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Abstract. We consider an arbitrary continuous time random walk (cTRW) vig un-
biased nearest-neighbour jumps on a linear lattice. Solutions are presented for the
distributions of the first passage time and the time of escape from a bounded region.
A simple relation between the conditional probability function and the first passage
time distribution is analysed. So is the structure of the relation between the charac-
teristic functions of the first passage time and escape time distributions. The mean
first passage time is shown to diverge for all (unbiased) cTRW’s. The divergence of
the mean escape time is related to that of the mean time between jumps. A class of
CTRW’S displaying a self-similar clustering behaviour in time is considered. The
exponent characterising the divergence of the mean escape time is shown to be (1 — H),
where H (0 < H < 1) is the fractal dimensionality of the cTrRw. :

Keywords. Continuous time random walk; first passage time; escape time; fractal
random walks.

1. Introduction

The study of first passage times and times of escape from a given region (exit times)
in random walks and diffusion processes finds application in a variety of physical
problems (Montroll and Weiss 1965; Montroll and West 1979; Hinggi and Talkner
1981). Recently, the subject has evoked interest (Seshadri and West 1982) as a
means of characterising fractal random walks (Hughes et af 1981, 1982). A vast
literature exists on the classic first passage time problem for a variety of Markov
processes (Pontryagin et al 1933; Darling and Siegert 1953; Stratonovich 1963;
Weiss 1966; Montroll and Weiss 1965; Montroll 1969; Goel and Richter-Dyn 1974).
The extension of such results to non-Markov processes in general, and to continuous-
time random walks (CTRW’s) in particular, would enable one to apply them to more
complicated physical situations that incorporate, for instance, strong memory effects.
This is the task carried out in this paper. All the known results for the Markov case
are of course recovered as special cases of our general solutions. Some of the results
obtained below for general cTRW’s (specifically, results for the mean first passage and
escape times) have also been found by Weiss (1981) in a different form (viz. formal
expressions involving infinite sums) using the generalised master equation for a

CTRW, assuming that the first waiting-time distribution is identically equal to the

waiting-time distribution specifying the renewal process (that is, cTRw). We do not
need this restriction in our approach.

We first obtain an exact solution for the characteristic function é of the first
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passage time distribution Q (m, t| my) for a general continuous-time random walk on
an infinite one-dimensional chain by two different methods. (For simplicity, we
consider a symmetric walk vig nearest-neighbour jumps; m, m, denote integers). In
the first method, we construct an explicit solution for the conditional probability
P(m, t|my) for an arbitrary CTRW on an infinite chain and then use the reflection
principle for symmetric random walks to obtain the first passage time distribution.

The second is a direct “first principles’ calculation of Q. Next, the mean first passage
time is shown to diverge for all CIRW'’s, as one would generally expect for a symmetric
random walk on an infinite chain. Considering the entire class of CTRW’S, we then
show that there exists a certain simple relationship between Q and P, namely,
Q (m, t[my) = | m — my | P(m, t |m)[t, only when the pausing time is exponen-
tially distributed, in which case the random walk is a Markov chain. Surprisingly,
however, there are even miore general types of temporally correlated random walks
for which this relationship is valid, and we present an explicit example of this.

We then consider the distribution of the time of escape from a given region (the
‘exit time”) and derive a compact expression for its characteristic function using the
method of images. We show that the mean escape time from 2 bounded domain for
a general CTRW is finite only when the first moment of the pausing time distribution
exists. In this sense, even though the positional probability density spreads out in
time from an initial sharp distribution, no long range diffusion can be said to occur
for a random walk involving a pausing time distribution with a divergent first moment
(f.e., mean residence time at a site).

Finally, we turn to “fractal’ random walks, i.e., walks which exhibit self-similar
clustering. One such class is obtained in the case of a pausing-time distribution
that is an infinite superposition of suitably-scaled exponentials (Shlesinger and
Hughes 1981). For such ‘temporally fractal’ random walks, we show that the mean
escape time diverges with an exponent that is related to the fractal (Hausdorff-Besico-
vitch) dimension of the walk. The scaling of the mean escape time thus provides a
convenient index of the fractal dimensionality associated with the walk.

