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Abstract. A review of rigorous bounds to electron-repulsion integrals for atoms and
molecules is presented. Inequalities involving direct (classical) as well as indirect (quantal)
Coulomb energies are discussed. This is followed by an account of two-electron integrals in
a Hartree-Fock context over Gaussian basis-sets. Novel rigorous bounds to these integrals
are derived and tested for some organic molecules. Connections are established with the
density-based inequalities presented earlier. The present results are expected to enhance the
efficiency of a general ab initio Gaussian program and yet have a sound theoretical footing.
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1. Introduction

Quantum chemical calculations on atoms and molecules at Hartree-Fock and more
refined levels (viz. CI, MCSCF etc.) have now become feasible due to the advent of
high-speed computers. These calculations need evaluation of one- and two-electron
integrals over suitably chosen basis functions. Among the required integrals, the
computation of electron repulsion energies is the most expensive part and forms a
real bottleneck to further progress in this area. For example, use of N basis
functions in a Hartree-Fock program (e.g. primitive Gaussian) requires ~ N*/8 two-
electron integrals. Thus, for example N ~ 10 necessitates enumeration of a huge
number of (~ 10"!) two-electron integrals. Evaluation and storage of these integrals
requires large CPU time and disk-space respectively. However, it has been shown
(Christoffersen 1972; Clementi and Mehl 1974) that for large molecular systems, a
rather large fraction of the two-electron integrals is negligibly small in magnitude.
Clementi (1972) demonstrated, with the example of a guanine-cytosine complex,
that computer time can be considerably reduced if one avoids evaluation of
numerically small integrals with a negligible loss in total energy. Many approximate
criteria for discarding insignificant two-electron integrals have been used in the
literature (see § 4 for further details). However, Ahlrichs (1974) was the first to derive
a rigorous upper bound to the electron-repulsion integral for s-type Gaussians.

‘With the application of this bound, integrals numerically smaller than a pre-set

threshold value, can be identified and neglected without actually computing them.
In fact, Ahlrichs demonstrated with the example of the C,H, molecule that if a
cutoff value of 1077 a.u. is chosen, then there is no loss in the optimal value of the
SCF energy. However, this approach was not extended to other types of orbitals,
e.g. p,d, ... types of Gaussians.

Of late the density functional theory (DFT) (for a comprehensive rev1ew see
Dreizler and Providencia 1985) has been extensively applied to a wide variety of
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is contained in the
atomic. molecular and solid-state problems. The'crux of DF’; is t;o@m; e I e
elehrated Hohenberg—Kohn (1964) theorem which proves that j e
;n;pc;tics of these systems are unique functionals of the corresponding O

density, p. In particular,
E[p]1=ulr)p(r)dr+ Fp], Cohn
where. ¢ is the external potential and F.[p]‘ the unlvers‘al. Hc;h;x;l‘iu]rgi mi«z;zﬁ
functional. F[p] comprises two parts: the kinetic energy fgnctlo‘nal mt;[ “'1;1 o]
clectron repulsion energy functional, U[p]. The direct, or th¢ Coufv 1«;i3:;1 uncrg#,
and the indirect part E.[p] together make up the tqtal electlton»rc,pil 1‘ o e -
U. A practical method for implementing the dens¥ty functlonal' ca g.u;r Ny {mﬁ
offered by the Kohn-Sham (1965) procedure. The chief problem with IDF . :i nat
the universal functional F [p] may never be known. However', 'mwafr ‘s @:‘1
affirmative end. one may be able to develop bounding propc;rtics to this f unﬁcnum;% m;
its ingredients. In the past decade or so, a variety of rigorous bounds‘ tc‘:’ 1;9?:;;
functionals have become available (for prototype results see Gadre er al 1979, Lieh
and Oxford 1981. Sahni and Levy 1986, and references therein). |

The purpose of the present work is two-fold. Firstly, we prescn{ an &:Xl&i‘l‘;’mﬂf
review of the rigorous inequalities to electron-repulsion energics which are ::!?i%mﬁ
density- or orbital-based. This is followed by a derivation of completely new tight
bounds derived to electron repulsion integrals over Gaussian basis-scts._

The organization of this article is as follows. The bounds to the dxrc‘:“ctm, or the
Coulomb part are reviewed in § 2. A compilation of the bounds to the inchx:m:f ;uu’im,
exchange energy etc. will be presented and discussed in §3. We work within Iha:::
extra-field-free. non-relativistic, time-independent domain. Hartree atomic units
{m,=e=4=1) are employed throughout the article. Section 4 contains a revicw of
the rigorous and approximate work done so far with Gaussian basis-scts. New
rigorous upper bounds to electron repulsion energies which are more general and
tighter than those so far available in the literature will be derived in § 5, wherein
lower bounds to these integrals will be presented for the first time. Alseo,

connections with the results presented in §§2 and 3 will be developed. Numericial
tests and conclusions follow in § 6.

{1)

2. Bounds to direct (Coulomb) energies

Schrader and Prager

principles for quantum
Thomson and Dirichlet
and upper bounds to ele
Coulomb interaction

(1962) were the first to employ electrostatic variati¢rn
chemical molecular energy calculations. In their work. the
principles of electrostatics have been used to obtain lower
ctron-repulsion integrals in molecular calculations. For the

J=(1/2){[p(r)p (ry)/ry,]dr, dr,.

Consider minimization of (1/8m) [ E*dr subject to V-E=4np. This variational
prmt}k:m leads to the requirement that E=—-VV for some scalar function #°
Noting that the second variation of JE? dr is always positive, one obtains A

J<{1/8m) [|E|* dr,

(2)
for all E satisfying E= -y y,




G
S

NS

i
i
3

Bounds to electron repulsion energies 485

A lower bound to J may be obtained by minimizing
wv1={[20V~(1/4n)(VV)*]dr,

where I is an arbitrarily chosen scalar function. The minimizing condition is
provided by V2V = —4np, the Poisson equation. Noting that the second variation
of W is always nonpositive, leads to a lower bound to J

J= [[pV—(1/87) (VV)*]dr, (3)

which is essentially the Dirichlet principle that has enjoyed a long history in the
computation of capacitances etc. Equation (3) attains equality if V' is the electro-
static potential due to the charge density.

The above results (1) and (2) can be employed to obtain a bound

(1/2” Lo(ry )pa{ry)/ 1] dry dr,
>(1/8){ [[2(p,+p)V (1/4m)(VV)*] dr— (1/87)[ E? dr} 4)

where V- E =4n(p, — p,). The inequalities were tested on the H, molecule and found
to be fairly tight.

