 and

ncRNAs in both the cell lines, re-affirms transcription of these

genes from different promoters. Thus, our data validates promoter

methylation as one of the inactivating mechanisms of SLIT2 and

ROBO1/2 in CACX development.

Frequent Deletion of SLIT2 and ROBO1/2 loci
Genetic mechanisms like deletion, often results in inactivation of

the candidate TSGs. In CIN lesions, deletion frequency of SLIT2

was high (22%, 5/23) followed by ROBO1 (9%, 2/23). However,

ROBO2 showed no deletion (Figure 2B, Table S2A,C). In CACX,

ROBO1 was highly deleted (48%, 53/110) followed by SLIT2

(35%, 38/110) and ROBO2 (33%, 36/110) (Figure 2C, Table

S2B,D). None of these loci showed deletion in either SiHa or

HeLa cells.

In CACX, deletion of ROBO2 showed significant association

with ROBO1 and SLIT2 (Table S3B), indicating their correlation

in this carcinogenesis. The deletion of ROBO2 is not an

epiphenomenon of deletion of ROBO1 as 11% (12/110) of the

CACX samples showed deletion only of ROBO2 (Table S2B).

Microsatellite size alterations (MA) of ROBO1 and SLIT2 were

infrequent in cervical tumors (Table S2A–D), unlike HNSCC (15).

No homozygous deletion but other types of biallelic alterations

[LOH+MA, MAII] was evident for SLIT2 and ROBO1 loci (Table

S2A–D). The deletion frequency of SLIT2 increased gradually

during tumor progression (Figure 2D). However, in case of ROBO1

there was significant increase in deletion frequency from CIN to

stage I/II tumors and for ROBO2, frequency of deletion was high

in stage I/II tumors and remained comparable in the subsequent

Figure 2. Representative autoradiographs showing deletion and microsatellite size alteration (MA) of cervical lesions, at different
marker loci. (i) LOH: loss of heterozygosity, (ii) MA-1: microsatellite size alteration of one allele. (iii) LOH + MA: loss of one allele and microsatellite
size alteration of the other. (iv) Hemizygous (HE) deletion of ROBO2 locus as shown by D3S2515. (v) & (vi) HE deletion as shown by exonic markers
(EM) from ROBO1 and ROBO2 respectively, SST used as control. The sample numbers and marker loci are indicated above and below the figure
respectively. R: allelic loss, ‘‘*’’: allelic size alteration. Deletion of ROBO1/2 and SLIT2 analyzed by microsatellite and exonic markers in (B) CIN and (C)
CACX. T: Tumor DNA, N: DNA from normal cervix/PBL. (D) Pattern of deletion and methylation of ROBO1/2 and SLIT2 during disease progression.
Asterisk denotes statistical significance (P,0.05). (E) Overall alteration patterns of the individual genes, SLIT2-ROBO1 and SLIT2-ROBO2 ligand-receptor
pairs, during disease progression. Asterisk denotes statistical significance (P,0.05).
doi:10.1371/journal.pone.0038342.g002

Frequent Alterations of SLIT2-ROBO1/2 in CACX
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stage (Figure 2D). These facts indicate that deletion was a late

event during inactivation of the receptor genes and contributed

towards inactivation of both SLIT2 and ROBO1/2 in CACX.

Overall Alterations of SLIT2 and ROBO1/2
Majority of the tumors (86%; 74/110) showed (epi) genetic

alterations in at least one of the SLIT2 and/or ROBO1/2 genes,

indicating their importance in cervical tumorigenesis. The overall

alterations (deletion/methylation) of these genes in CIN and

CACX were in the following order: CIN: SLIT2 (35%; 8/23) .

ROBO1 (22%; 5/23) . ROBO2 (9%; 2/23) (Figure 2E, Table

S2A,C); CACX: SLIT2 (59%; 65/110) . ROBO1 (58%; 64/110)

. ROBO2 (43%; 47/110) (Table S2B,D).

Significant association between deletion and methylation of

SLIT2 and ROBO1 in CIN, ROBO1 and ROBO2 in CACX and

marginal significance of SLIT2 in CACX were in concordance

with Knudson’s modified two-hit hypothesis for candidate TSGs

(Table S4).

The alterations of SLIT2 were frequent (35%) in CIN lesions

and increased gradually during subsequent stages of tumorigenesis

(Figure 2E). However, for both ROBO1 and ROBO2, alteration

frequencies increased significantly from CIN to stage I/II tumors

and remained comparable thereafter (Figure 2E), indicating that

alterations of the receptors were late event during cervical

carcinogenesis.