2. Formulas for the first passage time distribution

2.1 The Siegert equation

Let P(m, t | mg) denote the probability of finding the random walker at site 7 at time

t given that she started from mg attime 7 = 0. Let Q(m, ¢ | my) dt be the probability
of reaching m for the first time, in the time interval (¢, t + dt). For a temporally
homogeneous Markoy process, P and Q are related vig the Siegert equation (Siegert
1951; Darling and Siegert 1953) ' ' ’

; o ,
P(my, t | mg) = fP(ml, t—t'|m)Qm, t' | my) dt, (my <m <my). (1)
; ,

Hence, in terms of the corresponding Laplace transforms (denoted by a tilde),

é(m, u|my) = ﬁ(ml, u‘| mo)/l;(ml, u [rﬁ), (mv0 < m g ml),- A ®)]

.

e



First passage in continuous time random walks - 189

where u is the transform variable. Using this simple relation, the first passage pro-

blem on finite or infinite Markov chains with specific reflecting or absorbing boundary
conditions has been studied in detail (Darling and Siegert 1953 ; Goel and Richter-Dyn
1974; Montroll and West 1979; Khantha and Balakrishnan 1983). Equation
(1) is based on a renewal principle that is not valid for non-Markov processes. In
such cases, the first passage time problem must be solved by other methods.

2.2 The method of images

The problem of a first passage to the point m from a point my << m on an infinite
chain is equivalent to that of a random walk in the restricted region (— oo, m) with
an absorbing barrier at m. Q(m, t[mo) is given by (Montroll and West 1979)

-1
Q (m, tlmo) = _C%‘ z ngm (m” t‘ m0)> (3)

m = — oo

where 2., (m', t | m,) is the conditional probability of finding the random walker at
m’ at time ¢ starting from m, at =0, in the presence of an absorbing barrier at m.
By invoking the method of images (Chandrasekhar 1943 ; Feller 1966; Montroll and
West 1979), 2,, (m’, t | my) can be easily determined from P (', ¢ | my) (the solution
for random walk on an infinite chain) according to '

P (', t | my) =P (m', t [ mg) — P (2m — m', | mg). ' 4)

If we assume (without loss of generality) that the random walker starts from the
origin, we have the formula (for m > 1)

m-—1
,Q(m’th)=_‘% Z [P(m’,zf]O)——'P(Zm-—'m’,z“['())].' (5)

’

n = - 00

Making use of the initial condition on P, the characteristic function é is then

m-~1

0 (m, u|0) = 1+u z [P @m—m', u|0) — P (m', u|0)] (m>1). (6)

m = — o0

We shall use this in the next section.

2.3 A direct method

There is an alternative way of obtaining Q (or é) directly. This is closely related to

the route we follow to calculate P (or ﬁ) itself. The jumps of the random walker
may be regarded as being caused by a random sequence of pulses with a specified

distribution. - The actual location of the walker at time ¢ depends only on the number

of transition-causing pulses or ‘steps’ executed in the time interval z. Let Wi(n, t) be
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the (normalized) probability that » pulses have occurred in ©, 2). Let p, (m) be the
probability of reaching the point m from the point 0 in n steps. Then

0

P(m, t|0) = 2 W (5, 1) pa (m). )

n=0

For the case at hand,

n
{(n—m 2" ifn=mmod 2 and n >|m|,
pn(m)z‘_{ 2

®

L ‘ 0 otherwise.

The problem then reduces to specifying (or computing) W(n, ¢) in a given physical
situation and then performing the summation in (7) (Balakrishnan and Venkata-
raman 1981).

With the help of a simple geometric argument (again related to the reflection
principle), it can be shown (Chandrasekhar 1943) that the probability of reaching m
from the origin for the first time in precisely n steps is (]ml [mp(m). Let n(n, t) dt
be the probability that, starting at ¢ = 0, the nth pulse occurs in the time interval
(t, t +dr). Then it is evident that

0, 1) = (s, 0] pm). ©)
n=4(Q

As before, then, the problem amounts to specifying (or computing) =(n, ¢) and then

carrying out the summation. For the characteristic function Q(m, u|0), the transform-
7 (n, 1) occurs en the right in (9). We shall compute 7 (n, ) and evaluate the sum for
a general CTRw in the next section.