In a work by Weinstein et al (1975), numerical tests on a number of atoms
indicate that, within the Hartree—Fock approximation, the spherically averaged
ground state p(r)= p(r) is indeed a monotone decreasing function. No rigorous
proof of this observation exists to date. It is, however, possible to show rigorously
that ®(r), the total electrostatic potential for an atom is also monotone decreasing.
Writing

O(r)=Z/r— fpr) dr'/[r =1}, (5)

with the use of Poisson’s equation V20 = 4T (electronic) and employing spherical
symmetry, one is led to

" +(2/r)® = 4mp =0, _ (6)

which prohibits ®”<0 at the r-value where ® =0. Thus, ®(r) is a monotone
nonincreasing function. Thus, ®’<0, for spherically averaged atomic electron
density. ’

Bounds to Coulomb energies have been provided by Thulstrup and Linderberg
(1979) in their pioneering work. The integral approximation method suggested by
Harris and Rein (1966) has been further developed and applied. Thulstrup and
Linderberg also noted that the first-ever use of Sobolev type inequalities in this
context was reported by Okninski (1974). Here, one uses a result (Rosen 1971) in
which the optimum form of the Sobolev inequality has been obtained, viz,

4nJ=§\VCD|Z dr>3(7c/2)4/3(§|(b[6 dr)!/3. (7
Note that
J[p]1=(1/2)] p(r) ®(r) dr, (8)

where p(r) is the charge density, and @, the electrostatic potential. Applying
Holder’s inequality, one is led to

Jp1<([p%° dn¥e (f101° dr)'/e/2. | 9)
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Combining (1) and (3) leads to
JLpl<(@/3)2/n) 3 ([ po!S dr)'73, (10)

The constant in the above bound turns out to be apprOXiml}tel}’ 1.147.
A more flexible form is suggested by a further application of the Holder
inequality, yielding

[P dr=[1fn)] drp®s (r)/| )
S(j‘[”m dr)l"'"(j/)(’""s_/'—'f dr)“" i (1 1)

with 1/m+ 1/n=1 and m> 1.

A variety of bounds to J[p] can be generated by using (10) and (11) with
appropriate choices of f. However bounds can be made tighter by optimizing the
numerical constants in these bounds for each choice of f,eg.,

JLp1<CiN*3([ p2 dr)'i3, (12)

The best possible constant C, is determined by variational calculus
O‘{J[p]/[([pdr)““(jpzdr)”3]—-,ufpdr}=0, and where u is the Lagrange
multiplier, turns out to be:

Cy~1-5/n'3 ~ 1-0242.

Further discussion of these and related bounds as well as some test examples was
carried out in detail (Thulstrup and Linderberg 1979). The results of this paper have
been exploited by Gadre et al (1979) to obtain bounds to J[p] in the form

JIPIK [p*? dr. (13)

These bounds are of interest since the most popular approximation to exchange
viz. the Slater-Dirac exchange is of the form given by the RHS of (13) but with a
negative constant multiplier. Golden (1980) has employed the result due to
Thulstrup and Linderberg (1979). Assuming that the spin summations have been
carried out, one is led to [via (11) above]

fdﬁ dr, [, (ry)[? Ilpk(rz)]z/[rl —r,|
S Cl{Ifim)]32123 dr {1y (n)* dr /|, ()] 572,

Here, C=(2193)/(371/3) (14)
by choosing f, (r)= {wk(r)}ﬁ/s/p;” (r), (15)
where
Nt
pr0)= L Y, (16)

This leads to

Nt
2 A dn @) 1, )P i, — .

<Cfp*3dr. (17)

Employing a result derived earlier by Golden (1979), a bound on the indirect part of
the electron repulsion energy was also derived. This bound resembles that due to
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Lieb to be discussed in the following section. However, it may be noticed that these
results (Golden 1979, 1980) are confined to the realm of the Hartree-Fock theory.
The results due to Lieb, on the other hand, are more general.

The work of Thulstrup and Linderberg (1979) was extended by Gadre et al

(1979). The motivation was provided by a local density functional model derived
earlier (Parr et al 1979)

E[p]=(3/5) Ao [p>" dr+(3/4)Bo N3 [p*3 dr+ [vp dr. (18)

The form was derived assuming that the kinetic and electron—electron repulsion
energies are represented by local functionals of the form K(N)fp’ dr, where K (N)
includes the function of the number of electrons, N, as well as constants. The
constant [ was uniquely fixed by the use of elegant scaling arguments (Szasz et al
1975). In this work (Parr et al 1979), various fits to the J[p] and K [p] evaluated
from near Hartree-Fock quality (Clementi and Roetti 1974) densities were
presented. Some of the fits carried out may be represented as:

J[p]=BoN*?[p** dr,
K[pl=B,[p*?dr,
J[p]1=(BoN?*+By)[p*? dr,
and
Ve[p]=(ByN*3+B,)[p*? dr. (19)

Gadre et al (1979) derived a theorem that all densities p(r) which are finite
everywhere and —0 as |r|— o0 must satisfy

Jp] =(1/2)j[p(r1)p(r2)/r12] dr, dr,
< 10918 N2 [ p*3(r) dr. (20)
The proof begins with the inequality (11) above.
Putting f=p*°, m=35/2 and n=5/3, one gets
JKCN23[p43 dr (21)
where C is obtained by minimizing
FLpl=JLp)/[(fp dr)*? [p*? dr]. (22)

By the use of the solution of a Lane~-Emden type equation, it turns out that C ~
1-0918 (see also Lieb and Oxford 1981).

Some lower bounds to J[p] were also obtained by the use of Dirichlet’s principle
as pointed out by Schrader and Prager (1962), viz, '

J=(172)[pr) V()= (1/4m)|V ¥V (r)| dr], : (23)

where the equality is attained when V=®, the classical electrostatic potential
arising from the charge density p(r). Gadre et al (1979) derived various lower
bounds to J, which are rather complicated in form since they involve gradients of
the electron density, e.g.,

J=n([p*? /(9N T2 Lp1}, (24

where T,[p] is one-ninths of the Weizsicker correction.
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The upper and lower bounds obtained in this work were techd on Fhe at.mmic near
Hart ee—plgzck densities (Clementi and Roetti 1974). An lmmcdmlc ni;wms:mg
a drlii:‘xtion of these bounds was made by Perdew and Zunger (1981} to estimale i!}e
sepﬁgimeraction correction within the X, theory. Tbcy employcd(lhg ‘?t‘z-mund :f; ,:;f
the sense of an equality and estimated the correction to be = )-I(n.; f fryall r.

xe

Here. x and o denote orbital and spin indices. Gadre and Bendale (1983)
im’es.tigated the possibility of modelling the Coulomb (.J) a'mi total electron
repulsion energy (Ve.) by simple functionals of one-clectron density.

The forms explored by them were:

N3 [ pt3dr (] dr)¥3, N* ([ p2dn)'® and N3¥2 (‘ prde)te. ,,
They found that these forms lead to remarkably linear fits to J and 17, when
employed in conjunction with near Hartree~Foc_k data. .