Overall alterations of ROBO1 and ROBO2 showed significant

association in CIN and CACX, whereas SLIT2 and ROBO1 in

CACX, suggesting their functional cooperativity in regulating the

signaling pathways (Table S3C). Frequent alterations of SLIT2

and/or ROBO1 were seen in CIN (44%; 10/23) followed by

significant increase in stage I/II (93%; 52/56) and stage III/IV

tumors (93%; 50/54) (Figure 2E). Similar was the trend for SLIT2

and/or ROBO2 alterations (Figure 2E). This suggests that de-

regulation of these ligand-receptor interactions might have

important role in the development of both premalignant cervical

lesions and early invasiveness of the disease.

Analysis of SLIT2 and ROBO1/2 Protein Expression
The association of alterations (deletion/methylation) and RNA

expressions of SLIT2 and ROBO1/2 with their protein expressions

was studied in primary CACX and the cell lines: SiHa and HeLa.

In IHC analysis, expression of ROBO1/2 and SLIT2 were

observed in the membrane and cytoplasm of the basal and

parabasal layers of normal cervical epithelium and comparatively

low expression in the spinous layer (Figure 3AI–III). The primary

tumors without alterations (deletion/methylation) of these genes

showed expression of these proteins similar to the basal/parabasal

layers. However, significant association was seen between re-

duced/no expression of the proteins with their molecular

alterations (Figure 3BI–III, Table 2).

SLIT2 and ROBO2 expressions were reduced in SiHa and

HeLa cells. Expressions of ROBO1 and ROBO2 were observed

with some discrete foci on the membrane of SiHa cells

(Figure 3CI–III). Similar localizations of these proteins were seen

in HeLa, without any focus formation (Figure S1). This might be

due to some modifications of these receptors in SiHa, leading to

their aggregation on the membrane and subsequent dysfunction of

the downstream pathway(s). Cytoplasmic expression of SLIT2 was

observed in SiHa cells, in concordance with the reports of Singh

et al [2007] (12), in HeLa. In primary tumors, reduced/no

expression of SLIT2 and/or ROBO1 was found in 93% (14/15)

samples and of SLIT2 and/or ROBO2 in 67% (10/15) (Table 2),

indicating the deregulation of these ligand-receptor(s) interactions

as critical events in cervical carcinogenesis.

Clinico-pathological Association of SLIT2 and ROBO1/2
The alterations of SLIT2 and ROBO1/2 were correlated with

the clinico-pathological/survival parameters in order to uncover

their prognostic significance (if any) for early diagnosis and

prediction of patient outcome. HPV, an important causative

agent of CACX, was detected in 86.5% (115/133) of the

cervical lesions. Of these, 88% (101/115) were HPV16 positive

and 12% (14/115) were HPV18 positive. HPV infection was

not significantly associated with tumor stage, grade, nodal status,

parity, age at sexual debut (Table 1) and SLIT2-ROBO1/2

alterations (data not shown). Similarly, chi-square analysis

revealed significant association of SLIT2-ROBO1/2 alterations

with tumor stage, however no such associations were observed

with the other clinico-pathological parameters (grade, nodal

status, parity etc; data not shown).

The Kaplan-Meier (K–M) survival analysis revealed significant-

ly reduced overall survival (OS) of CACX patients with alterations

of SLIT2, ROBO1 and ROBO2 (Figure S2A–C), indicating their

prognostic significances. Interestingly, alterations of SLIT2 and/or

ROBO1 and SLIT2 and/or ROBO2 predicted poor OS of the

patients, suggesting abrogation of these ligand-receptor interac-

tions were directly equated to poor prognosis (Figure 4A,B). The

Cox multivariate analysis indicated that alterations of SLIT2 and

ROBO1 along with advanced tumor stage (III/IV), multiparity

($5) and early sexual debut (,19 years) were determinants of poor

prognosis for CACX patients (Figure 4C), thereby enabling

efficient classification of the high-risk patients.

Discussion

The aim of this study was to investigate the association of

ligand-receptor genes SLIT2 and ROBO1/2 in cervical carcino-

genesis. To this end, at first, expression (RNA) profiles of these

genes were analyzed in primary CACX samples and CACX cell

lines. Highly reduced expressions of these genes were revealed.

Then alterations (deletion/methylation) of the genes were

analyzed to understand the mechanism of reduced expression.

Alterations of the genes were then correlated with their

expression (RNA and protein) profile. In addition molecular

alterations of the genes were correlated with different clinico-

pathological parameters. Reduced RNA and protein expression

of SLIT2 and ROBO1/2 were observed in primary CACX, in

concordance with the previous reports [12,13]. However, none

prior to us reported the expression pattern of SLIT2, ROBO1

and ROBO2 concomitantly in primary CACX. Alike us

reduced expression of these genes were also reported in

a plethora of other malignancies including HNSCC, gliomas

and carcinomas of liver, lung, breast, kidney etc [15,27–33].