3. Continuous time random walks

3.1 Calculation of W and P

A CTRW on the infinite chain occurs when Win, t) is generated by a renewal prooess.
The latter is specified by a normalized pausing time density (¢): if a step (event) has
occurred at time #,, the probability of the next one occurring in the interval (ty+ 1,
to+ t +dr) is §(z) dr. Starting from an arbitrary origin ¢ = 0, the Jirst pausing
time distribution y,(¢) could, in general, be distinct from (t), and may be specified
independently. For an ongoing equilibrium renewal process, i, is related to i

according to -~ azo(u) =1- J (u), where 7 is the mean time between successive
events (i.e., the first moment of ¢ (1)) (Feller 1966; Cox 1967; Kehr and Haus 1978:




e

First passage in continuous time random walks ' 191

Balakrishnan 1980). It is seen easily that, among such equilibrium renewal processes,
o = ¥ if and only if ¢(¢) is the exponential density Aexp(—Az). (W(n, t)is then a
Poisson distribution and the random walk is a Markov chain). In general, however,
physical applications may correspond to ordinary renewal processes rather than
equilibrium ones, and the choice of o may be dictated by physical considerations.
For example, in the application of cTrRW theory to hopping conduction in amor-
phous media (Lax and Scher 1977), the correct prescription happens to be yy(f) =
¥(2), even though (¢) is not an exponential density in that problem. We shall work
with an arbitrary normalized density o (¢) in what follows.
Corresponding to the pausing time densities o) and (r), we have the ‘survivor
functions’ (or holding-time distributions) )

t t
polt) = 1= [ ar' o0, p() = 1~ [ dt' g (10)
0 0

Then, clearly,

W0, t) = py(2), )
t fo
W(n, t) = j dtn ser f dtl P(t“tix) ‘/‘(tn‘_fn-l) ‘}’(tzhtl) ‘/’0 (t]) r (1 1)
0 0

(m=1). |

Hence Iff/’(O, u) =ut [l — ;/;0 (w)] ]l
_ _ _ _ i» (12)

Win, u) = u iy (u) [1— iy ()] Y@ n>1 ]

The Laplace transform of the conditional probability, P?m, u ] 0), is then found by
inserting (12) and (8) in (the Laplace transform of) (7). A summation of the type
2 X" p, (m) arises. Using the result given in the Appendix, we obtain finally

P (m, u | 0) =;14—(1 —-%) 8,0

N fo (1 "*~‘/’) [1 . (1: z'[,‘a)llz:llml (m ~0, &+ 1, +2, ”-)' (]3}a~
ul/l (1 - ,ﬁz)l/z ¢,

This is a special case of the more general result found elsewhere (Balakrishnan and
Venkataraman 1981). It is convenient to introduce the variable

£ () = arc sech ¢ (). B (14)
P—3 ' '
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Then P has the compact form

Bm, u] 0) = (1) [( 1 — gﬁ) 5o

+ (Goli) tanh (¢]2) exp (— | m | f)] m=0,+1,..) (15)

3.2 Calculation of é

Substituting the result (13) in formula (6) obtained by the method of images, we get
after simplification, '

Om ul0)~ (k) [Li-(l;“”_)‘..] " = Guld) exp (— mt), n > 1),
7 y

(16)

This is the characteristic function of the first passage time distribution for an arbit-
rary continuous time random walk via unbiased nearest-neighbour jumps on an in-

finite chain. As both 4, (¢) and ¥ (t) are normalized, 4(0) = 4 (0) = 1; hence
Q(m, t] 0) is properly normalized; its integral form 7 = 0 to o is equal to unity. As
the random walk is unbiased, it is evident that Q(m, ¢ | 0)=0(—m, t]0), so that the
exponent in (16) may be replaced by |m|, making the result valid for all non-zero m.