Gadre and Pathak (1981a) carried out variational calculations on the He atom
and the H, molecule by replacing J[p] by the RHS of (20). They noted that the
total energ;' thus obtained is higher by a mere 0-3% for the He atom w.r.t. the near
Hartree-Fock wavefunction. The H, molecule shows binding at around the true
Hartree-Fock minimum: the sacrifice in energy being less than 0-2%a,

Further. along these lines, Pathak et al (1982) developed a first-ever approxmate
density functional model for atoms in momentum space. The total electron.
repulsion energy was modelled by them as BN {p*? dr. However, sermclassical
phase-space considerations lead to a result that [p*? dr is proportional e < po, the
linear momentum expectation value (Pathak and Gadre 1981; Guadre and Pathak
1981b). This enabled Pathak et al (1982) to obtain a remarkably simple form for
atomic momentum densities and rather quick predictions of atomic momentum
space properties.

Coulomb energy, total X-ray scattering intensities and average clectron densities
were connected via rigorous bounds by Chakravorty and Gadre (19R7) In this
work, a number of relationships among the Coulomb energy, total x-ray scattering
intensities, (r") values and (p) were derived.

The classical Coulomb energy, J [p], is given by

JLp1=(1/2)[drp(m) [ [ p (') |x—1"|]dr". (25
By using the definition

fk)= [p (e’ dr,

v 126}
and the Faltung (convolution) theorem, one readily obtains
JIp]=([dk I (k)/|k|?)/2n), 2h
where I(k)=|f(k)|2.
For atomic densities which are centrosymmetric, one obtains
TLPI<IN/m) | fk) dk ‘
) g flk)dk, (28}
and employing a well-known identity (Silverman and Obata 1963), viz.
()‘_}>=('2”7t T )
/m) | 1)k, (29)
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one gets

JIPI<2)NCr™ 1) =(1/2)| Ve N/Z. (30)

It was shown (Chakravorty and Gadre 1987) that a number of lower bounds to
J[p] could be obtained by employing the recent results of Galvez and Dehesa
(1987); Dehesa and Galvez (1985), e.g.,

Jpl=m?{rm D3 (18<r™ %)) (31)
This can be simplified further by using {r~?) <87, and T,,< T to
Jlpl=n?{r71)3 (144 7). (32)

We have attempted to present an exhaustive review of the density-based rigorous
bounds to the direct part of the electron repulsion energies in the present section.
‘The indirect part will be treated in the following section.

3. Bounds to indirect Coulomb energies
Analogous to the work by Gadre et al (1979), an upper bound to the exchange
integral

Iy = [uf(n) uf () u; () uy (n) [r—1| “ldrdr ‘ (33)

(the {u;} being the orthonormal canonical Hartree-Fock orbitals), was derived by
Pathak (1984). Defining the “differential overlap™ F;;(r)=uf (r) u;(r), the exchange
integral can be cast into -

I;= (1/47;)j'dr\Vd)ij(r)|2, (34)
with ®@;;, the complex “potential”, identified as
®;(r)=[F5@)|r—r |~ dr. (35)

Application of the three-dimensional Sobolev inequality in conjunction with the
Cauchy-Schwarz inequality leads to:
1, <(8/3)(2/m)'3 [[dr|Fy;(r)| 1?7 [dr | Fy(m]*], (36)
with
fdrFym]=[drlu@]lu;m)
<[fdrlu(m]12 [fdriumFT =1, (37
one finally arrives at
1; < (8/3)(2/m)'? fdr | Fyy(n) | *7. (38)
Further, summing over the indices i and j along with the factor (—1/2) yields a
lower bound to the Hartree-Fock exchange energy. Thus, the Hartree—Fock
exchange energy is connected in terms of an inequality to the Hartree-Fock orbitals
partaking in the exchange.
In a more general context, an interesting general lower bound to the indirect or

purely quantal part of the electron-¢lectron repulsion energy V.., for a general
system of charges ¢, €5, €3...ex>0 (or all<0) obeying arbitrary dynamics and
oy
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statistics was derived by Lieb (1979). He obtained a lower bound to the quantity E
given by

E=V.=D[p.p]
NN
=C ¥ eqln—rl T = [pMpE)2lr—r|)"! drdr. (39)
l-—}.<_]j—~1
The functional D [p,p] represents the classical Coulomb repulsion energy for the

charge density p(r). A major ingredient of E, viz. the exchange energy, is popularly )‘
approximated by the Dirac-Slater exchange (Dirac 1930: Slater 1951), viz. i g

Eexen = = Cocle]?? [p*3 (r)dr (40)

with C,,=const>0. However, (40) is not a rigorous “bound”. For an N-electron
closed-shell system, C,,.=(3/4)(3/7)'/® in Hartree atomic units.

Lieb’s proof hinges on two theorems applied in succession. Defining X=(r,,
I,...,Ty) representing the spatial degrees of freedom, and setting,

fX)=3 ¥ (X,9)]2 (41)
¥ being the many-particle wavefunction, and a, any other degrees of freedom apart

from the spatial ones (e.g. spin). One observes that {/(X)dX =1 and the density due
to the ith particle, pi},, emerges as

Pet)=e; Y [f(X)dr,...dr,_ dr,,, c.dry,

and one readily has the toral density derived from ¥, viz. Py» given by

N
Py)=Y epl (r)

i=1

The expectation value

IM¥]=C¥| T ey r—r|

i<j

¥, ‘ (42)

is the total Coulomb repulsion for the state P. Further, setting D [h,g]=(1/2) [ h(r)
g(r){r—r'| 1 drdr’, Lieb established that

Ews (Y1=IT¥Y]1-D [py,.p,]
1/4 N 43 Y34 -
=2-C {jp:,” (r)dr} {ﬂ: Z ef® pl, (r):l dr} . (43)

C=x!/12311/12232 » §.5) and :
Eia > —Cle|3 [ p23(r)dr. @4

For electrons,
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The following criticism on Lieb’s elegant work is in order. It is gratifying that, in
arriving at the inequality (44), Lieb derived an important general inequality, a lower
bound to the operator V,,: V,,= Y ee;r;™", namely,

i<j

2 e;e;/ri;=—D[p, pl+ Z (2D [ ;1= D {15, 14]), (45)

i<j

where 4 (r) are arbitrary functions satisfying (i) pi(r) =0; (i) p;(r)=w,(Jr—r;|) ie.
they are spherically symmetric around r, and (iii) j'yidrse,-. Note that the
dependence of the RHS of (45) on the vectors r: i=1,2,..., N comes implicity

through the functions g;. To derive the inequality (43), Lieb has chosen the
following prescription for ;: ' ‘

.“i(r»ri)zﬁw(r)(){Ri(ri)“ lr—r;|), (46)
where p,, (r) is the spherical average of py around r=r;; ie.