However, overexpression of these genes were also reported in

prostate and breast cancers [34,35]. In addition, Angeloni et al.,

(2006) [16] suggested that expression of ROBO1 could be

regulated by two ncRNAs encoded by the intron2 of ROBO1.

However, our data suggested that there was no concordance

between the expression profiles of ROBO1 and the ncRNAs, as

observed in HNSCC [15].

Overall alterations of atleast one member of the SLIT2-ROBO1/

2 cascade were observed in 43% CIN lesions and 95% CACX,

indicating the importance of deregulation of this pathway for

cervical carcinogenesis. Alterations of SLIT2 was observed in 35%

CIN lesions with the frequency increasing gradually in subsequent

stages, indicating this as an early event, in concordance with the

reports of Narayan et al., (2006) [13]. In addition deletion or

methylation mediated deregulation of SLIT2 has already been

reported in various malignancies including gliomas, neuroblasto-
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ma, Wilm’s tumor, leukemia and carcinomas of lung, breast,

kidney, colon etc though, none reported the stage wise correlation

pattern [15,28–30,33,36–40]. The alteration frequencies of

ROBO1 and ROBO2 increased significantly from CIN to stage I/

II tumors, indicating that these receptors were inactivated during

the development of early invasive cervical tumors. Alike SLIT2,

Figure 3. Immunohistochemical staining patterns of ROBO1, ROBO2 and SLIT2. (A) In normal cervical epithelium the basal and parabasal
layer stained intensely for all the three proteins, whereas the intensity and frequency of stained cells reduced with further differentiation in the
spinous layer. (B) In primary CACX expression pattern of these proteins were concordant with respective molecular alterations. (C) In SiHa cells
ROBO1 and ROBO2 were membrane localized, whereas SLIT2 was present mostly in the cytoplasm. T: primary CACX sample; scale bars for both 20X
and 40X is 50 mm; original magnifications are indicated in parenthesis. Magnification of panel C is 40X.
doi:10.1371/journal.pone.0038342.g003
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deletion or methylation mediated inactivation of ROBO1 have also

been reported in multiple malignancies including lung, breast,

HNSCC etc [15,27,41]. However, alterations of ROBO2 have

been reported only in HNSCC, as yet [15].

In premalignant CIN lesions, alterations of SLIT2 and/or

ROBO1 and SLIT2 and/or ROBO2 ligand-receptor pairs were

observed in 44% and 39% cases respectively, which increased

significantly in the subsequent stage I/II tumors and remained

comparable thereafter. This fact corroborates that abrogation of

the ligand-receptor interaction was necessary for initiation and

progression of CACX. As yet none has comprehensively reported

the importance of loss of these ligand-receptor interactions in

cervical carcinogenesis of Indian patients.

A close scrutiny of the methylation and deletion frequencies of

SLIT2 and ROBO1 during progression of CACX, indicated that

methylation was the more frequent alteration that occurred early

during carcinogenic progression. Although, in case of ROBO2,

promoter methylation was the late event nonetheless, it was

predominant over deletion. Predominant methylation and in-

frequent deletion of SLIT2 (64%, 9%) and ROBO1 (46%, 10%)

were also reported in CACX of Western patients [13]. The

deletion analysis was done in a cohort of 30 tumors compared to

133 in our analysis, thus accounting for the difference in results

between the two studies [42]. Similarly the methylation frequency

of SLIT2 in our study was 34% and differed widely from that

reported by Narayan et al., (2006) [13], possibly due to age,

ethnicity and lifestyle variation of the patients included in both the

studies [42–44].

The interaction between SLIT2 and ROBO1 triggers a number

of downstream pathways, controlling diverse cellular processes

namely; cell proliferation, apoptosis, motility etc [14]. The most

prominent effectors includes srGAP, CDC42, b-catenin, Netrin-1,

PI3K, CXCR4 etc [14,45]. Detailed study of each of these

pathways is warranted for identification of diagnostic or thera-

peutic targets of CACX, from among the effector molecules of the

SLIT2-ROBO1 signaling pathway.

In this study molecular alterations of the individual genes,

SLIT2 and/or ROBO1 and SLIT2 and/or ROBO2 pairs showed

Table 2. Correlation between deletion/methylation and reduced expression (RNA/protein) of ROBO1/2 and SLIT2 in CIN/CACX.