3.3 Direct calculation of @ and é

Considering the definitions of W(n, t) and m(n, t) given in § 2.3, it is evident that, for
a renewal process, . N

t
W, 1) = [dt'm (0,1 p (t — 1), (0 > 1), an
0 , .

where p(t) is the holding time distribution defined in (10). Hence,

7 (1 ) = o (W) ( )2 (0 > 1), (18)

If this is substituted in (the Laplace transform of) the ‘ direct > formula of (9) for Q,

we are left with a sum of the type = 12;.'! Pn (M)[n. Tt is easily seen that { ;l:(u) | < 1 for
all Re u > 0, so that the result given in the Appendix may be used to obtain

Gomujo= (%) [ﬂl%ifi]' =GB exo (~|mls (o)

form=-4+1,42,.....
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3.4 Mean first passage time

The mean first passage time from the origin to the site m is equal to

o0

(t(m)) =ftQ(m, 1]0) dr

0

= - [3 é (ms ulo)/au]u=0’ (20)

as Q (m, t|0) is already normalized to unity. Using (19) we find

)y ~ lim (1 — W)= = oo, o Q1)

u—->0

for all symmetric continuous time random walks on an infinite chain.(The special
case = A/(u+ X) corresponds to Polya’s classic result (Polya 1921)).

3.5 A simple relation between P and 0

As stated earlier, W(n, t) is a Poisson distribution and the random walk is a Markov

chain when ¢y =4 = A exp (— At). The transforms P and é can be inverted
in this case, to yield the well-known results (Feller 1966)

P (m,t|0) =exp (— A1) I, (A1), }
' (22)
Q (m, t|0) =|m| 2 exp (— A2) I, (A1), }

where 1, is the modified Bessel function of order m. For this simplest of random
walks, therefore, we have the interesting connection

Q (m, 1|0) = (|m|[£) P (m, t|0). (23)

Are there other random walks for which this relationship is satisfied ?
Equation (23) is equivalent to

a%Q’(m,ulo)ﬂm13(na,um)=o | (24)
form=41,42,.... Using (13) and (19) for an arbitrary cTRwW, we find that
(24) requires that

d ~ 1 d¢

aln (ol ¥) + lml (; tanh §~— d_u) =0, (2%)

for every non-zero integral value of m. Hence, we must have i, = i, and further,
tanh (£/2) = u (d ¢/du). It is shown easily that this last condition is satisfied
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only by the functional form :Z(u) = A(u + A, i.e. only in the Markovian case speci-
fied by (22).

Remarkably enough, there do exist random walks that are even more strongly
correlated (temporally) than a cTRW, and which display property (23). An explicit
example is provided by the geometric distribution (Balakrishnan 1981)

Win, t) = (M) /(1 + Ay, ' (26)

This is not 2 CTRW (or renewal process), and we cannot write (17) connecting W(n, )
and w(n, t) in this case. (Roughly speaking, the pausing time density Y may itself
be n-dependent in such cases.) The explicit solution for P(m, t| 0) now reads

P(m, t|0) = (1 4 22y 2 Q)L [1 + Xt + (1 4+ 2x¢)L2=iml, 27
The method of images then yields the result
O(m, t|0) = [m|t2 P(m, t|0) (28)

where P is given by (27). Indeed, one can show that if W(n, ) oc x (¢), with no fur-
ther dependence on #, then property (23) is valid only for the functional form x(t)=
At/(1 + At), which is equivalent to (26) on taking into account the normalization
of W(n, t). The classification of a/l random walks satisfying relation (23) between
P and Q will be dealt with elsewhere.