/7\!1 (r) = ( l/4n)§/)qn (r - ri) dQ: (r=r;):|r—r}]

and R;(r;). by the virtue of the Heaviside unit step-function 0, the finite radii such
that j'p\l,(r’)()(R,-(r,.)——lr’~r,~|)dr’=e,-, meaning that a sphere of radius R, centred at
r=r; is choscn such that it encompasses a total charge e,. It is, however, not clear
whether this choice for g, is the best one in a lower bound sense. Another important
step towards the inequality (43) is the introduction of the “maximal function”

My (r)=Sup(@nR*/3)7" [|4(r')|0(R—|r—r'|)dr,

which is a sort of mucroscopic average charge density in a sphere of radius R centred
at r. It may be remarked that the maximal function for a hydrogenic system at r=0,
would be

M.‘/(O) = Sup (47TR3/.“,3)— 1 j/)H (r')dr’ I 0 (R _ IT' |)
=Sup(dnR*/3)" (Z3/m) [e =2 dmr> dr
=Sup(@dnR/3)7! (1—¢~7R(1+2RZ+2Z*R?));

with p,,, the hydrogenic charge density for nuclear charge + Ze. Evidently, as R—0,
My(0)— = : finitecness of the maximal function is thus not ensured. However,
according to Lieb (private communication), this is not a problem and can
always be circumvented. Also, the negative-semidefiniteness of E;,, [¥] i.e. E;, [¥]
<0 is not always guaranteed. However, for atoms and molecules, it is expected to
be ncgative, as is desirable. Subsequent to Lieb’s work, a study due to Lieb and
Oxlord (1981) improved the numerical constant in the inequality (44) from 852 to
[-68 thus making it tighter. Also, the use of the maximal function was by-passed.

Licb and Oxford (1981) started with the inequality (45) with a prescription on
10=0 ast g (v'y= 72 py(0) (2 pb* (r)| ¥ —r]) along with u(s)=0 if s>1 and fu(r)
dr’=1. The positive scaling constant was suitably determined later. The inequality
(7) was rewritten as o '
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Z(léj/rlj/ D[pxy’ pxy]+4 Z D[ply ]

i<j
_7<Z D[py- —e; e, 1+ D ey ety ]) (47)

with ¢, (r)=0d{r—r;), the Dirac J-distribution function representing a point-charge
density centred on r;, totalling a unit positive charge.

The introduction of the J-distribution leads to p,, upon taking its expectation
value for the state ¥. Thus

N

f[lPJzD[pW,p\,r(zl f 2D [py- 0, — ] ply (1) diry

N
:Z JD[,ur e e pq, ;)dr ) (48)

Using characteristic functions such as y,(s)=0[p,(s)—«a] and certain scaling
properties, Lieb and Oxford(1981) estabhshed that the first term in the large
parentheses in (48) is bounded above by (3/42) I\jp'“3 )dr where K is a constant
depending on the choice of i The second term in the large parentheses is also seen
to be bounded, noting that the r; now become dummy integration variables:

[\/]2

JDE#T,M Je; pl, (r)dr

1]

i=1

N
=D[uul 3 e J pL3 () dr

N 4/3 3/4 1/4
<AD [, p] U( Y. epy (r)> dr:| Up;“(r) dr} :
=1 .

The Z-dependencies in both the upper bounds to the respective terms in the large
parentheses of (47) were then optimized leading finally to a lower bound (because of
the negative sign)

N . 4/3 1/2 v
E,,[¥]> —168 [ K y eipi!,(r)> dr} [] P& (m)dr]'2, (49)
i=1
For a many-electron system, with ¢;=e for all i, the lower bound gives, in Hartree
units (¢;= —le|=—1
Eind [l}’] = —168 fp:,“ (I‘) dr. (50)

This lower bound is not a very tight one; the present coefficient of — 168 is
numerically far larger than the Slater-coefficient of —(3/4)(3/n)!/3 ~ —0-7386 for the
exchange energy estimate. However, the Lieb—-Oxford bound gives us a marked
improvement over Lieb’s earlier result [inequality (44)].
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Kinoshita (1959), in his illuminating paper, obtained several inequalities
connecting the kinetic and potential energies of a two-electron system such as the

helium atom. In particular, he obtained inequalities concerning the expectation
value

CS@e o) [ 1r 5| f(r,r5)> for any well-behaved real function f
Setting u=r —r,, V', =1/r,=1/u
and noting that
Vo (@f?)=12(Vy-0)+2a-fV, f=2f*/u+2a-fV,f,
with Kinoshita (1959), we observe vide the Cauchy-Schwarz inequality that
SVl >==§@f)(v,/)dr, dr,
< ([fdrdry f2192 [ dr, dr, (V, f)2]12 ' (51)
Next, with transformation to the ‘centre-of-mass’ and the ‘relative’ coordinates,

R=(r;+r,)/2; u=r,—r,.

one has

Vif=Ve/+Vf. Vof=Vef+V,f. (52)
whence

BV V4 V) =3 (Ve /) +() (VP2 25V, N (53)
From the previous three relations (51), (52), (53) it follows that

S1P0alf> <RI, (54)

with K= —(1)(V?+V32), the kinetic energy operator for the two-electron system.
Kinoshita’s work can be easily generated to an N-particle system: multiply (4) by
N, throughout; leading to

Vee < [Nl/z (N_ 1) T1/2/2]_ (55)

With T= —E for ground states of Coulomb systems, (55) yields a bound connecting
V.., the total electron repulsion energy to the total energy. This bound, however, is
not expected to be a tight one especially for large values of N.

Pathak and Bartolotti (1985) employed the three-dimensional Sobolev inequality
and the Holder inequality and derived certain interconnections among the terms in
the gradient expansion of the kinetic- and exchange-correlation energy functionals
for atomic systems. The ones involving the major ingredient of the exchange-
correlation energy functional, viz. K,, the Dirac-Slater approximation to the
exchange — K, [p]l= —C,, [p*?(r)dr;

C,.=(3/4)(3/m)'3 ~0-7386,
1< (1/2)n* (8/3)3(C3/C,,) N2 K T3?/TE, (56)
with Cpe=(3/10)(37%)*”* occurring in T, [p]= Cr[p>" (r)dr, the ‘Thomas-Fermi’
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contribution to the kinetic energy functional T[p] and T, [p]=[(|Vp|?*/p)dr/8,
the “full Weizsidcker correction™ '
The rigorous inequalities

1 < (8/32n2)))(C3R /CE2)KE T/ To, (57
and ; | -
1 <(CH/Co) Np (O Ko/T, (58)

were obtained. This last one is valid for atomic systems with spherical symmetry
wherein it is assumed that the density has its maximum value at r=0, ie. at the
nucleus (Weinstein et al 1975). Another study on inequalities involving the kinetic
and the exchange-correlation contributions was carried out by Dehesa and Galvez
(Dehesa and Galvez 1985; Galvez and Dehesa 1987). They established that

W,=[[p(r)]" dr is bounded from below as
W, > [nk/((k+3)n—3)] ¥
x A" (k[(3n—3)/(k+3)n—31*"/4n B (n/n— 1,3/k) {r*p3yn=1 - (59)
for k=1,2,..., |
where B(x, 3)=T(x)[ (#)/T (x+y) is the usual beta-function,
A= j'p (r)dr,
and (Fy=(1/A)[rfp(r)dr.
It was shown in their work that
W,= [nk/(n(3—k)—3)]x
x A"{[k[(n(3—K)—3)/(3n—3)] PR An B3k —1n—1Ln/n—1)}"" L,

. (60)
provided k=1,2,..., and that k <(3n—3)/n.