Sample ROBO1 ROBO2 SLIT2

Del/Meth mRNA Protein Del/Meth mRNA Protein Del/Meth mRNA Protein

T1 D+ Q nd D2, M2 2 nd D+ Q nd

T2 M+ Q Intermediate M+ Q Intermediate D+, M+ Q Absent

T3 D+ Q Low D+ Q Low D+, M+ Q Absent

T4 D+, M+ Q nd D2, M2 q nd D2, M2 2 nd

T5 D+, M+ Q nd D+, M+ Q nd D+, M+ Q nd

T6 D+ Q Low D2, M2 2 Intermediate D2, M2 2 Intermediate

T7 M+ Q nd D+, M+ Q nd D+ Q nd

T8 D+ Q Low D+ Q Absent D+ Q Absent

T9 D2, M2 Q nd D+, M+ Q nd D+, M+ Q nd

T10 D+ Q Low D2, M2 Q Intermediate D2, M2 Q Intermediate

T11 D+ Q nd D+ Q nd D2, M2 Q nd

T12 D+, M+ Q Absent D+ Q Low D+ Q Low

T13 M+ Q nd M+ Q nd D2, M2 Q nd

T14 D2, M2 Q nd D+ Q nd D+ Q nd

T15 D+, M+ Q Absent D+, M+ Q Absent D+, M+ Q Absent

T16 D+, M+ Q nd M+ Q nd M+ Q nd

T17 D+ Q nd D2, M2 2 nd D2, M2 2 nd

T18 D+, M+ Q Low D+, M+ Q Absent D+, M+ Q Low

T19 D2, M2 Q nd D2, M2 2 nd D2, M2 2 nd

T20 D+, M+ Q nd D2, M2 q nd D2, M2 2 nd

T21 D+ Q Low M+ Q Intermediate D2, M2 Q Intermediate

C1 D2, M2 ND Intermediate D2, M2 ND Intermediate D+, M+ ND Low

C2 D2, M2 ND Intermediate D2, M2 ND Intermediate D+, M+ ND Low

C3 D2, M2 ND Intermediate D2, M2 ND Intermediate D2, M2 ND Intermediate

T-24 D2, M2 ND Intermediate D+ ND Low D+ ND Low

T-25 D+ ND Low D2, M2 ND Intermediate D2, M2 ND Intermediate

T-26 D+, M+ ND Low D+, M+ ND Low D2, M2 ND Intermediate

P-value Non-evaluable 0.00016* 0.003*

Samples C1, C2 and C3 are CIN lesions.
D+/2, Deletion (HE, HM, LOH) positive/negative; M+/2, methylation positive/negative; Del/Meth: Deletion or methylation.Q: Reduced mRNA expression ($2 folds); q:
Increased mRNA expression ($2 folds); -: Reduced/Increased mRNA expression (,2 folds). nd, not done due to insufficient/scanty paraffin embedded tumor tissue; ND,
Fresh tissues unavailable for RNA isolation. *, statistically significant (P,0.05).
doi:10.1371/journal.pone.0038342.t002
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differential association with the disease progression and predicted

poor patient outcome. Moreover Cox multivariate analysis

revealed that alterations of SLIT2 and ROBO1 coupled with

advanced tumor stage (III/IV), multiparity ($5) and early sexual

debut (,19 years) were predictors of poor prognosis for CACX

patients.

Thus we can conclude that abrogation of SLIT2-ROBO1 and

SLIT2-ROBO2 signaling pathways are necessary for the initiation

and progression of CACX. Since these ligand-receptor genes

possess prognostic implications, they could be utilized as early

diagnostic or prognostic markers for CACX.

Supporting Information

Figure S1 Immunofluorescence analysis of ROBO1,
ROBO2 and SLIT2 in HeLa cells. (A–B) Membrane

localization of ROBO1/2 and (C) cytoplasmic/membrane

localization of SLIT2. Scale bars are 50 mm, magnifications: 40X.

(TIF)

Figure S2 Kaplan-Meier survival analysis (up to 5
years) of CACX patients. (A–C) Alteration of ROBO1, ROBO2

and SLIT2 significantly associated with poor overall survival. (D)
Alteration of atleast one of the ligand or receptors predicted poor

patient outcome. N: total number of samples.

(TIF)

Table S1 List of oligonucleotide primers.

(XLS)

Table S2 Allelic alterations of ROBO1, ROBO2 and
SLIT2 in primary cervical lesions.

(XLS)

Figure 4. Kaplan-Meier analysis of survival (up to 5 years) of CACX patients. Alterations of (A) SLIT2 and/or ROBO1 and (B) SLIT2 and/or
ROBO2 ligand-receptor pairs were significantly associated with poor patient outcome [OS]. (C) Representation of Cox Multivariate analyses of genetic,
clinical and etiological parameters in predicting outcome of CACX patients. N: total number of samples and P,0.05 denotes statistical significance.
doi:10.1371/journal.pone.0038342.g004
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Table S3 Associations between methylation, deletion
and overall alterations of SLIT2-ROBO1/2 in the CIN
and CACX samples.
(DOC)

Table S4 Correlation between deletion and methylation
of ROBO1/2 and SLIT2 in CIN/CACX samples.
(DOC)

Table S5 Correlation between MSRA and MSP analy-
ses.
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