4. The escape time distribution

4.1 General formula for Q(4 m, t|0)

We now turn to the problem of the escape of the random walker out of the region

— m, m), starting from the origin at # = 0. This is equivalent to considering first
passage through either —m or 4-m, and involves the solution to a random walk on
the set {— s, ..., + m} with absorbing barriers at both ends (eg. see Montroll
and Scher 1973). Let Q (4 m, 1[0) denote the desired first passage time distri-

bution, and 2, (m', t] 0) the conditional probability for the random walk referred
to. Then (Montroll and West 1979)

m-1) ,
d
Qe mt|0==2 > g, 610,01, @

m'=—(m—1)

for the sum is just the probability that the random walker has survived without
absorption at either of the barriers till time ¢, # 1m may be found once again by the
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method of images. As there are two barriers, the number of images of the interval
is infinite, and we have

Pam ', t|0)= > [P(n' + drm, ¢ |0)

n=fw
— P(—m' — dnm — 2m, t| o) . (30)
Using the symmetry properties of P, this may be simplified to yield

(n—1) ®
O m, t]0) = — d_d; Z z (—1) PGn'~+2mm, ¢ | 0). (31)

m=—(m-1) n=—ow

This is the formula desired. Tts form may be compared with that of (5) for first

passage from the point0to the point m on an infinite chain (a problem with a single
absorbing barrier).

4.2 Calculation of Q(+ m, t|0) for a cTRW

For an arbitrary cTrwW, Pis given by (15). Inserting this in the Laplace transform
of (31) and carrying out the summations Involved, we get (after a considerable
amount of algebra) the very simple answer

O m, u|0) = (Jo/J) sech (me). 32)

Heresec h ¢ = x;, as already defined (equation ( 14)).  This is the result required. As
the right side of (32) tends to unity as u -0, the distribution. Q(4 m, ¢]0) is also
normalised to unity.

A comparison of (32) with (16) for the characteristic function é (m, u' 0) of
the first passage time distribution shows that (setting iy = o)

O m, u| 0) =28 (m, u|0) | [1 + &(m, u| 0)]. | (33)

The structure of this result suggests the following interesting connection between the
escape time distribution and the distribution of the time of first passage to either end
of the region of interest, i.c., -+ m, in the absence of the other barrier. Owing to the
symmetry of the problem, we have already seen that O(m, t | 0) = 9(— m, t]0).
For brevity, let us write Q,(¢) for O( m, 1]10), 0.(t) = Q(m, t]0), O_(t) =
O(— m, | 0). Then (33) can be recast as '

C.() = Qul(l + 0_0) + O_/ (1 + 0, D)
(34)

= éright () + éleft ®),
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where Qright (¢) is the probability per unit time of absorption at + m in the presence
of the other absorbing barrier at — m, with a similar interpretation for Qe (2). We

have solved the problem under consideration for biased random walks as well
(Khantha and Balakrishnan 1983a), and equation (34) continues to hold good in
that case. These matters will be elaborated upon in the paper referred to above.

4.3 Mean escape time

As in the case of the mean first passage time (equation (20)), the mean time of escape
from the region (— m, m), starting from the origin, is

(t(Em)y = [dt @ (£m,t]0)de 1' |
0 ]> (35)

= —[p é (+ m, u'O)/bu]u=0' J

For a CTRW, O (+m, u|0) is given by (32). It turns out that the derivative
required in (35) is finite (see below) when the mean residence time = at a site is finite
—that is, when the Laplace transform of (¢) has the small u expansion

aZ(u) =~ 1 — yr 4 (higher orders in u). (36)
In all such cases, we have (taking i, =  for simplicity)
((Em)d =mbr, (37)

The Markov case y(z) = A exp (— At) thus yields <t (4 m)> = m?/], as is known
(Seshadri and West 1982).

It is interesting to examine (¢ (- m)) when the pausing tlme distribution has a
long tail (does not fall off like an exponential, or a finite sum of exponentials) (see e.g.
Shlesinger 1973). Such distributions are necessary to explain anomalies in charge
transport phenomena in amorphous solids (Scher and Lax 1973; Tunaley 1976;

Montroll and West 1979). In these cases, t,b(u) has in general a small u expansion of
the form

$(w) =~ 1 — ru®+ suf + higher orders, (39)

where 0 < « < 1 and f > a. The mean residence time is evidently infinite i in all
these instances. Using the asymptotic expansion (38), we find (recalling that

¢ = sech1 :L) the expansion
exp (— &) = 1 — 2r'2 ue 4 O@W), (39)
where y = Min (a, 8 — «/2). This leads to

0 (& m, u|0) = | —m? ru® 4 higher orders inu, (40)
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and hence (remembering that o < 1)
(¢t (£ m))~ co. (41)

This is the reason (i.e. a divergent mean time for escape out of a bounded region) why
we stated in § 1 that such pausing time distributions do not lead to true long range
diffusion of the random walker. This is reinforced by the fact (Khantha and Bala-
krishnan 1983a) that the foregoing conclusions are not altered by the inclusion of a
bias in the random walk.