Also an upper bound to the Dirac-Slater exchange energy was found by Dehesa
and Galvez, viz.

E..=—(3/4)(3/m)'"> [ p*? (r)dr
< — (34 (3/m)' K A*P /M,
k=1,2,3,...,
and
K, = (4k/(4k +3)) {k [3/(4k+3)]*"*/4x B (4,3/k)} /3. (61)

Similar bounds for the same quantities in nuclei were also derived and analyzed
by these authors.

In a density .funct'ional context, inequalities concerning the exchange and
correlation energies were derived by Sahni and Levy (1986). In their work, bounds

to cgrrelation energy and an inequality involving the correlation potential were
obtained. Consider the following definitions

E.[p]=E[p]—E.[p] 5
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where

N
E[p]=(¥|T+V,.+ Y v()|¥), comes from ¥ which is the
i=1

interacting ground-state wavefunction,

N
E, [p1=( @ | T+ V.t Y v)®>, (63)
i=1
where @ is the single determinantal wavefunction made from Kohn-Sham orbitals
which also leads to p, the ground-state (g.s.) density, and minimizes the expectation
value in (63).
Similarly, let

E.[p1=E[p]—E.[p].
Here, E. [p]=(®|T+V,+ i v(r) | @ ). (64)
i=1

@' is that single determinant which is constrained to be the gs. of some

N
noninteracting Hamiltonian T+ ¥ v,(r;), which minimizes the expectation-value in
i=1
(64). The ground state density obtained from @' is, in general, different from p.
Also, let ENF[p]=E[p]—E%

X0 7

ESF [p]= (O | T Pt Y. 0(e) |94, (65)

i=

®YF is a single determinant which minimizes the expectation value in (4) with no

further restriction. The g.s. density from ®"F is pHF#p, in general. y
By constructing @ as a single determinant that minimizes T+ V,.+ Z v(r;)
N i=1

+ X v,(r)> and is simultaneously restricted to be the gs. of some noninteracting

i=1

N
Hamiltonian T+ £ v,(F), one is led therefore to
i=1

(O T+ Vet i"v(re)l®'>> (OIT+ 7Vt i o(r)| P>, (66)
i=1 i=1
and
Exo[p]_Exo[p]=51>O’ (67)

unless t,(r;} is constant.
Also it follows that

N N
(O T+ Vet Y 0+ Y vl @D
=1 i=

1
N N
— (O T+ Vot 3 v+ Y 5(r) | @) =0,>0. (68)
i=1 i=1

Adding (66) and (68), one obtains
[[p' (= p()]e(r)dr=25,+0,>0. (69)
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From (67) and (69),

E.[p]— E.lpl={[p'(n—p®)]r(r)dr =5, >0, (70)
~ is obtained. Therefore,
0< E/[p]— E[p]<[[p'(r)= p(r)]vc(r)dr. (71)
Also, one obtains | _ '
E.[p] < E:[p]1 < EZ"[p]- | (72)

These bounds are indeed rigorous, however, a practical use of these results 1is
rather hard to demonstrate. Also, these authors define the correlation energy and

exchange energy in a physically tangible way, but in a manner different from the
conventional one. ’

Within the Hohenberg-Kohn-Sham-Levy framework (Hohenberg and Kohn

1964; Kohn and Sham 1965; Levy \1979), Levy and Perdew (1985) derived the
inequality

E,.[p]+ [ pr)r- Vo, ([p], ndr

= —T,[p] - Tp1= ~ T.Lp1<0, | (73)

where E,.[p] is the Kohn-Sham (1965) exchange-correlation energy functional, T~
and T, being the “interacting” and the “noninteracting” (single-particle) kinetic

energies (Kohn and Sham 1965) and V. ([p]; r) is the functional derivative E,. Lo/
5p(r). Further they proved that

E.[p1+ § p0rVo.([p); )=~ T.[p]1<0, (74)

where E, is the “correlation energy function”, obtained as E,=E,.— E, Ex being the
exchange energy. All these functionals are universal functionals of the density
(Hohenberg and Kohn 1964; Kohn and Sham 1965). Numerous interacting results
were obtained by Levy and Perdew (1985) by exploring the repercussion of a
“parametrized external potential”  V;(r) and the “scaled electron—electron

interaction AV,.”. Noteworthy is the fact that (V,), becomes a2 monotone
decreasing function of 4. Also

Voo [P1= Vee [0, 1> 92 TLP1 =T Lp, 2 < 1), (75)

and

SV Lo = Vaulpd <7 TIP1~ TLp,J 4> 1) (76)

were obtained for the exact functionals.

4. Electron repulsion integrals over Gaussian basis-sets

Some work on the estimation of electron repulsion integrals over Gaussian basis-
sets has been reported in the literature. Ahlrichs (1974) derived an upper bound to
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the repulsion integrals

Cijlkly = .[drl dry uf (r,) u}(ﬁ) uf (ry) uy(rs)irys

exclusively for s-type Gaussians. This bound is based on the result that
F(x)=x"12erf(x1/2) < 2n~ % As seen in § 1, the bound was employed by Ahlrichs
(1974) to neglect certain electron repulsion integrals (without a pre‘cise e.vaiumim{x
which fall below a pre-set threshold. However, no attempt was made by him 10
extend this approach to p- and d-type Gaussians. Also, no rigorous lower ‘c;eund@ to
Cijlkl> have as yet been derived. Cremer and Gauss (1986) have, in their direct éCF
~program, utilized these bounds by Ahlrichs (1974) over s-type Gaussians 1o
estimate the electron-repulsion integrals. It was found that this formula is also
useful for approximate estimation of the integrals over a p- and d-type Gaussian
though it is not any longer a rigorous bound. It has been recently p;)imed out by

Hiser and Ahlrichs (1988) that the Ahlrichs bound is just a special case of the
Schwarz inequaliy:

I<ijlkIDI< Q15 Qs (774

zvhe):re %b=<ab|ab>” 2, This bound is optimal since the equality holds for the case
i )=k, D).

Almlof et al (1982) adopted a different approach for this purpose. They based
their estimates on radial overlap integrals. Hiser and Ahlrichs (1988) tested the
bound (1) applied to the batches of integrals. They employed the data for the
molecule C, H,,0,, also used earlier by Cremer and Gauss (1986) for testing
purposes in their direct SCF approach. Some test runs in PsHs in C, symmetry
were also carried out by them. They noticed a 15% reduction in computer time
with the use of more precise integral bounds for pre-screening purposes. The
application of these bounds would also result in tremendous savings in secondary
(disk/tape) storage. In fact, for large molecules, many of the electron repulsion
integrals in an SCF calculation are negligible.

Clementi et al (1973) studied the computer time needed for evaluation of various
types of integrals, viz. aalaad, {aalab), {ablab), {aa|ab) . . . etc. for the case of
staggered ethane. Even for this small molecule, the three- and four-centre integrals
need more than 60% of CPU time. Clementi (1972) reported typical computational
times for large molecular systems, Viz. Na(H,0),, cytosine, guanine, cytosine- guzmine
complex etc. For the largest system analysed, the number of integrals is ~ 10°. The
computer time can be drastically reduced by (i) computing with full numerical
accuracy only those integrals larger than a given threshold T (i) computing with
intermediate accuracy only those integrals which lie between T, and T,{T;>T:h
(ili) neglecting those which lie below a threshold T3(T5« T,). Integrals in category
(ii) are evaluated by replacing the contraction by a single primitive Gauss%zm
(termed by Clementi as ‘adjoint basis-set)). He commented that with these strategics.
the “bottleneck of the integral computation is broken . . .. " '

An exhaustive analysis of the distribution of the numerical magnitudes of these
electron-repulsion integrals was carried out by Clementi and Mehl (1974) and by
Habitz and Clementi (1982). It was pointed out by Clementi and.Mehi (1974) thaﬁ
for a large molecule, a vast number of integrals must be smaller (in absolute valgm
than a given threshold ¢ and a large number should be nearly_ equal to zero. ie.
smaller than another threshold &, where & <«é&. An analysis of the integral

,_,______-—-“



498 Shridhar R Gadre and Rajeev K Pathak

distribution of a test example, viz. the guanine-cytosine complex (C4N;OH,-
C4N;OH;) with 136 electrons with a pre-chosen basis-set revealed that out of the
8-06 x 108 integrals, 74% are numerically less than 107 a.u., 12% lie in the range
107'% to 107° and 14% are numerically greater than 1075. The adjoined and
dynamic-basis sets were examined in this context.

Habitz and Clementi (1982) analysed in detail the statistical distributions of the
matrix elements for chemical systems. They examined the distribution of overlap
integrals and their products, such as Sap and S 5Scpl, IS £4Spcl - . . ete. They also
analysed two-electron integrals statistically and found that many of the integrals of
the form ({AA|AA> are numerically significant. However, the numerically
insignificant fraction increases as one proceeds to a multi-centre situation e.g.
(AA|BB)—{AA|BCY~{AB|CD>. The molecules examined in this study included
S-P-S-G  (S=sugar, P=phosphate, G=guanine), S-P-S, benzopyrene and
[Zn(NH,),OH]*. The general conclusions noted above were seen to be valid for all
these molecules as well. More recently, Dupuis et al (1976) discussed evaluation and
storage strategies for electron-repulsion integrals based on estimations of their
numerical values.

In this section, a brief resumé of the work done on derivation and estimation of
rigorous or semirigorous bounds to electron-repulsion integrals has been presented.
However, it may be seen that rigorous upper bounds to <1 /ry2) exist only for s-type
Gaussian  basis-functions (Ahlrichs 1974, and private communication). Th
estimation of the integrals made by Clementi and others is done in a similar spirit
(Clementi 1988) but is not based on completely rigorous grounds. We present in the
following section general rigorous upper bounds to <ijlkl> for s, p as well as d-type
Gaussians. Some numerical tests of these bounds using some organic molecules as
test examples will be presented therein. A novel lower bound to the electron-
repulsion integral over s-type Gaussians will also be derived and discussed.

3. Rigorous upper and lower bounds to electron-repulsion integrals over Gaussian

basis-sets

Gaussian-basis sets (Boys 1950; Shavitt 1965) were first introduced systematically in
quantum chemistry by Boys in 1950. Over the years, they have become extremely
popular and more than 90% gp initio level computations employ Gaussian basis-
sets. The advantage with Gaussians is that the matrix elements of the Hamiltonian
can be evaluated in a closed form over them. However, the number of primitive
Gaussians required in a large molecular Hartree—Fock calculation is extremely
large. The number of electron-repulsion integrals that must be computed in such a
calculation is ~ N*/8 where N is the number of primitive Gaussians. As discussed in
§ 1, this requires large computer time as well as secondary storage, as has been
summarized well by Clementi and Meh] (1974) who call it “a long bottleneck™ of
quantum chemistry.

The electron-repulsion integrals <ijlkly over Gaussian basis-sets are rather simply
obtained by suitable differentiation/s of integrals involving s-type Gaussians, viz.
{84Splscsp>. The expressions for these integrals involve exponentials and special

functions F,(1)=[§u*™e~"" dy (Boys 1950). Evaluation of these special functions
requires a good deal of computer time. ‘

Let us begin by derivation of an upper bound to
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(s48glsespd = Fo [(a+b)(c+d)PQ*/(a+b+c+d)](16abed)**- 212 - x
x exp [ —(abAB?/(a+ b))~ (cdCD?*/(c+d))]+
+[73 (a+b)(c+d)(a+b+c+d)V]. (78)

Employing a rather elementary bound, viz. Fo(f)<1, presented in the appendix for
all values of ¢, one is led to '
{8,45pl8cspY < ((16abed)/n*)3*-2r>%-exp[ — (abAB*/(a+b))— (cdCD?/(c+d))]+
+[a+b)(c+d)a+b+c+d)'?]
=K - (16abcd/n*)>* (79)
with obvious notations. In (78) and (79), a, b, ¢, d are exponents of normalized
Gaussians s, sp, Sc and s, respectively; A, B, C, D being the corresponding centres;
P=(aA+bB)/(a+b); Q= (cC+dD)/(c+d). This bound does not depend on the
argument of F, and is universal and has earlier been derived by Ahlrichs (1974).
It is instructive to discuss special cases of relation (79) for the case of the self-
repulsion of a single orbital. It turns out, using bound (79) that
{aalaay <2(a'?)/n'?, (80)
where a is the orbital exponent. ' |

The general and tight bound due to Gadre et al (1979) discussed earlier, viz.