4.4 Temporally fractal random walks

When the pausing time distribution %(?) has no finite first moment, the mean time
between the jumps of the random walker is infinite, and there is no finite time scale
in the problem. This is a necessary condition (but of course not a sufficient one)
for a self-similar clustering or fractal behaviour (Mandelbrot 1977) of the epochs at
which jumps occur, as described by the distribution Wi(n, t). A dlass of such proces-
ses that is within the purview of cTRW’s is provided by the (normalized) pausing time
distribution (Shlesinger and Hughes 1981)

X1 — a)
a

() =

z (a B exp (— A B* 1), )
k=1 |

where 0 < a,b< 1, and \lis a positive constant with the dimensions of time. This
expression is an infinite superposition of exponentials in which the jump rate ) b*
occurs with a probability proportional to a*, The mean residence time is

_ - _(1-a - X ‘
T_Of 0 dr = kzl (a/b), 3)

so that = is infinite if @ >5. If this is 80, there is no finite time scale in the problem.
The long-time decay of such a ‘frozen® process is governed by a power law when
a>b,ie.

Y(t) = O (t-1-H) | (44)
where H is a positive number to be identified shortly. Equivalently, the Laplace

transform of (¢) is not analytic at u = 0, and can be shown (Shlesinger and Hughes
1981) to have the small « behaviour

$) = 1+ u K@) + OG), @

where K(u) is a periodic function of In («/2) that does not seriously affect the beha-
viour of y as u—>0. The leading power H is given by

H=Ina/lnb (46)
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so that 0 < H < 1 (since 0 < b << @ < 1). The exponent H can be viewed (in an
average sense) as the fractal or Hausdorff-Besicovitch dimension characterising the
CTRW. How does one probe this quantity?

The mean escape time from a bounded region, say (— m, m) provides a direct
answer. It is immediately evident from what has been deduced earlier that for the
CTRW specified by (42) with b < a,

O(k myu|0) = 1+ m® u¥ K (u) + O, 7
with H given by (46). Hence {#(& m)> — o in this case. As
| T

{t(+ m)) = lim [to@me|0ar, (48)
T—ow

the divergence of {# (4 m)} with the time of observation T goes like T2~ for very
large times 7. This therefore yields a convenient index for the estimation of the
fractal dimensionality H of the cTRw. The introduction of a uniform bias in the
random walk does not affect this result, as stated earlier.
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Appendix

The function f’(m, u | 0) (eqns. (7), (12)) involves the sum

o)

S ) =Y ¥ p(m),  (|x[< D),

n=0
where x is a function of u, and (see (8))

n
n—m )
p, () = 7 2" ifn=mmod 2,n > |m|;

[L 0 otherwise.

After a change of variables,

o .

S, (%) = z (2’6 tc[ m |) (Jic)Zk-Hml’

k=0
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which reduces after some manipulation to

Sy (%) = (x/2)!m! oFy (L"leﬂ, 12_.”'_|+ 1; |m |+ 1; x2)
= (x/2)'" (1 — x2)-12 F(L%z.l, —_..._[m [2+ 1; [m|+1; xz).

Call _xz =4z (1 — z), and use 3 transformation property of the hypergeometric
function that relates the above to g function with argument 7. It is then possible
to identify S, to be :

Si(x) = (1 — x2)-—1/2(1;(1_;c—‘x2)3_~f)lml'

Similarly, the characteristic function of the first passage time distribution, é (m, u|0),
involves the sum (see (9), (18))

Sl =3 WUn)xpm), (x| < 1)
n=20

Proceeding as before, we find

1

S0 = int g (UL, 1 gy ),
which, by an inspection of the earlier result, is just

Sa(x) = (M)lm} .

X
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