_ (aalaa)y <2:1836 [ pi" dr yields

Caalaa) <(1-0918 332 a'12)/(2%? n'/?). (81)

Comparison of (80) and (81) shows that (80) is tighter than (81) only by about 0-3%.
An interesting aspect of bounds (80) and (81) is that they obviously do not involve
overlap-type terms. Also, as pointed out by Gadre et al (1979) and by Perdew and
Zunger (1981), these bounds are quite tight and may be used to approximate the
Coulomb repulsions. Hence, since a, the orbital exponent ranges from 1072 to 103,
the self-repulsion terms are normally expected to be significant. This is in good
agreement with the results of Clementi and Mehl (1979) which show that almost all
self-repulsion integrals are non-negligible. One may also compare the results
obtained by employing the bound (79) for the exchange integral (ij|ji) with those
provided by the inequality '

I;= Cijljiy <(8/3)(@/m)'? [ Fyyl*> dr (82)
due to Pathak (1984). Inequality (79) yields |

I;;= Cijl jiy <(4aiaj)3/2 212 - exp(—2a;a; AB 2fa;+ aj))/[nllz (a;+ aj)S/z]_
(83)
The results may be compared to those obtainable from Pathak’s (1984)
inequality, viz. H |
IUSZW'3”2-ai-a]-exp[—4aiaj/—{§2/(3ai+3aj)]/[n3/2'(ai+aj)]. (84)

It may be noticed from (83) and (84) that the former bound is tighter than the latter
at large separations AB. However, the best bound due to Pathak yields

1,<210 312 (a.a)*? exp [~ 2a,;4B>/(a;+ a)}/L(a;+ a)* ¢,
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which is quite comparable to the inequality (83). The statistical distribution of the
exchange integrals is thus expected to be rather more diffuse than the self-repulsion
type {aalaa) integrals.

We have so far considered rigorous upper bounds to the electron repulsion
integral {ijlkl> and some special cases thereof for s-type Gaussians. These bounds
are rigorous and fairly tight ones as may be noticed from the test examples
presented in the following section. It is also possible to derive rigorous lower
bounds to these integrals. The derivation hinges upon a rather elementary result, viz.
Fo(t)=e™', derived in the appendix.

This yields

(S40.5p) = (16abed)®*2 - exp [ — (abAB%/(a+ b))~ (cdCD?/(c + d)) — 1]+

= [n2(a+b)(c+d)(a+b+c+d)?], , (85)

where t=(a+b)(c+d)PQ*/(a+b+c+d). ' (86)
As a special case

{aalaa) =2a'?/nt!? (87)

in which the lower bound actually attains the true value given by (80). It is also
obvious that the exchange-type integral {ablba) is also bounded from below by its
exact value, viz.

(2ab)"'? exp [ —(2ab AE */(a+ b))1/(a+ b)*/2. (88)

Tighter bounds to <ijlkl> may also be derived using tighter bounds to F, e.g. for
t>0,

Fo(t)>[1—exp(—10)]/t (89)
derived in the appendix (vide (A2)). This yields

(S 4SglScSpY =(16abed)* -exp [ — (abAB?/(a+ b))~ (cdCD?/(c+d))] %
x[1—exp(—1)])/[t-n?(a+b)(c+d)(a+b+c+d)?*], (90)

wherein t is expressed by (88). :

Bounds derived in this section are rigorous and tight ones and do not require
computation of F,(t) which is the most expensive step (Shavitt 1965; Ahlrichs 1974)
in the computation of {s,sg|scSpy. Only the weak bound (79) has been derived by
Alhrichs. In fact, with this work, lower bounds to the electron-repulsion integrals
appear in the literature for the first time. One may employ the new bounds derived
in this work to estimate electron-repulsion integrals without actually computing
them: Computation of exponentials suffices for their enumeration. The bounds to
self-repulsion and exchange integrals obtained as a special case almost match the
earlier results in the literature (Gadre et al 1979; Pathak 1984) employing the
Sobolev inequality.

The technique employed in this section, viz. to obtain rigorous bounds to F(t),
may be further generalized to extract bounds to F,(z) where F,(t)= 5 u*™ e~ du.

These bounds can be used to yield rigorous upper bounds to integrals involving s, p

and d-type Gaussians (e.g. (A5), (A6) and (A7) discussed in the appendix). We have

derived inequalities to all the possible combinations of s, p,, p,, p, orbitals and some

prototype ones involving d-orbitals. We report below some of these results.

s ¥

iy
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1< 54551 ScPe.pd| < (16abed/n*)** 2dY2 K- {c|C,= D Jf(c+d)+
P0IBT, O
where K =252 exp { — (abAB2/(a+b))—(cdCD*/(c+d))} =
“[a+b)(c+d(a+b+ctd)}?]

and
L=(a+b)(c+d)/lat+b+c+d), P=(aA +bB)/(a+b); Q=(cC+dD)/(c+d).

(5.4 P 5l 52 Pe. oDl <(16abed/m*)>/*-4(bd)' /- K - {ac| A = B.| | Cx= Dl +
+L[a'14,~ B, |P,—Ql+c |C.= D |P.— Q.+
+1/21/3 + L2 (P.— Q.)*/5}. (92)
1(5.485] Pe.c Px.o0| <(16abed/n*)¥* - 4(cd)'? - K.
{ed(Cy=D,) +1(c+d)+ L[ Co=D, |- |Px=Q. ] [c—d|+
+1/21/3 + L2(P,— Q)*/5} (¢ + d)*. (93)

These bounds are based on inequalities F,(t)<1/3 and F,(t)<1/5 which are
derived in the appendix. However, tighter bounds, viz. F,(t) and F,(t) both less
than (1—e™")/2t, may also be used (refer to appendix for the derivation).

This approach can be readily extended to electron-repulsion integrals involving
d-type Gaussians as well. For instance,

Csslsd > < K - (16abed/my - (32/3)12-d- [(c*+ CD%/v?) +
+(c- L-CD.PQ./(3v?)) + (2¢d/v)+ (PQ, c-CD, L/3v)+
+ (L/6v)+ (PQ2- L2/50%)]. (94)
Here, v=c+d, CD,=|C,—D,| and PQ.=|P.— Q..

The upper and lower bounds derived in this section can be meaningfully
employed to predict whether an electron-repulsion integral is numerically
significant or can be neglected with almost no loss of accuracy in total electronic
energy. We present numerical tests of the bounds for s-type Gaussians for some
organic molecules in the following section. :

6. Numerical tests of the bounds and discussion

Numerical computations of two-electron repulsion integrals involving s-type
primitive Gaussians as a test case, were carried out for the molecular systems
diborane, cyclopropene, trans-butadiene and naphthalene. The 4-31G** basis set
tabulated by Snyder and Basch (1972) was employed for this purpose. This basis set
is essentially of the double-zeta quality, however, the general conclusions drawn in
this section are expected to be qualitatively independent of the basis. The basis set
employed for the present study comprises ten s-type primitive Gaussians.for the
atoms carbon and boron, while for hydrogen, four s-type orbitals are used. The
best upper and lower bounds to these s-type repulsion integrals, given respectively
by the inequalities (79) (with (A5)) and (90), were also computed. In all these
computations, the coefficients accompanying a given Gaussian to form a
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traction were included. The computation of upper and lower bounds hardly
SONraciic : . . . = Yo e ‘ T
uﬂif iy significant computer time, since evaluation of F,, ix completely
needs any  sig

*liminated. L g vt Yoo
) Analvsis for gainfully employing the bounds can be carried out as follows: Define

the two-clectron repulsion integral Q by
QE.f..Lf};./&'.fl)l <5458lScSp> |

{ 1, denoting the coefficient accompanying the primitf}yﬁe Gaussiém Sy ete.), (& ‘{:fzmw i
cut-off value say. G (which is usually set to be ~107° to 10 °, Ahlrichs 19743 Let
U and L denote, respectively, the upper and lower bounds to ¢ cwc,ic\f’;té}‘t
L<Q<U. We now make different bins for the values c»f' Q s shown i
10! ;:Q> 10° then Q lies in the first bin, if 10°=Q>10""! then Q lies in the second
bin and so on. If, in a particular evaluation of the integral Q, it turns out that

(A} the upper bound, U,, itself is less than the cut-off G, it follows naturally that
0, is negligible since @, < U ;

{Bi on the other hand, if the lower bound, L, is grearer than the cut-off (r, then
the corresponding integral viz. Q, is not negligible and must be eviluated MNLe
0,2L,>C.

These bounds may be employed for a quick estimation of clectron-repulsion
integrals without actually computing them. For this purpose, one may follow either
or both of the above strategies. Figure 1 depicts the above two cases schematally,
for a hypothetical cut-off value G=10"8.

Figure 2a portrays a histogram, giving the number of integrals @ in a given bin
for the case of diborane, containing 44 primitive Gaussians. Figures 2b and ¢ do the
same for the lower and upper bounds, respectively. In figures 3, 4 and s analogous
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6 Trans—Butadiene (a) [

3 (b)

6[ (c) ——
—
4i-
2r ]
-8 -10 -12/\':100

1 0 -2 -4 -6

Figured. A histogram for logmNQ versus log, o0 in the respective bins shown in figure 1,
for the trans-butadiene molecule (a) and analogous histograms for the lower (b) and upper
{c) bounds, respectively,

histograms are drawn for the cases of cyclopropene,  trans-butadiene and
naphthalene molecules. The visual impact created by the plots is in fact a very
mitigated one: the scale of ordinates being logarithmic, enhancement by one unit
implies, in reality, multiplication by a factor of 10. The plots also reveal the
breathtaking similarity among the histograms for the actual integrals Q and the

Imperative, one may enhance the efficiency by adopting the strategy of “differential
accuracy” depending on the actual values of the bounds: the farther an integral
estimate lies to the left of the cut-off, the more accurate the evaluation of the actual
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Figure 5. A histogram for log,,N, versus log,,Q in the respective bins shown in figure 1,
for the naphthalene molecule (a) and analogous histograms for the lower (b} and upper (c)
bounds, respectively. .

value demanded (cf. Clementi 1972, and §4 of the present work). It may be
inferred from the above test-cases that with a cut-off value of G=10"8, a significant
fraction (~70% to 95%) of the s-type Gaussian electron-repulsion integrals are in
fact negligible, even for small molecules. Thus, the evaluation of these integrals may
be completely avoided right at the primitive Gaussian level, leading to an
enhancement in the efficiency of the program by an order of magnitude in terms of
the CPU time and disk-space requirements. For larger molecules, one expects even
more dramatic results. Extension to the p- and d-type Gaussians is straightforward
vide the bounds provided in §5.

In conclusion, it may be stated that in this study, an attempt has been made to
provide a comprehensive integrated view of rigorous studies on the inequalities
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involving the two-electron repulsion integrals in general. Novel lower bounds to
these repulsion integrals at a practical level, directly implementable in any ab initio
Gaussian package have been derived, in addition to some new upper bounds. In
essence, this work endows rigour to the criteria earlier used by Clementi and others
(Clementi ¢t al 1973; Clementi and Mehl 1974: Clementi and Roetti 1974). 1t is
envisaged that these bounds can be harnessed in more general ab initio level
programs. ‘

Further bounds to the electron-repulsion integrals within Gaussian bases can be
extracted via the Dirichlet principle (Schrader and Prager 1962) and Lieb’s (1979)
clegant results discussed in §§2 and 3, respectively. This work is.already in progress
in our laboratory.

Acknowledgements

SRG thanks the Indian National Science Academy, New Delhi, for the award of a
Fellowship. We are also thankful to the University Grants Commission, New Delhi,
for financial assistance. The authors gratefully acknowledge the assistance from
Mr Sudhir Kulkarni, Ms Indira Shrivastava and Dr A Shanthi at various stages of
this work.

Appendix

Expressions for electron repulsion integrals over Gaussian basis-sets involve (Boys
1950: Shavitt 1965) the special functions F, (1)

1

Foo={u* e dy,
0

A varicty of upper and lower bounds to F,, F, and F, will be derived here.
(1) Bounds to F,(1).

Note that Fy(t) is a monotone decreasing function, since Fy'(t)<0 for finite t>0.
The maximum value attained by F, is 1, viz. Fy(0)=1.

Hence, a trivial bound is F, (1)< 1. (A1)
Also note the following: For 0<u<1,

1
0

1
Foy=J e duz [ e ™du=(1—¢"")t. (A2)
0
Another bound is obtained by the following considerations:

1
Folh= e 'du=e™". ~ (A3)

(¢}
For 1<35, the following bounds are obtained by series expansion.
Fo(0<T~(1/3)+(1%/10),
and

Fo)=1—=(1/3)+(13/10)— (3 /42).
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2. Bounds to F(1)

1
Fity={ u?e ' dy
0
1 k]
sf ue M du
0

=(—1/21) e~
' 0

=(1—e )/(21). (AS)

Yet another upper bound to F,(f) may also be derived readily.

1 1
F ()= [ u?e ' dug [ u?e ™ dy
0 0
= (2/1%) = 2+ 2t +12) exp (— 1)/ 1%, (A6)

Some simpler upper bounds to F, and F, are given by:
Fy < 1/3, and F, < 1/5, and in general,
F,<1/2m+1) (A7)
3. For some further inéqualities, note that x<e* ™1
Substitute x=1tu* to obtain tu? e’ =1 = ¢’/e,
Hence, etu* < exp (tu?) yielding exp (— tu?) < (etu?)™ 1.

This leads to the result

1
F ()= g u? e~ du < (1/et). (A8)
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